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» Motivations
» Kinematics basis for particles with spin
o Examples: 5pt basis, for planar 2-loop calculation

[ Badgeretal., 17’; Abreu et al., 17’ ]

» Conclusions
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» Calculation of amplitudes as the first step
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Feynman diagrams

e Advantages: e Limitations:

* Huge number of diagrams in

» Start from Lagrangian, reflect the
calculations

interactions intuitively

» Already successful in many » Each diagram is NOT gauge invariant

cases: eg. g-2 up to 6 loops

» Significant cancellations of gauge-
o L At e variant while summing over all

<JIGHARD FEYNMAN diagrams

PHYSIEIST

AL A Fonf ond
R » Results often turn out to be very
| simple
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Modern Methods

o Improve the efficiency of calculation compared to Feyn. Diag.

» Key idea:

Y chops problem into on-shell gauge invariant smaller pieces,
(recursively) constructing scattering process

J Unitarity 7S =1 & physical singularities

1 2
- (p1 + p2)? ~ log® (s/t)

» eg. BCFW for tree level, unitarity cuts for loop level, etc.
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A critical point of modern methods:
on-shell gauge invariant inputs

Inherit spirit of modern methods and develop an efficient
way for integrand reductions of spinning particles

* Aim: attack high-multiplicity high-loop analytical amplitude

* Preserve physical properties during intermediate steps A.M.A.P
* Unitarity cuts imposed for loop computations

* lllustrate in pure-Y M, easy to generalize to other matter content
* Compute in CDR scheme



Physics properties
o Scattering amplitude: Lorentz scalar and little group tensor

An({ﬁul%}) — An<{£z ’ pjafi ) fj}) — fl 52 o 'gﬁnﬁn({n/ﬁiﬂﬁpk})

o Physical constraints:

+ Momentum conservation ) p! =

+ Transversality pt¢, =0

+ On-shell gauge invariance A, (¢, — p;) =0
+ Unitarity & Physical Singularities
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Amplitude constructions: general

o Step 1: Construct independent kinematic bases by requiring
[Glover et al. , 03’; Glover et al., 12’; Z. Bern et al., 17’ ]

+ Alocal little group tensor B; = M1 &H2 - &8 fp({n4, > Prs )
+ Zi:pi = Pi&iun=0 Bi(& —pj)=0
» Step 2: Construct Amplitude A, = Zo‘iBi
+a;({p; - P, / f[l - p]}) functions of LSPs from in-& external mom.

+ Given any form of A,, , eg. derived from unitarity cuts

helicities helicities helicities 9P

+ Merge all cuts and Imposing IBP A, =) (ZC” MIj) B;
i
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Kinematic basis

o Brute-force construction by solving physical constraints
[R. Boels & R. Medina, 16’; R. Boels & HL, 17’]
+ Application: up to 6-pt tree; 4-pt 2-loop pure-YM

+ Shortcomings: complicated for (>=) 5-pt, ie. P;; = Z B;B;
helicity

eg. 5pt {142,142} full matrix, super hard to inverse

6pt {2364, 2364} full matrix, impossible to inverse

+ This construction way is kind of arbitrary, linear combinations of
bases are still on-shell gauge invariant kinematic bases.
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Kinematic basis

e “Canonical’ kinematic basis construction [R. Boels, Q. Jin and HL,18’]

+ A-type building block: A;(j,k) = (px - pi) pj - & — (s - i) Pr - &

= Solutions for 1 gluon (n-1) scalar scattering [R. Boels and HL,17’]
= For m-gluon scattering, m copies A form a basis

4+ C-type building block: C;; = (¢ -&)(pi - p;) — (i - &) (0 - &)

= One solution for 2-gluon (n-2)-scalar ( Another from 2-copies of A-

type building b|OCkS) [ R. Boels and HL,17’ ]
= Proportional to two contracted linearized field strength tensor
Fun(€) F*7(E2)

A &C-type building blocks: on-shell gauge invariant
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Kinematic basis

e “Canonical’ kinematic basis construction [R. Boels, Q. Jin and HL,18']

n—3
+ D-type building block: D;; =Cij;— Y Xij(k,1)Ai(k)A; (1)

k,l=1

Require orthogonality Y~ 4;(x) ”_O_ZA D,
h;

Fix the constructions with PA(%,1) ZA

Al(k)y =Y (P (kDA A"(k)A@-(l)z > Alk)A(l) = 6(k,1)

: helicities,
n—3
Dy j=Cij— Y Ai(k)A;(1) (A" (k)A"(1)Crmn)
k=1
Z Di ;D ; = (pi 'pj)2(d —n+1) Z D; ;D = (pi - pj) (P - pk)DJ .

(pj - Pr)

helicities helicities,
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Kinematic basis

e “Canonical’ kinematic basis construction [R. Boels, Q. Jin and HL,18']

+ Given >=3 gluon particles in the process, kinematic basis can be
constructed from multi-copies of all possible A and C/D types

Conjecture: linearly independent and complete in general dimensions

4+ The total number of basis elements with n gluons and no scalars is

[n/2] nl(n — 2)(n—2k:)

N, =
kz:;) 2kl (n — 2k)!
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Construct Loop Amplitudes

Using “Canonical” kinematic basis: An. =) _ (ch MIj) B;

@ J

Coefficient for cut amplitude: D ¢t MI;™ =)~ P* ( > B A;ut)
k j

helicities

< < S B A;;ut> gives integrands for a particular cut

helicities

4+ Run IBP reductions for cut integrands and preserve cut Mls part
+ Inverse inner product of kinematic bases to get cut coeffs.

