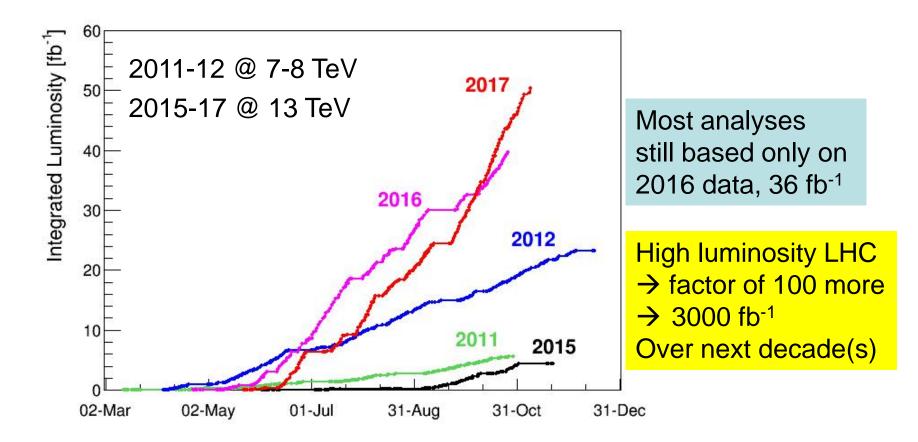
Outlook for Perturbative QCD at Colliders

Lance Dixon (SLAC) pQCD @ West Lake, Zhejiang University 30 March 2018

The past (week)

- You have learned a lot of QCD in the past week [Maybe more than you can actually absorb in one week!]
- What is the one over-riding theme?
- Factorization = "divide and conquer":
- 1. In the parton model itself [Melnikov lecture]
- 2. For complex momenta [BCFW, Badger lecture]
- 3. In soft and collinear regions [Hoeche, Monni, Rontsch lectures]

Factorization $\leftarrow \rightarrow$ evolution

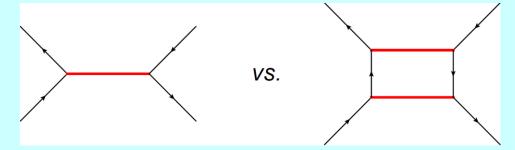

The "near" experimental future: Large Hadron Collider CMS

 Planned to operate into 2030's after upgrades to high luminosity and/or high energy

L. Dixon Outlook for pQCD @ colliders

LHC performing exceedingly well

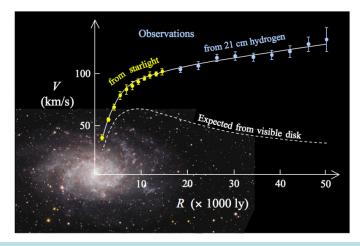
The far(?) experimental future

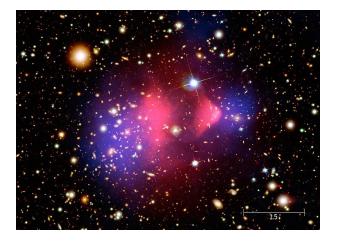

- What lies beyond the LHC?
- High energy (> 220 GeV) e⁺e⁻ collider(s): linear (ILC or CLIC)? or circular (FCC or CEPC)?
- Precision Higgs measurements, m_{top}
- Circular machine would likely precede a very large hadron collider: pp at 70 - 100 TeV
- Even longer term, plasma wakefield or laser acceleration
- Enormous acceleration gradients, GeV/m, over short distances so far. Can one iterate/stage to get to very high energy (> 10 TeV?) e +e⁻, and high enough luminosity?

Beyond the Standard Model

• Hierarchy problem:

In SM, electroweak scale m_W looks fine-tuned as soon as ultraviolet cutoff Λ is raised well above m_W .

