Introduction to Parton Showers

Stefan Höche
SLAC National Accelerator Laboratory

School and Workshop on pQCD @ West Lake
Hangzhou, 03/27/2018

The DGLAP equation

[Altarelli,Parisi] NPB126(1977)298

- Hadronic cross section factorizes into perturbative \& non-perturbative piece

$$
\sigma=\sum_{a=q, g} \int \mathrm{~d} x f_{a}\left(x, \mu_{F}^{2}\right) \hat{\sigma}_{a}\left(\mu_{F}^{2}\right)
$$

$$
\xrightarrow{2} \equiv=\sum_{a}
$$

- Evolution from previous slide turns into evolution equation for $f_{a}\left(x, \mu_{F}^{2}\right)$
- $f_{a}\left(x, \mu_{F}^{2}\right)$ cannot be predicted as a function of x, but dependence on μ_{F}^{2} can be computed order by order in pQCD due to invariance of σ under change of μ_{F}
- DGLAP equation \leftrightarrow renormalization group equation

How event generators fit in
SLAC

Radiative corrections as a branching process

[Marchesini,Webber] NPB238(1984)1, [Sjöstrand] PLB157(1985)321

- Make two well motivated assumptions
- Parton branching can occur in two ways

- observed
- unobserved
- Evolution conserves probability
- The consequence is Poisson statistics
- Let the decay probability be λ
- Assume indistinguishable particles \rightarrow naive probability for n emissions

$$
P_{\text {naive }}(n, \lambda)=\frac{\lambda^{n}}{n!}
$$

- Probability conservation (i.e. unitarity) implies a no-emission probability

$$
P(n, \lambda)=\frac{\lambda^{n}}{n!} \exp \{-\lambda\} \quad \longrightarrow \quad \sum_{n=0}^{\infty} P(n, \lambda)=1
$$

- In the context of parton showers $\Delta=\exp \{-\lambda\}$ is called Sudakov factor

Radiative corrections as a branching process

- Decay probability for parton state in collinear limit

$$
\lambda \rightarrow \frac{1}{\sigma_{n}} \int_{t}^{Q^{2}} \mathrm{~d} \bar{t} \frac{\mathrm{~d} \sigma_{n+1}}{\mathrm{~d} \bar{t}} \approx \sum_{\text {jets }} \int_{t}^{Q^{2}} \frac{\mathrm{~d} \bar{t}}{\bar{t}} \int \mathrm{~d} z \frac{\alpha_{s}}{2 \pi} P(z)
$$

Parameter t identified with evolution "time"

- Splitting function $P(z)$ spin \& color dependent

$$
\begin{aligned}
& P_{q q}(z)=C_{F}\left[\frac{2}{1-z}-(1+z)\right] \quad P_{g q}(z)=T_{R}\left[z^{2}+(1-z)^{2}\right] \\
& P_{g g}(z)=C_{A}\left[\frac{2}{1-z}-2+z(1-z)\right]+(z \leftrightarrow 1-z)
\end{aligned}
$$

- Matching to soft limit will requires some care, because full soft emission probability present in all collinear sectors

$$
\frac{1}{t} \frac{2}{1-z} \xrightarrow{z \rightarrow 1} \frac{p_{i} p_{k}}{\left(p_{i} q\right)\left(q p_{k}\right)}
$$

Soft double counting problem [Marchesini,Webber] NPB310(1988)461

- Let us first see how to compute the Poissonian in practice

Color coherence and the dipole picture

[Marchesini,Webber] NPB310(1988)461

- Individual color charges inside a color dipole cannot be resolved if gluon wavelength larger than dipole size \rightarrow emission off "mother"

\leftrightarrow

- Net effect is destructive interference outside cone with opening angle set by emitting color dipole \rightarrow phase space for soft radiation halved
[Gustafsson,Pettersson] NPB306(1988)746
- Alternative description of effect in terms of dipole evolution
- Modern approach is to partial fraction soft eikonal and match to collinear sectors [Catani,Seymour] hep-ph/9605323

$$
\frac{p_{i} p_{k}}{\left(p_{i} p_{j}\right)\left(p_{j} p_{k}\right)} \rightarrow \frac{1}{p_{i} p_{j}} \frac{p_{i} p_{k}}{\left(p_{i}+p_{k}\right) p_{j}}+\frac{1}{p_{k} p_{j}} \frac{p_{i} p_{k}}{\left(p_{i}+p_{k}\right) p_{j}}
$$

