INTEGRAND REDUCTION FOR PARTICLES WITH SPINS

Based on arXiv: 1710.10208 and 1802.06761

Hui LUO

Johannes Gutenberg University Mainz

March 30, 2018 @ZJU, Hangzhou

Outline

Motivations

- Kinematics basis for particles with spin
- Examples: 5pt basis, for planar 2-loop calculation
 [Badger et al., 17'; Abreu et al., 17']
- Conclusions

TH v.s. EX

• Cross section: $\sigma = \int |\mathcal{M}|^2 d\Omega$

Calculation of amplitudes as the first step

Feynman diagrams

- •Advantages:
- Start from Lagrangian, reflect the interactions intuitively
- Already successful in many cases: eg. g-2 up to 6 loops

• Limitations:

- Huge number of diagrams in calculations
- Each diagram is NOT gauge invariant
- Significant cancellations of gaugevariant while summing over all diagrams
- Results often turn out to be very simple

Modern Methods

- Improve the efficiency of calculation compared to Feyn. Diag.
- Key idea:
 - ★ chops problem into on-shell gauge invariant smaller pieces, (recursively) constructing scattering process
 - \star Unitarity $S^{\dagger}S = 1$ & physical singularities

eg. BCFW for tree level, unitarity cuts for loop level, etc.

A critical point of modern methods: on-shell gauge invariant inputs

Inherit spirit of modern methods and develop an efficient way for integrand reductions of spinning particles

- Aim: attack high-multiplicity high-loop analytical amplitude
- Preserve physical properties during intermediate steps A.M.A.P
- Unitarity cuts imposed for loop computations
- Illustrate in pure-YM, easy to generalize to other matter content
- Compute in CDR scheme

Physics properties

Scattering amplitude: Lorentz scalar and little group tensor

$$\mathcal{A}_n(\{\xi_i, p_i\}) = \mathcal{A}_n(\{\xi_i \cdot p_j, \xi_i \cdot \xi_j\}) = \xi_1^{\mu_1} \xi_2^{\mu_2} \cdots \xi_n^{\mu_n} \hat{A}_n(\{\eta_{\mu_i \mu_j}, p_k\})$$

- Physical constraints:
 - lacktriangle Momentum conservation $\sum p_i^\mu = 0$
 - Transversality $p_i^{\mu} \xi_{i,\mu} = 0$
 - ♦ On-shell gauge invariance $A_n(\xi_i \rightarrow p_i) = 0$
 - Unitarity & Physical Singularities

Amplitude constructions: general

- Step 1: Construct independent kinematic bases by requiring [Glover et al., 03'; Glover et al., 12'; Z. Bern et al., 17']
 - lacktriangle A local little group tensor $B_i = \xi^{\mu_1} \xi^{\mu_2} \cdots \xi^{\mu_n} f_B(\{\eta_{\mu_i \mu_k}, p_{\mu_l}\})$

•
$$\sum_{i} p_{i}^{\mu} = 0$$
 $p_{i}^{\mu} \xi_{i,\mu} = 0$ $B_{i}(\xi_{j} \to p_{j}) = 0$

- Step 2: Construct Amplitude $A_n = \sum \alpha_i B_i$
 - $\star \alpha_i(\{p_j \cdot p_k, \int f[l \cdot p]\})$ functions of LSPs from in-& external mom.
 - lacktriangle Given any form of \mathcal{A}_n , eg. derived from unitarity cuts

$$\sum_{\text{helicities}} B_j \mathcal{A}_n = \sum_i \alpha_i \left(\sum_{\text{helicities}} B_j B_i \right) \equiv \sum_i P_{ji} \alpha_i \qquad \sum_{\text{helicities}} \xi_\mu \xi_\nu = \eta_{\mu\nu} - \left(\frac{p_\mu q_\nu + p_\nu q_\mu}{q \cdot p} \right)$$

lacktriangle Merge all cuts and Imposing IBP $\mathcal{A}_n = \sum_i \left(\sum_j c_{ij} \, \mathrm{MI}_j \right) B_i$

- Brute-force construction by solving physical constraints
 - [R. Boels & R. Medina, 16'; R. Boels & HL, 17']
 - Application: up to 6-pt tree; 4-pt 2-loop pure-YM
 - ♦ Shortcomings: complicated for (>=) 5-pt, ie. $P_{ij} = \sum_{\text{helicity}} B_i B_j$ eg. 5pt {142,142} full matrix, super hard to inverse 6pt {2364, 2364} full matrix, impossible to inverse
 - ◆ This construction way is kind of arbitrary, linear combinations of bases are still on-shell gauge invariant kinematic bases.