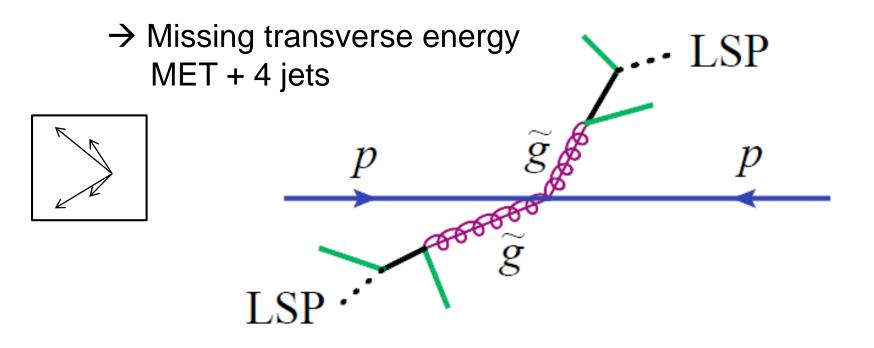

- Many theories predict a host of new massive particles with masses ~ " m_w " i.e. within reach of the LHC.
- To prevent problems from precision electroweak physics,

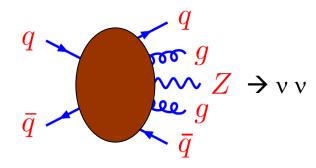


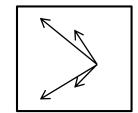
such theories often have a discrete symmetry, for which the lightest odd particle is a **dark matter candidate**

Dark matter at the LHC?

There is dark matter in the cosmos

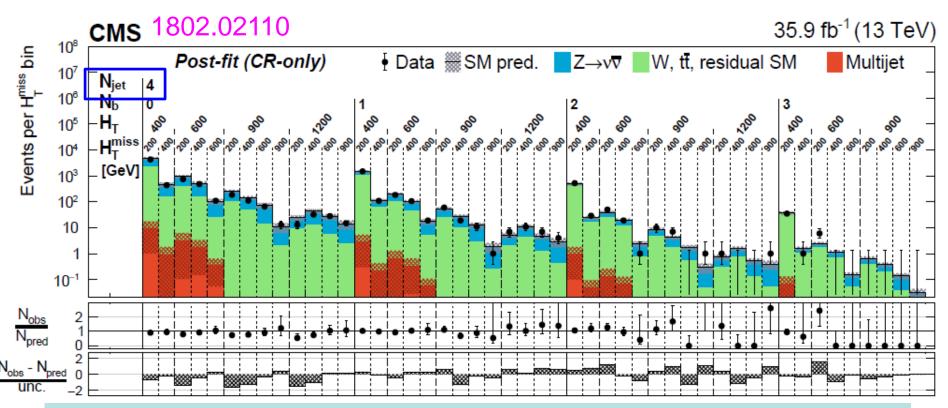



- If it is an elementary particle with mass > GeV, the LHC could produce it, or produce other particles that decay to it.
- But it might be a different kind of particle (axion?) for which high-energy colliders are not very useful


Classic SUSY dark matter signature

Heavy colored particles decay rapidly to stable Weakly Interacting Massive Particle (WIMP = LSP) plus jets

Critical to understand Standard Model backgrounds


MET + 4 jets from $pp \rightarrow Z + 4$ jets, $Z \rightarrow$ neutrinos Neutrinos escape detector. Irreducible background.

Plus there are many reducible backgrounds from W + jets, tt + jets, ...

Precision theory (typically NLO) can help with this, usually when embedded in parton shower Monte Carlos [Hoeche]

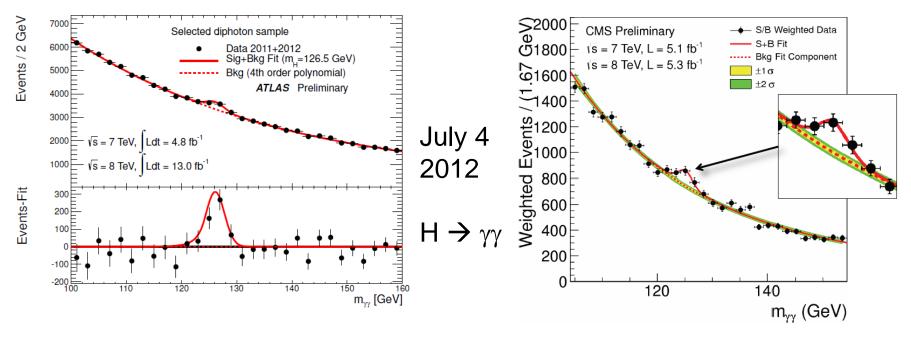
9

SUSY (and other) searches now very advanced

• Also N_{jet} = 1,2,3,5,6

 No significant excesses seen, so set lower limits on masses of superparticles.

