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The DGLAP equation

[Altarelli,Parisi] NPB126(1977)298

I Hadronic cross section factorizes into perturbative & non-perturbative piece

σ =
∑
a=q,g

∫
dx fa(x, µ2F )σ̂a(µ2F ) � =
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Q

x

I Evolution from previous slide turns into evolution equation for fa(x, µ2F )

I fa(x, µ2F ) cannot be predicted as a function of x, but
dependence on µ2F can be computed order by order in pQCD
due to invariance of σ under change of µF

I DGLAP equation ↔ renormalization group equation
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How event generators fit in
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Radiative corrections as a branching process

[Marchesini,Webber] NPB238(1984)1, [Sjöstrand] PLB157(1985)321

I Make two well motivated assumptions
I Parton branching can occur in two ways

- observed

+ - unobserved

I Evolution conserves probability

I The consequence is Poisson statistics
I Let the decay probability be λ
I Assume indistinguishable particles → naive probability for n emissions

Pnaive(n, λ) =
λn

n!

I Probability conservation (i.e. unitarity) implies a no-emission probability

P (n, λ) =
λn

n!
exp{−λ} −→

∞∑
n=0

P (n, λ) = 1

I In the context of parton showers ∆ = exp{−λ} is called Sudakov factor
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Radiative corrections as a branching process

I Decay probability for parton state in collinear limit

λ→
1

σn

∫ Q2

t
dt̄

dσn+1

dt̄
≈
∑
jets

∫ Q2

t

dt̄

t̄

∫
dz
αs

2π
P (z)

t

z

Parameter t identified with evolution “time”

I Splitting function P (z) spin & color dependent

Pqq(z) = CF

[
2

1− z − (1 + z)

]
Pgq(z) = TR

[
z2 + (1− z)2

]

Pgg(z) = CA

[
2

1− z − 2 + z(1− z)
]
+ (z ↔ 1− z)

I Matching to soft limit will requires some care, because
full soft emission probability present in all collinear sectors

1

t

2

1− z
z→1−→

pipk

(piq)(qpk)

Soft double counting problem [Marchesini,Webber] NPB310(1988)461

I Let us first see how to compute the Poissonian in practice
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Color coherence and the dipole picture

[Marchesini,Webber] NPB310(1988)461

I Individual color charges inside a color dipole cannot be resolved if
gluon wavelength larger than dipole size → emission off “mother”

↔

I Net effect is destructive interference outside cone with opening angle
set by emitting color dipole → phase space for soft radiation halved

[Gustafsson,Pettersson] NPB306(1988)746

I Alternative description of effect in terms of dipole evolution
I Modern approach is to partial fraction soft eikonal

and match to collinear sectors [Catani,Seymour] hep-ph/9605323

pipk

(pipj)(pjpk)
→

1

pipj

pipk

(pi + pk)pj
+

1

pkpj

pipk

(pi + pk)pj

+

k j i k j i k j i
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Color coherence and the dipole picture

I Splitting kernels become dependent on anti-collinear direction
usually defined by color spectator in large-Nc limit

I Singularity confined to soft-collinear region only
captures all coherence effects at leading color, NLL

1

1− z
→

1− z
(1− z)2 + κ2

κ2 =
k2⊥
Q2

I Complete set of leading-order splitting functions now given by
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Color flow

I Parton showers replace gluon propagators by means of the identity
δab︸︷︷︸

standard

= 2 Tr(TaT b) = 2TaijT
b
ji = Taij 2 δikδjl︸ ︷︷ ︸

parton shower

T blk

I Quark-gluon vertex

TaijT
a
kl =

1

2

(
δilδjk −

1

Nc
δijδkl

)

− 1

Nc

I Gluon-gluon vertex
fabcTaijT

b
klT

c
mn = δilδknδmj − δinδmlδkj

−
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Color flow

I Typically, parton showers also make the leading-color approximation

TaijT
a
kl →

1

2
δilδjk ↔

I If used naively, this would overestimate the color charge of the quark:
Consider process q → qg attached to some larger diagram

∝ T aijT
a
jk = CF δik

but now we have
1

2
δilδjmδmjδlk =

CA
2
δik

I While color assignments in the parton shower are made at leading color
the color charge of quarks is actually kept at CF
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Color flow

I Having matched the eikonal to two collinear sectors implies
that in g → gg splittings color and kinematics are entangled

pipk

(pipj)(pjpk)
→

1

pipj

pipk

(pi + pk)pj
+ . . .→

1

pipj

1− z
(1− z)2 + κ2

. . .

I There is only one possible color assignment for each leading-color dipole

1− z
(1− z)2 + κ2

↔

z

z
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Parton-shower kinematics: Final state radiation

I Want to construct three (massless) on-shell momenta from two,

corresponding to branching process ĩj → i, j in presence of k̃ → k
I Calculate p2ij and z̃ = (pip̃k)/(p̃ij p̃k) from PS variables t and z
I First generate the propagator mass by rescaling

pµij = p̃µij +
p2ij

2p̃ij p̃k
p̃µk , pµk =

(
1−

p2ij

2p̃ij p̃k

)
p̃µk

I Then branch off-shell momentum into two on-shell momenta

pµi = z̃ p̃µij + (1− z̃)
p2ij

2p̃ij p̃k
p̃µk + kµ⊥

pµj = (1− z̃) p̃µij + z̃
p2ij

2p̃ij p̃k
p̃µk − k

µ
⊥

I On-shell conditions require that

~k2T = p2ij z̃(1− z̃) ↔ z̃± =
1

2

1±

√√√√1−
4~k2T
p2ij


→ for any finite ~kT we have 0 < z̃ < 1
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Parton-shower kinematics: Initial-state radiation