- "Canonical" kinematic basis construction [R. Boels, Q. Jin and HL,18']
 - lacktriangle A-type building block: $A_i(j,k)=(p_k\cdot p_i)\,p_j\cdot \xi_i-(p_j\cdot p_i)\,p_k\cdot \xi_i$ $\{A_i(j)=A_i(i+j,i+j+1)|j\in\{1,\ldots,n-3\}\}$
 - Solutions for 1 gluon (n-1) scalar scattering [R. Boels and HL,17']
 - → For m-gluon scattering, m copies A form a basis
 - **C-type building block:** $C_{i,j} = (\xi_i \cdot \xi_j)(p_i \cdot p_j) (p_i \cdot \xi_j)(p_j \cdot \xi_i)$
 - → One solution for 2-gluon (n-2)-scalar (Another from 2-copies of A-type building blocks)
 [R. Boels and HL,17']
 - Proportional to two contracted linearized field strength tensor $F_{\mu\nu}(\xi_1)F^{\mu\nu}(\xi_2)$

A &C-type building blocks: on-shell gauge invariant

- "Canonical" kinematic basis construction [R. Boels, Q. Jin and HL,18']
 - ♦ D-type building block: $D_{i,j} = C_{i,j} \sum_{k,l=1}^{n-3} X_{ij}(k,l)A_i(k)A_j(l)$

Require orthogonality
$$\sum_{h_i} A_i(k)D_{i,j} = 0 = \sum_{h_j} A_j(k)D_{i,j}, \ \forall k$$

Fix the constructions with $P_i^A(k,l) = \sum_{h_i} A_i(k) A_i(l)$

$$A^{i}(k) \equiv \sum_{l} (P_{i}^{A})^{-1}(k, l) A_{i}(l) \qquad A^{i}(k) A_{i}(l) \equiv \sum_{\text{helicities}, i} A^{i}(k) A_{i}(l) = \delta(k, l)$$

$$D_{i,j} = C_{i,j} - \sum_{k,l=1}^{n-3} A_i(k)A_j(l) \left(A^m(k)A^n(l)C_{m,n}\right)$$

$$\sum_{\text{helicities}} D_{i,j} D_{i,j} = (p_i \cdot p_j)^2 (d - n + 1) \qquad \sum_{\text{helicities}, i} D_{i,j} D_{i,k} = \frac{(p_i \cdot p_j)(p_i \cdot p_k)}{(p_j \cdot p_k)} D_{j,k}$$

"Canonical" kinematic basis construction [R. Boels, Q. Jin and HL,18"]

◆ Given >=3 gluon particles in the process, kinematic basis can be constructed from multi-copies of all possible A and C/D types

Conjecture: linearly independent and complete in general dimensions

◆ The total number of basis elements with n gluons and no scalars is

$$N_n = \sum_{k=0}^{\lfloor n/2 \rfloor} \frac{n!(n-2)^{(n-2k)}}{2^k k!(n-2k)!}$$

Construct Loop Amplitudes

- Using "Canonical" kinematic basis: $A_n = \sum_i \left(\sum_j c_{ij} \operatorname{MI}_j \right) B_i$
- Coefficient for cut amplitude: $\sum_k c_{ik}^{\mathrm{cut}} \, \mathrm{MI}_k^{\mathrm{cut}} = \sum_j P_{ij}^{-1} \left(\sum_{\mathrm{helicities}} B_j \, \mathcal{A}_n^{\mathrm{cut}} \right)$
 - $igsplace \left(\sum_{ ext{helicities}} B_j \, \mathcal{A}_n^{ ext{cut}}\right)$ gives integrands for a particular cut
 - ◆ Run IBP reductions for cut integrands and preserve cut MIs part
 - ◆ Inverse inner product of kinematic bases to get cut coeffs.
- Merge and cross check for different cuts