• Can better simulations, (N)NLO + parton showers, help further?

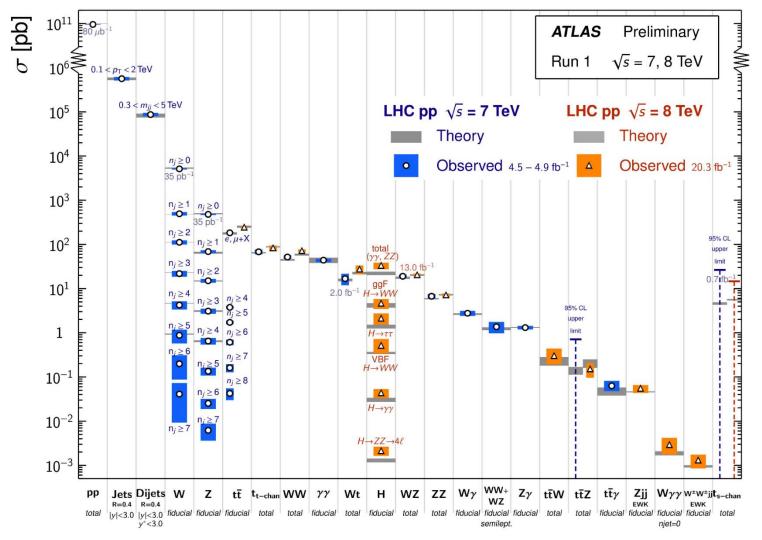

L. Dixon Outlook for pQCD @ colliders

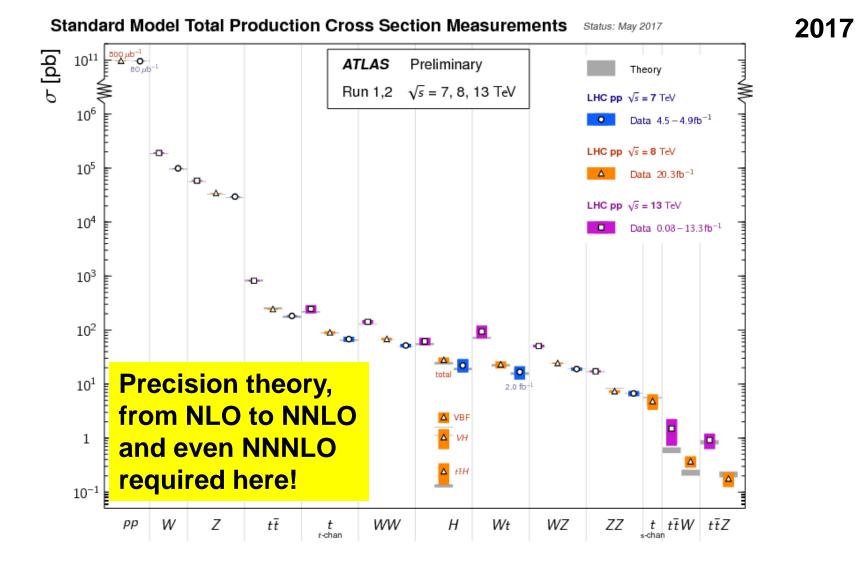
Zhejiang U.30 March 201810

From searches to measurements

- No convincing evidence for SUSY, or any other direct production of new particles.
- Also look for deviations in rates for Standard Model processes, especially involving the brandnew Higgs boson.
- Measurements are hard, take a while to perform.
- Even more precise (QCD) theory typically needed. Also NLO electroweak will become important at mass scales ~ TeV