Color coherence and the dipole picture

- Splitting kernels become dependent on anti-collinear direction usually defined by color spectator in large- N_{c} limit
- Singularity confined to soft-collinear region only captures all coherence effects at leading color, NLL

$$
\frac{1}{1-z} \rightarrow \frac{1-z}{(1-z)^{2}+\kappa^{2}} \quad \kappa^{2}=\frac{k_{\perp}^{2}}{Q^{2}}
$$

- Complete set of leading-order splitting functions now given by

$$
\begin{aligned}
& P_{q q}\left(z, \kappa^{2}\right)=C_{F}\left[\frac{2(1-z)}{(1-z)^{2}+\kappa^{2}}-(1+z)\right] \\
& P_{q g}\left(z, \kappa^{2}\right)=C_{F}\left[\frac{1+(1-z)^{2}}{z}\right], \quad P_{g q}\left(z, \kappa^{2}\right)=T_{R}\left[z^{2}+(1-z)^{2}\right] \\
& P_{g g}\left(z, \kappa^{2}\right)=2 C_{A}\left[\frac{1-z}{(1-z)^{2}+\kappa^{2}}+\frac{1}{z}-2+z(1-z)\right]
\end{aligned}
$$

Color flow

SIAC

- Parton showers replace gluon propagators by means of the identity

$$
\underbrace{\delta^{a b}}_{\text {standard }}=2 \operatorname{Tr}\left(T^{a} T^{b}\right)=2 T_{i j}^{a} T_{j i}^{b}=T_{i j}^{a} \underbrace{2 \delta_{i k} \delta_{j l}}_{\text {parton shower }} T_{l k}^{b}
$$

- Quark-gluon vertex

$$
T_{i j}^{a} T_{k l}^{a}=\frac{1}{2}\left(\delta_{i l} \delta_{j k}-\frac{1}{N_{c}} \delta_{i j} \delta_{k l}\right)
$$

- Gluon-gluon vertex

$$
f^{a b c} T_{i j}^{a} T_{k l}^{b} T_{m n}^{c}=\delta_{i l} \delta_{k n} \delta_{m j}-\delta_{i n} \delta_{m l} \delta_{k j}
$$

Color flow

- Typically, parton showers also make the leading-color approximation

$$
T_{i j}^{a} T_{k l}^{a} \rightarrow \frac{1}{2} \delta_{i l} \delta_{j k} \quad \leftrightarrow
$$

- If used naively, this would overestimate the color charge of the quark:

Consider process $q \rightarrow q g$ attached to some larger diagram

$$
\propto \quad T_{i j}^{a} T_{j k}^{a}=C_{F} \delta_{i k}
$$

but now we have $\frac{1}{2} \delta_{i l} \delta_{j m} \delta_{m j} \delta_{l k}=\frac{C_{A}}{2} \delta_{i k}$

- While color assignments in the parton shower are made at leading color the color charge of quarks is actually kept at C_{F}

Color flow

- Having matched the eikonal to two collinear sectors implies that in $g \rightarrow g g$ splittings color and kinematics are entangled

$$
\frac{p_{i} p_{k}}{\left(p_{i} p_{j}\right)\left(p_{j} p_{k}\right)} \rightarrow \frac{1}{p_{i} p_{j}} \frac{p_{i} p_{k}}{\left(p_{i}+p_{k}\right) p_{j}}+\ldots \rightarrow \frac{1}{p_{i} p_{j}} \frac{1-z}{(1-z)^{2}+\kappa^{2}} \ldots
$$

- There is only one possible color assignment for each leading-color dipole

Parton-shower kinematics: Final state radiation

- Want to construct three (massless) on-shell momenta from two, corresponding to branching process $\tilde{i j} \rightarrow i, j$ in presence of $\tilde{k} \rightarrow k$
- Calculate $p_{i j}^{2}$ and $\tilde{z}=\left(p_{i} \tilde{p}_{k}\right) /\left(\tilde{p}_{i j} \tilde{p}_{k}\right)$ from PS variables t and z
- First generate the propagator mass by rescaling

$$
p_{i j}^{\mu}=\tilde{p}_{i j}^{\mu}+\frac{p_{i j}^{2}}{2 \tilde{p}_{i j} \tilde{p}_{k}} \tilde{p}_{k}^{\mu}, \quad p_{k}^{\mu}=\left(1-\frac{p_{i j}^{2}}{2 \tilde{p}_{i j} \tilde{p}_{k}}\right) \tilde{p}_{k}^{\mu}
$$