Example: 5pt kinematic basis

- "Canonical" kinematic basis construction
- [R. Boels, Q. Jin and HL,18']
- ♦ 1 A + 2 D s: in total $5 \times 2 \times C_4^2/2! = 30$, eg. $A_1(2)D_{2,3}D_{4,5}$
- **♦** 3 A s + 1 D: in total $2^3 \times C_5^2 = 80$, eg. $A_1(2)A_2(3)A_3(4)D_{4,5}$
- **♦** 5 A s: in total $2^5 = 32$, eg. $A_1(2)A_2(3)A_3(4)A_4(5)A_5(1)$
- Inner product matrix and its inverse can be derived by direct products of inner product matrices of A and D type building blocks

About 20 s for P_{ij} and $(P_{ij})^{-1}$

Example: 5pt planar 2-loop

Choose full propagators

IBP for all integrands done

$$\{(l_1 - l_2)^2, (l_1)^2, (l_1 - p_2)^2, (l_1 - p_1 - p_2)^2, (l_1 + p_3 + p_4)^2, (l_1 + p_3)^2, (l_2)^2, (l_2 - p_2)^2, (l_2 - p_1 - p_2)^2, (l_2 + p_3 + p_4)^2, (l_2 + p_3)^2\}$$

Maximal cuts for 5pt planar 2-loop

Coefficients of highest MIs about 300M with unphysical singularities

Integrand reductions for other cuts done, without substituting IBPs

Conclusions

- "Canonical" kinematic basis constructions for external particles
- Amplitudes as linear combinations of kinematic bases
- High-multiplicity high-loop amplitudes:
 Kinematic bases + unitarity cuts + IBP

- Implementations for 5pt planar 2-loop
 - ◆ Done: integrands for different cuts || IBP reductions to MIs
 - ◆ Obstacles : (1) IBP reductions huge ~ 30G
 (2) Unphysical poles
 - ◆ Todo: (1) Merge into a readable results
 - (2) Compare with numerical results [Badger et al., 17'; Abreu et al., 17']
 - (3) Unphysical poles as conditions for better MIs basis choice?

Thank you for your attention!

Example: Three Gluons

• All possible tensors:

$$\vec{T} = \{ (\xi_1 \cdot \xi_2)(p_2 \cdot \xi_3), (\xi_1 \cdot \xi_3)(p_1 \cdot \xi_2),$$

$$(\xi_2 \cdot \xi_3)(p_2 \cdot \xi_1), (p_1 \cdot \xi_1)(p_1 \cdot \xi_2)(p_2 \cdot \xi_3) \}$$

On-shell gauge invariance:

$$\vec{T}|_{\xi_3 \to p_3} = \{0, -(p_2 \cdot \xi_1)(p_1 \cdot \xi_2), -(p_1 \cdot \xi_2)(p_2 \cdot \xi_1), 0\}$$

three constraints from on-shell gauge invariance

two independent basis

1st: 3pt tree amplitude

2nd: F³

$$\begin{pmatrix} 0 & -1 & -1 & 0 \\ 1 & 0 & 1 & 0 \\ 1 & -1 & 0 & 0 \end{pmatrix} \vec{\alpha} = 0$$

$$\vec{\alpha} = \{-1, -1, 1, 0\}$$
 or $\vec{\alpha} = \{0, 0, 0, 1\}$

- Brute-force construction by solving physical constraints
 - 4-gluon with metric # ≥1: 27 tensor Ansatz