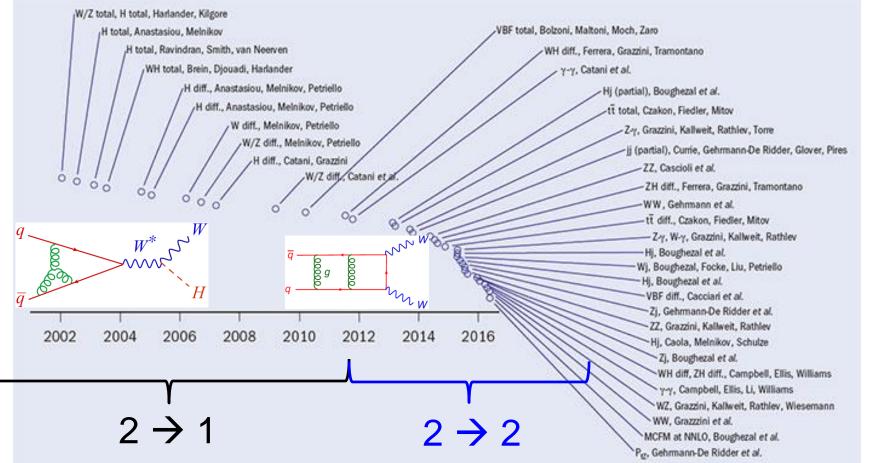
The Higgs boson



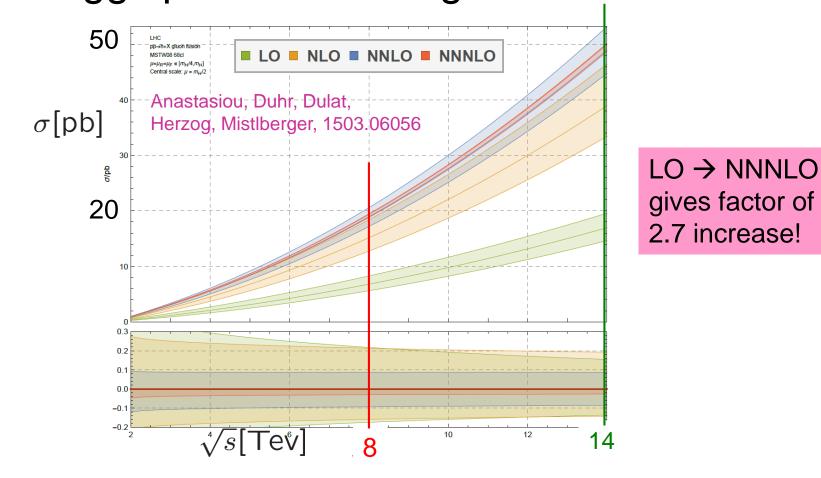

- Newest and most direct window into electroweak symmetry breaking.
- Clearly need to study its properties in as much detail as possible at LHC and at any future e⁺e⁻ colliders [e.g. Jun Gao talk]
- Complicated production at LHC, lots of soft gluons, additional jets, ...