- Then branch off-shell momentum into two on-shell momenta

$$
\begin{aligned}
& p_{i}^{\mu}=\tilde{z} \tilde{p}_{i j}^{\mu}+(1-\tilde{z}) \frac{p_{i_{j}}^{2}}{2 \tilde{p}_{i j} \tilde{p}_{k}} \tilde{p}_{k}^{\mu}+k_{\perp}^{\mu} \\
& p_{j}^{\mu}=(1-\tilde{z}) \tilde{p}_{i j}^{\mu}+\tilde{z} \frac{p_{i j}^{2}}{2 \tilde{p}_{i j} \tilde{p}_{k}} \tilde{p}_{k}^{\mu}-k_{\perp}^{\mu}
\end{aligned}
$$

- On-shell conditions require that

$$
\vec{k}_{T}^{2}=p_{i j}^{2} \tilde{z}(1-\tilde{z}) \quad \leftrightarrow \quad \tilde{z}_{ \pm}=\frac{1}{2}\left(1 \pm \sqrt{1-\frac{4 \vec{k}_{T}^{2}}{p_{i j}^{2}}}\right)
$$

\rightarrow for any finite \vec{k}_{T} we have $0<\tilde{z}<1$

Parton-shower kinematics: Initial-state radiation

- Initial-state kinematics slightly more involved as recoil should not be taken by opposite-side beam

- Compute new beam momentum by rescaling to new partonic cms energy

$$
p_{a}^{\mu}=\frac{2 p_{a} p_{b}}{2 \tilde{p}_{a j} \tilde{p}_{b}} \tilde{p}_{a j}^{\mu}
$$

- Compute final-state momentum and internal momentum as

$$
\begin{aligned}
p_{a j}^{\mu} & =\tilde{z} p_{a}^{\mu}+\frac{p_{a j}^{2}}{2 p_{b} p_{a}} p_{b}^{\mu}+k_{\perp}^{\mu} \\
p_{j}^{\mu} & =(1-\tilde{z}) p_{a}^{\mu}-\frac{p_{a j}^{2}}{2 p_{b} p_{a}} p_{b}^{\mu}-k_{\perp}^{\mu}
\end{aligned}
$$

- Recoil is taken by complete final state via Lorentz transformation

$$
p_{i}^{\mu}=p_{\tilde{\imath}}^{\mu}-\frac{2 p_{\tilde{\imath}}(K+\tilde{K})}{(K+\tilde{K})^{2}}(K+\tilde{K})^{\mu}+\frac{2 p_{i} \tilde{K}}{\tilde{K}^{2}} K^{\mu},
$$

where $K^{\mu}=p_{a}^{\mu}-p_{j}^{\mu}+p_{b}^{\mu}$ and $\tilde{K}^{\mu}=p_{\tilde{a} \jmath}^{\mu}+p_{b}^{\mu}$

Connection to the DGLAP formalism

- DGLAP equation for fragmentation functions

$$
\frac{\mathrm{d} x D_{a}(x, t)}{\mathrm{d} \ln t}=\sum_{b=q, g} \int_{0}^{1} \mathrm{~d} \tau \int_{0}^{1} \mathrm{~d} z \frac{\alpha_{s}}{2 \pi}\left[z P_{a b}(z)\right]_{+} \tau D_{b}(\tau, t) \delta(x-\tau z)
$$

- Refine plus prescription $\left[z P_{a b}(z)\right]_{+}=\lim _{\varepsilon \rightarrow 0} z P_{a b}(z, \varepsilon)$

$$
P_{a b}(z, \varepsilon)=P_{a b}(z) \Theta(1-\varepsilon-z)-\delta_{a b} \sum_{c \in\{q, g\}} \frac{\Theta(z-1+\varepsilon)}{\varepsilon} \int_{0}^{1-\varepsilon} \mathrm{d} \zeta \zeta P_{a c}(\zeta)
$$