Metric #=2

```
 \{ss[\xi1R, \xi4R] ss[\xi2R, \xi3R], ss[\xi1R, \xi3R] ss[\xi2R, \xi4R], ss[\xi1R, \xi2R] ss[\xi3R, \xi4R], \\ ss[p1, \xi3R] ss[p2, \xi4R] ss[\xi1R, \xi2R], ss[p2, \xi3R] ss[p2, \xi4R] ss[\xi1R, \xi2R], \\ ss[p1, \xi3R] ss[p3, \xi4R] ss[\xi1R, \xi2R], ss[p2, \xi3R] ss[p3, \xi4R] ss[\xi1R, \xi2R], \\ ss[p1, \xi2R] ss[p2, \xi4R] ss[\xi1R, \xi3R], ss[p2, \xi4R] ss[p3, \xi2R] ss[\xi1R, \xi3R], \\ ss[p1, \xi2R] ss[p3, \xi4R] ss[\xi1R, \xi3R], ss[p3, \xi2R] ss[p3, \xi4R] ss[\xi1R, \xi3R], \\ ss[p1, \xi2R] ss[p1, \xi3R] ss[\xi1R, \xi4R], ss[p1, \xi2R] ss[p2, \xi3R] ss[\xi1R, \xi4R], \\ ss[p1, \xi3R] ss[p3, \xi2R] ss[\xi1R, \xi4R], ss[p2, \xi3R] ss[p3, \xi2R] ss[\xi1R, \xi4R], \\ ss[p2, \xi1R] ss[p2, \xi4R] ss[\xi2R, \xi3R], ss[p2, \xi4R] ss[p3, \xi4R] ss[\xi2R, \xi3R], \\ ss[p2, \xi1R] ss[p3, \xi4R] ss[\xi2R, \xi3R], ss[p3, \xi1R] ss[p3, \xi4R] ss[\xi2R, \xi3R], \\ ss[p1, \xi3R] ss[p2, \xi1R] ss[\xi2R, \xi4R], ss[p2, \xi1R] ss[p3, \xi4R] ss[\xi2R, \xi4R], \\ ss[p1, \xi3R] ss[p2, \xi1R] ss[\xi2R, \xi4R], ss[p2, \xi3R] ss[p3, \xi1R] ss[\xi2R, \xi4R], \\ ss[p1, \xi3R] ss[p2, \xi1R] ss[\xi2R, \xi4R], ss[p2, \xi3R] ss[p3, \xi1R] ss[\xi2R, \xi4R], \\ ss[p1, \xi3R] ss[p3, \xi1R] ss[\xi3R, \xi4R], ss[p1, \xi2R] ss[p3, \xi2R] ss[\xi3R, \xi4R], \\ ss[p2, \xi1R] ss[p3, \xi2R] ss[\xi3R, \xi4R], ss[p3, \xi1R] ss[p3, \xi2R] ss[\xi3R, \xi4R], \\ ss[p2, \xi1R] ss[p3, \xi2R] ss[\xi3R, \xi4R], ss[p3, \xi1R] ss[p3, \xi2R] ss[\xi3R, \xi4R], \\ ss[p2, \xi1R] ss[p3, \xi2R] ss[\xi3R, \xi4R], ss[p3, \xi1R] ss[p3, \xi2R] ss[\xi3R, \xi4R], \\ ss[p2, \xi1R] ss[p3, \xi2R] ss[\xi3R, \xi4R], ss[p3, \xi1R] ss[p3, \xi2R] ss[\xi3R, \xi4R])
```