Standard Model Production Cross Section Measurements Statu

Status: March 2015

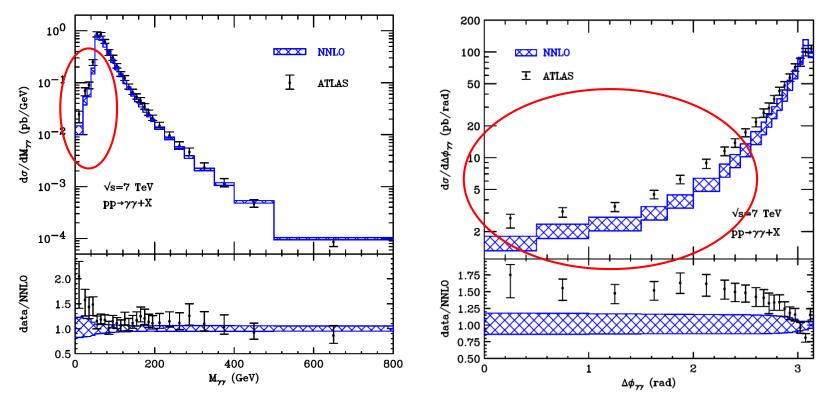


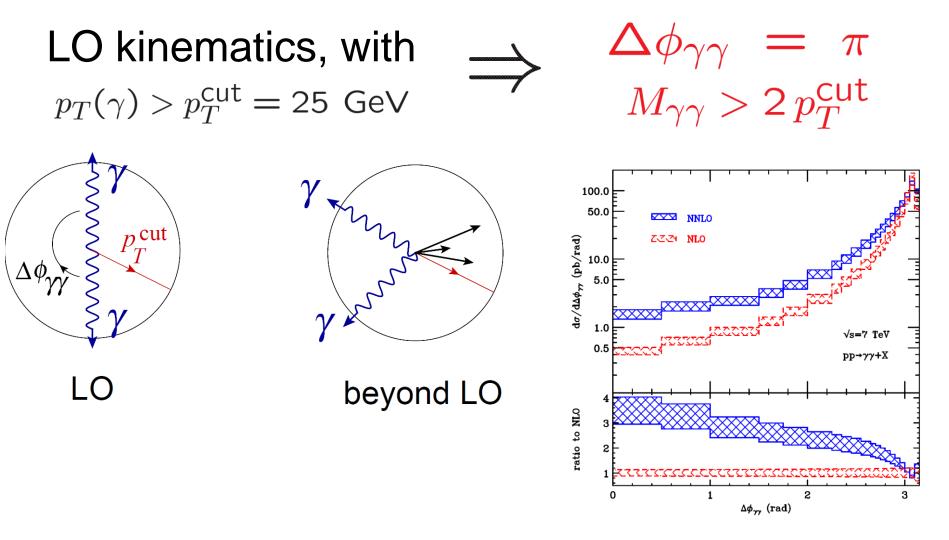
NNLO timeline


G. Zanderighi CERN Courier (2017)

Recent burst of progress relied largely on:

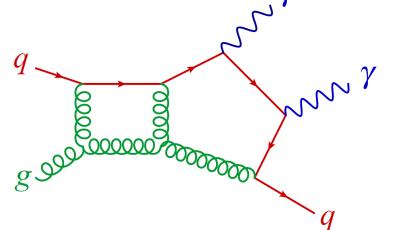
- a) 2 loop 2 \rightarrow 2 amplitudes, loop integration methods from Tancredi lectures
- b) NNLO subtraction (or slicing) methods, a la Rontsch lectures
 - L. Dixon Outlook for pQCD @ colliders


The one high p_T LHC cross section known at NNNLO Higgs production via gluon fusion

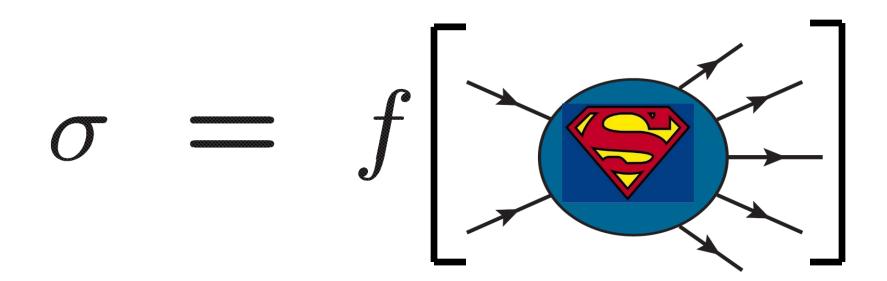

Where "NNLO" is still way off

Diphoton production at LHC

Catani, Cieri, de Florian Ferrera, Grazzini, 1802.02095



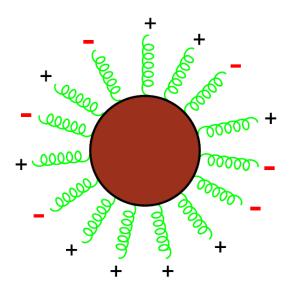
NNLO is really NLO in worst regions


→ "only" need NNLO " $\gamma\gamma$ + jet" to fix

Good application for ~ first(?) 2 → 3 two-loop amplitudes?