I Initial-state kinematics slightly more involved
as recoil should not be taken by opposite-side beam

pb̃

ãj b̃

Q

p
ãj pb

a

j

b

Q

pajpj

pa

I Compute new beam momentum by rescaling to new partonic cms energy

pµa =
2 papb

2 p̃aj p̃b
p̃µaj

I Compute final-state momentum and internal momentum as

pµaj = z̃ pµa +
p2aj

2pbpa
pµb + kµ⊥

pµj = (1− z̃) pµa −
p2aj

2pbpa
pµb − k

µ
⊥

I Recoil is taken by complete final state via Lorentz transformation

pµi = pµı̃ −
2 pı̃(K + K̃)

(K + K̃)2
(K + K̃)µ +

2 pı̃K̃

K̃2
Kµ ,

where Kµ = pµa − pµj + pµb and K̃µ = pµ
ã

+ pµb
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Connection to the DGLAP formalism

I DGLAP equation for fragmentation functions

dxDa(x, t)

d ln t
=
∑
b=q,g

∫ 1

0
dτ

∫ 1

0
dz

αs

2π

[
zPab(z)

]
+
τDb(τ, t) δ(x− τz)

I Refine plus prescription
[
zPab(z)

]
+

= lim
ε→0

zPab(z, ε)

Pab(z, ε) =Pab(z) Θ(1− ε− z)− δab
∑

c∈{q,g}

Θ(z − 1 + ε)

ε

∫ 1−ε

0
dζ ζ Pac(ζ)

I Rewrite for finite ε

d lnDa(x, t)

d ln t
=−

∑
c=q,g

1−ε∫
0

dζ ζ
αs

2π
Pac(ζ) +

∑
b=q,g

1−ε∫
x

dz

z

αs

2π
Pab(z)

Db(x/z, t)

Da(x, t)

I First term is derivative of Sudakov factor ∆ = exp{−λ}

∆a(t, Q2) = exp

{
−
∫ Q2

t

dt̄

t̄

∑
c=q,g

∫ 1−ε

0
dζ ζ

αs

2π
Pac(ζ)

}
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Connection to the DGLAP formalism

I Use generating function Πa(x, t,Q2) = Da(x, t)∆a(t, Q2) to write

d ln Πa(x, t,Q2)

d ln t/Q2
=
∑
b=q,g

∫ 1−ε

x

dz

z

αs

2π
Pab(z)

Db(x/z, t)

Da(x, t)
.

I If hadron not resolved, obtain

d

d ln t/Q2
ln

(
Πa(x, t,Q2)

Da(x, t)

)
=

d∆a(t, Q2)

d ln t/Q2
=
∑
b=q,g

∫ 1−ε

0
dz z

αs

2π
Pab(z)

I Survival probabilities for one parton between scales t1 and t2:

I
Πa(x, t2, Q

2)

Πa(x, t1, Q2)
Resolved hadron ↔ constrained (backward) evolution

I
∆a(t2, Q

2)

∆a(t1, Q2)
No resolved hadron ↔ unconstrained (forward) evolution

I Parton-showers draw t2-points starting from t1 based on these probabilities
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Effects of the parton shower
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I Thrust and Durham 2→ 3-jet rate in e+e− →hadrons

I Hadronization region to the right (left) in left (right) plot
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Effects of the parton shower
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I Drell-Yan lepton pair production at Tevatron

I If hard cross section computed at leading order, then
parton shower is only source of transverse momentum
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Effects of the parton shower
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Hands on tutorials

I Great resource for learning parton showers:
“Hackathons” at CTEQ/MCnet schools
http://www.slac.stanford.edu/~shoeche/cteq17

svn co svn://svn.slac.stanford.edu/mc/ps

Tutorial on Parton Showers and Matching

1 Introduction
In this tutorial we will discuss the construction of a parton shower, the implementation of on-the-fly
uncertainty estimates, and of matrix-element corrections, and matching at next-to-leading order. At the
end, you will be able to run your own parton shower for e+e− →hadrons at LEP energies and compare
its predictions to results from the event generator Sherpa (using a simplified setup). You will also have
constructed your first MC@NLO and POWHEG generator.

2 Getting started
In order to run this tutorial you should install PyPy and Rivet on your PC. The following command will
then download the tutorial sources into a directory called ‘ps’

svn co svn://svn.slac.stanford.edu/mc/ps

For simplicity, we will use PyPy, a just-in-time compiled variant of Python. If you are unfamiliar with
Python, think of it as yet another scripting language, such as bash, but way more powerful. A peculiar
feature of Python, and indeed its biggest weakness, is that code is structured by indentation. That
means you need to pay careful attention to all the spaces in this worksheet. Missing spaces, or additional
ones may render your code entirely useless at best. The worst case scenario is that it will still run, but
produce the wrong answer.

Some important ingredients of any QCD calculation have been predefined for you. This includes four
vectors and operations on them, the running coupling, αs, and a particle container. We also provide an
implementation of the analysis, which you will use at the end of the tutorial to compare predictions with
Sherpa. All this so you can fully focus on your parton shower!

Get started by creating a file called shower.py. First we need to import the predefined methods

import math as m

import random as r

from vector import Vec4

from particle import Particle, CheckEvent

from qcd import AlphaS, NC, TR, CA, CF

This will import all above mentioned classes, some important QCD constants, and functions from the
math and random library, which come with the pypy installation itself.

The basic ingredients of parton showers are

• the splitting functions,

• the splitting kinematics,

• the veto algorithm.

Let us tackle them one by one.

1
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