- Brute-force construction by solving physical constraints
 - 4-gluon with metric # ≥1, unique solution

```
2 t ss[p1, \xi3] ss[p2, \xi4] ss[\xi1, \xi2] + 2 s ss[p2, \xi3] ss[p2, \xi4] ss[\xi1, \xi2] + 2 t ss[p2, \xi3] ss[p2, \xi4] ss[\xi1, \xi2] + 2 t ss[p2, \xi3] ss[p3, \xi4] ss[\xi1, \xi2] + 2 t ss[p2, \xi3] ss[p3, \xi4] ss[\xi1, \xi2] - 2 s ss[p2, \xi4] ss[p3, \xi2] ss[\xi1, \xi3] + 2 t ss[p1, \xi2] ss[p3, \xi4] ss[\xi1, \xi3] - 2 s ss[p3, \xi2] ss[p3, \xi4] ss[\xi1, \xi3] + 2 t ss[p1, \xi2] ss[p1, \xi3] ss[\xi1, \xi4] + 2 s ss[p1, \xi2] ss[p2, \xi3] ss[\xi1, \xi4] + 2 t ss[p1, \xi2] ss[p2, \xi3] ss[\xi1, \xi4] - 2 s ss[p1, \xi3] ss[p3, \xi2] ss[\xi1, \xi4] + 2 s ss[p2, \xi4] ss[p3, \xi4] ss[\xi2, \xi3] - 2 s ss[p2, \xi1] ss[p3, \xi4] ss[\xi2, \xi3] - 2 t ss[p2, \xi1] ss[p3, \xi4] ss[\xi2, \xi3] - st ss[\xi1, \xi4] ss[\xi2, \xi3] - 2 t ss[p1, \xi3] ss[\xi2, \xi4] - 2 t ss[p2, \xi1] ss[p2, \xi3] ss[\xi2, \xi4] - 2 t ss[p2, \xi1] ss[p2, \xi3] ss[\xi2, \xi4] - 2 t ss[p2, \xi1] ss[p3, \xi1] ss[\xi2, \xi4] + st ss[\xi1, \xi3] ss[\xi2, \xi4] - 2 t ss[p1, \xi3] ss[\xi2, \xi4] - 2 t ss[p1, \xi3] ss[\xi3, \xi4] + 2 s ss[p2, \xi1] ss[p3, \xi2] ss[\xi3, \xi4] + 2 s ss[p3, \xi1] ss[p3, \xi2] ss[\xi3, \xi4] + 2 s ss[p3, \xi1] ss[p3, \xi2] ss[\xi3, \xi4] - st ss[\xi1, \xi2] ss[\xi3, \xi4] - t² ss[\xi3, \xi4] - t² ss[\xi3, \xi4]
```