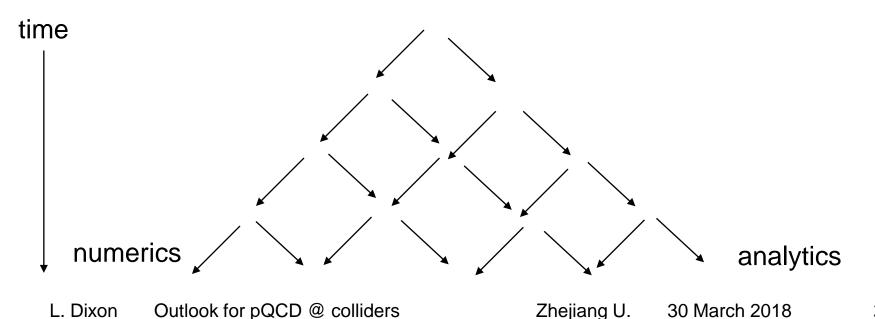
• IR subtractions no harder than processes that have already been done.

Short-distance cross sections built out of scattering amplitudes, **S**-matrix elements


Rontsch lectures [Badger + Tancredi lectures]

Granularity vs. Fluidity

Badger lectures



Future of QCD@collider theory?

Prediction:

- Numerics will get "more numerical"
- Analytics will get "more analytical"

Possible future of numerical approaches

- Computation is getting much cheaper
- Still, integrals needed at state-of-art, for either fixed-order, or high-precision resummation, or matched Monte Carlos, are getting more difficult.
- Find better ways to integrate approximate integrands?

Possible future of numerical approaches (cont.)

- With all the analytic and numerical knowledge we have accumulated, can machine learning be used in pQCD?
- For example, to predict approximate amplitudes?
- Already being used in jet substructure analyses to optimize separation of new physics from QCD.

Possible future of analytical approaches

- More sophisticated mathematics for complicated loop integrals [Tancredi lectures, L. B. Chen talk,...]
- Polylogarithms → elliptic integrals → hyperelliptic integrals → …
- Lots of interesting math including algebraic geometry and number theory.

Multiple Zeta Values (MZVs)

• Classical polylogs $Li_n(u)$ evaluate to Riemann zeta values

$$\operatorname{Li}_{n}(u) = \int_{0}^{\infty} \frac{\mathrm{d}}{t} \operatorname{Li}_{n-1}(t) = \sum_{k=1}^{\infty} \frac{\mathrm{d}}{k^{n}}$$
$$\operatorname{Li}_{n}(1) = \sum_{k=1}^{\infty} \frac{1}{k^{n}} = \zeta(n) \equiv \zeta_{n}$$

ru dt

• HPL's evaluate to nested sums called multiple zeta values (MZVs): $\zeta_{n_1,n_2,...,n_m} = \sum_{k_1 > k_2 > \cdots > k_m > 0}^{\infty} \frac{1}{k_1^{n_1} k_2^{n_2} \cdots k_m^{n_m}}$

Weight $n = n_1 + n_1 + \ldots + n_m$

MZV's obey many identities, e.g. stuffle

$$\zeta_{n_1}\zeta_{n_2} = \zeta_{n_1,n_2} + \zeta_{n_2,n_1} + \zeta_{n_1+n_2}$$

• All reducible to Riemann zeta values until weight 8. Irreducible MZVs: $\zeta_{5,3}, \zeta_{7,3}, \zeta_{5,3,3}, \zeta_{9,3}, \zeta_{6,4,1,1}, \cdots$

 $\underline{\infty} \ u^k$

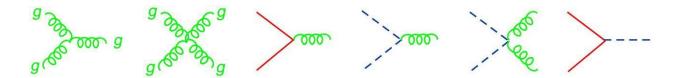
Possible future of analytical approaches (cont.)

- Use N=4 super-Yang Mills theory as a guide to the "most complicated" (highest weight, or leading transcendentality) part of the problem.
- This is more useful when the problem is softgluon dominated.
- E.g. constants entering resummation formulae [Monni lectures].

Why N=4 super-Yang-Mills theory?