- Rewrite for finite ε

$$
\frac{\mathrm{d} \ln D_{a}(x, t)}{\mathrm{d} \ln t}=-\sum_{c=q, g} \int_{0}^{1-\varepsilon} \mathrm{d} \zeta \zeta \frac{\alpha_{s}}{2 \pi} P_{a c}(\zeta)+\sum_{b=q, g} \int_{x}^{1-\varepsilon} \frac{\mathrm{d} z}{z} \frac{\alpha_{s}}{2 \pi} P_{a b}(z) \frac{D_{b}(x / z, t)}{D_{a}(x, t)}
$$

- First term is derivative of Sudakov factor $\Delta=\exp \{-\lambda\}$

$$
\Delta_{a}\left(t, Q^{2}\right)=\exp \left\{-\int_{t}^{Q^{2}} \frac{\mathrm{~d} \bar{t}}{\bar{t}} \sum_{c=q, g} \int_{0}^{1-\varepsilon} \mathrm{d} \zeta \zeta \frac{\alpha_{s}}{2 \pi} P_{a c}(\zeta)\right\}
$$

Connection to the DGLAP formalism

- Use generating function $\Pi_{a}\left(x, t, Q^{2}\right)=D_{a}(x, t) \Delta_{a}\left(t, Q^{2}\right)$ to write

$$
\frac{\mathrm{d} \ln \Pi_{a}\left(x, t, Q^{2}\right)}{\mathrm{d} \ln t / Q^{2}}=\sum_{b=q, g} \int_{x}^{1-\varepsilon} \frac{\mathrm{d} z}{z} \frac{\alpha_{s}}{2 \pi} P_{a b}(z) \frac{D_{b}(x / z, t)}{D_{a}(x, t)} .
$$

- If hadron not resolved, obtain

$$
\frac{\mathrm{d}}{\mathrm{~d} \ln t / Q^{2}} \ln \left(\frac{\Pi_{a}\left(x, t, Q^{2}\right)}{D_{a}(x, t)}\right)=\frac{\mathrm{d} \Delta_{a}\left(t, Q^{2}\right)}{\mathrm{d} \ln t / Q^{2}}=\sum_{b=q, g} \int_{0}^{1-\varepsilon} \mathrm{d} z z \frac{\alpha_{s}}{2 \pi} P_{a b}(z)
$$

- Survival probabilities for one parton between scales t_{1} and t_{2} :
- $\frac{\Pi_{a}\left(x, t_{2}, Q^{2}\right)}{\Pi_{a}\left(x, t_{1}, Q^{2}\right)} \quad$ Resolved hadron \leftrightarrow constrained (backward) evolution
- $\frac{\Delta_{a}\left(t_{2}, Q^{2}\right)}{\Delta_{a}\left(t_{1}, Q^{2}\right)} \quad$ No resolved hadron \leftrightarrow unconstrained (forward) evolution
- Parton-showers draw t_{2}-points starting from t_{1} based on these probabilities

Effects of the parton shower

- Thrust and Durham $2 \rightarrow 3$-jet rate in $e^{+} e^{-} \rightarrow$ hadrons
- Hadronization region to the right (left) in left (right) plot

Effects of the parton shower

- Drell-Yan lepton pair production at Tevatron
- If hard cross section computed at leading order, then parton shower is only source of transverse momentum

Effects of the parton shower

Hands on tutorials

- Great resource for learning parton showers: "Hackathons" at CTEQ/MCnet schools http://www.slac.stanford.edu/~shoeche/cteq17 svn co svn://svn.slac.stanford.edu/mc/ps

Tutorial on MC event generators

Held by the MCnet collaboration at CTEQ 2017.

Instructions
PS coding tutorial MC running tutorial

TASI Lectures
arXiv:1411.4085

Tutorial on Parton Showers and Matching

1 Introduction

In this tutorial we will discuss the construction of a parton shower, the implementation of on-the-fly uncertainty estimates, and of matrix-element corrections, and matching at next-to-leading order. At the end, you will be able to run your own parton shower for $e^{+} e^{-} \rightarrow$ hadrons at LEP energies and compare its predictions to results from the event generator Sherpa (using a simplified setup). You will also have constructed your first MC@NLO and POWHEG generator.

2 Getting started
In order to run this tutorial you should install PyPy and Rivet on your PC. The following command will