- Brute-force construction by solving physical constraints
 - ◆ 4-gluon with metric # ≥0: 43 tensor Ansatz

```
[\mathtt{ss}\,[\,arxiing \mathtt{1R},\,\,arxiiing \mathtt{4R}]\,\,\mathtt{ss}\,[\,arxiiing \mathtt{2R},\,\,arxiiing \mathtt{3R}]\,\,\mathtt{ss}\,[\,arxiiing \mathtt{2R},\,\,arxiiing \mathtt{4R}]\,\,\mathtt{ss}\,[\,arxiiing \mathtt{1R},\,\,arxiiing \mathtt{2R}]\,\,\mathtt{ss}\,[\,arxiiing \mathtt{3R},\,\,arxiiing \mathtt{4R}]
                                                                                                                      Metric #=2
ss[p1, \xi 3R] ss[p2, \xi 4R] ss[\xi 1R, \xi 2R], ss[p2, \xi 3R] ss[p2, \xi 4R] ss[\xi 1R, \xi 2R],
ss[p1, \xi 3R] ss[p3, \xi 4R] ss[\xi 1R, \xi 2R], ss[p2, \xi 3R] ss[p3, \xi 4R] ss[\xi 1R, \xi 2R],
ss[p1, \xi 2R] ss[p2, \xi 4R] ss[\xi 1R, \xi 3R], ss[p2, \xi 4R] ss[p3, \xi 2R] ss[\xi 1R, \xi 3R],
ss[p1, \xi 2R] ss[p3, \xi 4R] ss[\xi 1R, \xi 3R], ss[p3, \xi 2R] ss[p3, \xi 4R] ss[\xi 1R, \xi 3R],
                                                                                                                      Metric #=1
ss[p1, \xi 2R] ss[p1, \xi 3R] ss[\xi 1R, \xi 4R], ss[p1, \xi 2R] ss[p2, \xi 3R] ss[\xi 1R, \xi 4R],
ss[p1, \xi 3R] ss[p3, \xi 2R] ss[\xi 1R, \xi 4R], ss[p2, \xi 3R] ss[p3, \xi 2R] ss[\xi 1R, \xi 4R],
ss[p2, \xi1R] ss[p2, \xi4R] ss[\xi2R, \xi3R], ss[p2, \xi4R] ss[p3, \xi1R] ss[\xi2R, \xi3R],
ss[p2, \xi 1R] ss[p3, \xi 4R] ss[\xi 2R, \xi 3R], ss[p3, \xi 1R] ss[p3, \xi 4R] ss[\xi 2R, \xi 3R],
ss[p1, \xi 3R] ss[p2, \xi 1R] ss[\xi 2R, \xi 4R], ss[p2, \xi 1R] ss[p2, \xi 3R] ss[\xi 2R, \xi 4R],
ss[p1, \xi 3R] ss[p3, \xi 1R] ss[\xi 2R, \xi 4R], ss[p2, \xi 3R] ss[p3, \xi 1R] ss[\xi 2R, \xi 4R],
ss[p1, \xi 2R] ss[p2, \xi 1R] ss[\xi 3R, \xi 4R], ss[p1, \xi 2R] ss[p3, \xi 1R] ss[\xi 3R, \xi 4R],
                                                                                                                      Metric #=0
ss[p2, \xi1R] ss[p3, \xi2R] ss[\xi3R, \xi4R], ss[p3, \xi1R] ss[p3, \xi2R] ss[\xi3R, \xi4R],
ss[p1, \xi 2R] ss[p1, \xi 3R] ss[p2, \xi 1R] ss[p2, \xi 4R], ss[p1, \xi 2R] ss[p2, \xi 1R] ss[p2, \xi 3R] ss[p2, \xi 4R],
ss[p1, \xi 2R] ss[p1, \xi 3R] ss[p2, \xi 4R] ss[p3, \xi 1R], ss[p1, \xi 2R] ss[p2, \xi 3R] ss[p2, \xi 4R] ss[p3, \xi 1R],
ss[p1, \xi 3R] ss[p2, \xi 1R] ss[p2, \xi 4R] ss[p3, \xi 2R], ss[p2, \xi 1R] ss[p2, \xi 3R] ss[p2, \xi 4R] ss[p3, \xi 2R],
ss[p1, \xi 3R] ss[p2, \xi 4R] ss[p3, \xi 1R] ss[p3, \xi 2R], ss[p2, \xi 3R] ss[p2, \xi 4R] ss[p3, \xi 1R] ss[p3, \xi 2R],
ss[p1, \xi 2R] ss[p1, \xi 3R] ss[p2, \xi 1R] ss[p3, \xi 4R], ss[p1, \xi 2R] ss[p2, \xi 1R] ss[p2, \xi 3R] ss[p3, \xi 4R],
ss[p1, \xi 2R] ss[p1, \xi 3R] ss[p3, \xi 1R] ss[p3, \xi 4R], ss[p1, \xi 2R] ss[p2, \xi 3R] ss[p3, \xi 1R] ss[p3, \xi 4R],
ss[p1, \xi 3R] ss[p2, \xi 1R] ss[p3, \xi 2R] ss[p3, \xi 4R], ss[p2, \xi 1R] ss[p2, \xi 3R] ss[p3, \xi 2R] ss[p3, \xi 4R],
ss[p1, \xi 3R] ss[p3, \xi 1R] ss[p3, \xi 2R] ss[p3, \xi 4R], ss[p2, \xi 3R] ss[p3, \xi 1R] ss[p3, \xi 2R] ss[p3, \xi 4R]
```

Example: Four Gluons

- Ten solutions for on-shell constraints
 7 (symmetric) + 3(partial anti-symmetric)
- Projector as diagonal block matrix $P = \begin{pmatrix} P_7 & 0 \\ 0 & P_3 \end{pmatrix}$

Complete symmetric polynomial in Mandelstams

$$\det(P) \propto (-4+D)^2(-3+D)^9(-1+D)$$
$$(stu)^{16} [(s-t)(s-u)(t-u)]^8$$