- Most supersymmetric theory possible without gravity
- Uniquely specified by local internal symmetry group — *e.g.*, number of colors N_c for SU(N_c)
- Exactly scale-invariant (conformal) field theory: for any coupling g, $\beta(g) = 0$
- Similar IR behavior to pQCD
- Uniform weight for iterated integrals [Tancredi lectures] weight = 2L at L loops (for ε⁰ terms)
 [Also connected to gravity and/or string theory by AdS/CFT correspondence, weak/strong duality]

N=4 SYM particle content


SUSY

$$Q_a, a=1,2,3,4$$

shifts helicity
by 1/2 \leftrightarrow

$$\begin{array}{cccc} \mathcal{N} = 4 & 1 \longleftrightarrow 4 \longleftrightarrow 6 \longleftrightarrow 4 \longleftrightarrow 1 \\ & g^{-} & \lambda_{\overline{i}}^{-} & \overline{\phi}_{\overline{i}\overline{j}}, \phi_{ij} & \lambda_{i}^{+} & g^{+} \\ \end{array} \\ \text{helicity} & -1 & -\frac{1}{2} & 0 & \frac{1}{2} & 1 \end{array}$$

all in adjoint representation

N=4 SYM interactions

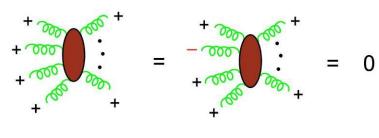
All proportional to same *dimensionless* coupling constant, g

SUSY cancellations: scale invariance preserved quantum mechanically

$$\frac{\delta}{d \ln \mu^2} = \beta(\alpha) = \left[6 \times \frac{1}{6} + 4 \times \frac{2}{3} - \frac{11}{3}\right] \frac{N_c \alpha^2}{4\pi} = 0 \quad \text{(true to all orders in } \alpha\text{)}$$


Just the beginning of N=4 "miracles"

a


How are QCD and N=4 SYM related?

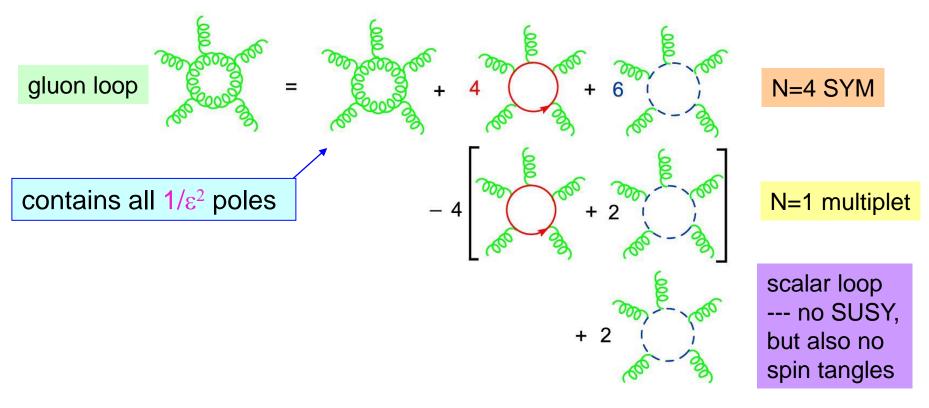
At tree level they are essentially identical

Consider a tree amplitude for *n* gluons. Fermions and scalars cannot appear because they are produced in pairs

Hence the amplitude is the **same** in QCD and N=4 SYM. So the QCD tree amplitude "secretly" obeys all identities of N=4 supersymmetry:

L. Dixon Outlook for pQCD @ colliders

0 0


000

independent of *i*,*j*

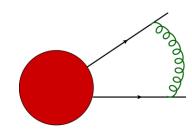
n 1

At loop level, QCD and N=4 SYM differ

However, it is profitable to rearrange the QCD computation to exploit supersymmetry

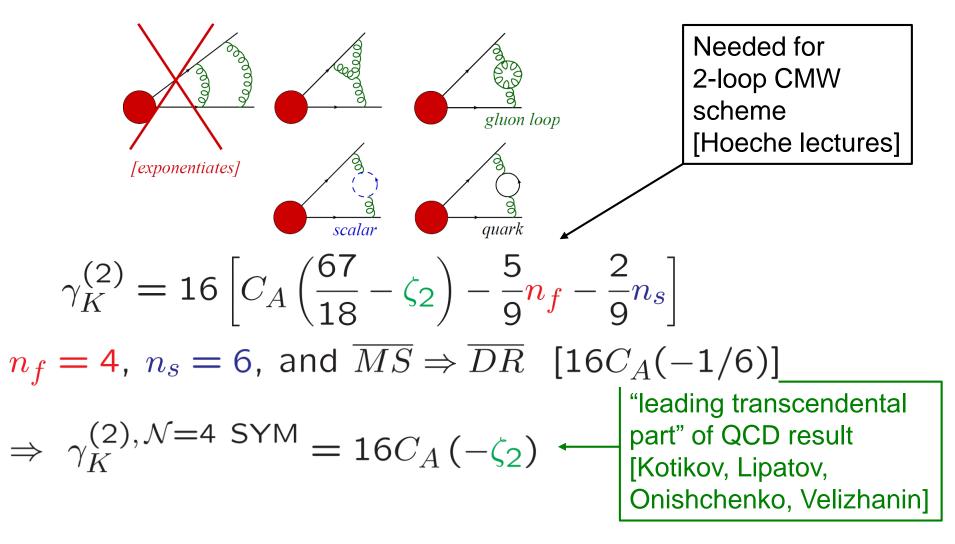
Cusp anomalous dimension γ_K

• Leading behavior of DGLAP splitting kernels as $x \rightarrow 1$,


$$P_{ii}(x) = \frac{\gamma_K}{2(1-x)_+} + B_i \,\delta(1-x) + \dots$$
$$\gamma_K = C_i \sum_{L=1}^{\infty} \gamma_K^{(L)} \left(\frac{\alpha_s}{4\pi}\right)^L$$

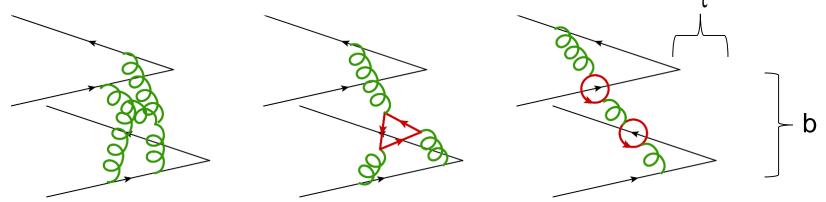
 Appears in all soft-gluon resummation at higher orders in 1/L expansion [Monni lectures]

 $\gamma_{K}^{(1)} = 8$


 \leftrightarrow

- Soft radiation
- One loop

Wilson line expectation value


Two loop cusp anomalous dimension

Similar results for many other soft/collinear quantities

• E.g. rapidity anomalous dimension and soft functions at 3 loops for Higgs boson p_T resummation

Y. Li and H. Zhu, 1604.01404

$$\begin{split} \mathsf{N=4} \ \mathsf{SYM} \leftarrow & \rightarrow \mathsf{leading transcendental part of QCD result} \\ S^{\mathrm{F.D.}}_{3,\mathcal{N}=4} \Big|_{\mu=\nu} = c^s_{3,\mathcal{N}=4} + N^3_c \Big(16\zeta_2 H_4 + 48\zeta_2 H_{2,2} + 64\zeta_2 H_{3,1} + 96\zeta_2 H_{2,1,1} + 120\zeta_4 H_2 + 48H_6 + 24H_{2,4} + 40H_{3,3} \\ & + 72H_{4,2} + 128H_{5,1} + 16H_{2,1,3} + 56H_{2,2,2} + 80H_{2,3,1} + 80H_{3,1,2} + 144H_{3,2,1} + 224H_{4,1,1} \\ & + 64H_{2,1,1,2} + 96H_{2,1,2,1} + 160H_{2,2,1,1} + 256H_{3,1,1,1} + 192H_{2,1,1,1,1} \Big) \end{split}$$

Conclusions

- You have seen this week that pQCD for colliders is a very rich field of study
- It is also incredibly important for the near term understanding of physics at the LHC
- Wide range of skills are needed, to help improve:
- parton shower accuracy
- matching parton showers to fixed order
- fixed order real radiation methods, especially NNLO
- multi-loop amplitudes numerically
- multi-loop amplitudes analytically
- Go forth, factorize and evolve!

Thank you

Thanks to Hua Xiag Kirill, and everyone who helped to but on such a great shoel and vorkshoe at West Lake

E. Dixon Outlook for pQCD @ colliders

Zheliang U. 30 March 2018