* Merge and cross check for different cuts
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Example: 5pt kinematic basis

e “Canonical’ kinematic basis construction [R. Boels, Q. Jin and HL,18']

+1A+2Ds:intotal 5 x 2 x C7/2! =30, €g. A,(2)Dy3Dy45
+3As+1D:intotal 2° x C2 =80, eg. A1(2)A5(3)As5(4)Dy 5
+ 5As: intotal 2° =32, eg. A;(2)A5(3)A3(4)A4(5)As5(1)

4+ Inner product matrix and
its inverse can be derived
by direct products of inner
product matrices of Aand D 1
type building blocks "

About 20 s for P;;and (P;;)™*
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Example: 5pt planar 2-loop

» Choose full propagators {(=12)% ()%, (= p2)?, (i = p1 = p2)?,
(I1 4+ p3 + pa)?, (L +p3)°, (12)%, (I2 — p2)?,
IBP for all integrands done (.2 — p1 — p2)%, (Il + ps + pa)?, (2 + p3)*}

o Maximal cuts for 5pt planar 2-loop

5
1

2 (I2 + ps + pa)? (Ih — p2)?

{(lh —12)%, ()%, (lh = pr = p2)?, (lh + s +pa)?, (L +p3)?, (12)%, (2 — p2)?, (la — pr — p2)*}

3

Coefficients of highest Mls about 300M with unphysical singularities

e Integrand reductions for other cuts done, without substituting IBPs
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Conclusions

« “Canonical” kinematic basis constructions for external particles
o Amplitudes as linear combinations of kinematic bases

o High-multiplicity high-loop amplitudes:
Kinematic bases + unitarity cuts + IBP

* Implementations for 5pt planar 2-loop
+ Done: integrands for different cuts || IBP reductions to Mls

+ Obstacles : (1) IBP reductions huge ~ 30G
(2) Unphysical poles

4+ Todo: (1) Merge into a readable results
(2) Compare with numerical results [Badger etal., 17’; Abreu et al., 17']
(3) Unphysical poles as conditions for better MIs basis choice?
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Thank you for your attention !



A new perspective of scattering amplitudes

Example: Three Gluons

¢ All possible tensors:
T = {(§1- &2)(p2 - €3), (&1~ §3)(p1 - &2),
(&2 - &a)(p2 - &1)s (p1 - §1)(p1 - €2) (P2 - €a)}

» On-shell gauge invariance:

Tleyops = {0, —(p2 - &) (1 - &), —(p1 - &) (p2 - &), 0}

# three constraints from on-shell 0 —1 —1 0
gauge invariance ( 1 0 1 0 ) a=0

# two independent basis 1 -1 0 0
# 1st. 3pt tree amplitude

2nd: F3 a=4{-1,—-1,1,0} or a=4{0,0,0,1}
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Kinematic basis

o Brute-force construction by solving physical constraints
+ 4-gluon with metric # =1: 27 tensor Ansatz

Metric #=2

[ ss[£1R, £4R] ss £2R, £3R), ss[41R, 3R] ss[42R, L4R], s5[51R, £2R) s8(<3R, <4R),

ss(pl,
se[pl,
ss(pl,
ss(pl,
as[pl,
ss(pl,
se[p2,
ss(p2,
ss(pl,
ss[pl,
8s|[pl,
se([p2,

¢3R| ss[p2,
¢3R] se[p3,
Z2R] 88(p2,
¢2R] ss([p3,
¢2R] ss[pl,
¢3R] 8s([p3,
F1R] se([p2,
41R] ss[p3,
¢3R| ss[p2,
¢3R] se[p3,
c2R| 8s[p2,
¢1R] se[p3,

£4R| 38 [<£1R,
¢4R] 88 (1R,
Z4R] ss[£1R,
<4R] s5[<LR,
¢3R)] ss8[£1R,
£2R] g3 [£1R,
¢4R] 88 [£2R,
~#4R] s8[£2R,
¢1lR] s5[£2KR,
E1R] 88[£€2R,
£1R] a8 [£3R,
¢2R] 88[£3R,

&2R), 85[P2,
£2R), s8[p2,
3R], 8s8([p2,
€3R], ss[p3,
£4R), ss[pl,
&4R], 8s8([p2,
£3R], ss[p2,
3R], 88[p3,
<4R), ss[p2,
£4R), ss[pZ,
£4R], s8s[pl,
$4R], se[p3,

£3R] s5(pP2, £4R]
¢3R] s8[p3, ¢4R]
Z4R] 88 [p3, 42R]
£2R] s8[p3, {4R]
¢2R] ss[p2, £3R]
&3R] 8s([p3, £2R]
c4R] s [p3, {1R]
41R] ss[p3, 4£4R]
¢1R] ss[p2, ¢3R]
£3R] ss[p3, £1R]
£2R] 8s[p3, £1R]
¢1R] se[p3, {2R]

88 ) S
s8R,
8s[£1R,
ss[<1R,
8s[£1R,

28 [E2R,

SS[£2R, &
ss8[£2R, £

£2R] ,
£3R] 4
£3R],
£4R)
58 [£1R, £4R)

8s[£2R, Z3R] 4

83 [£3R, £4R]
s8[£3R, £4R]

Metric #=1




Integrand reduction for particles with spin

Kinematic basis

o Brute-force construction by solving physical constraints
+ 4-gluon with metric # =1, unique solution

2tses([pl, £3] ss[p2, £4] ss {1, £2] + 2888 p2, £3] 88[p2, £4] s8[£1, £2] +
2tssp2, £3] ss[p2, £4] 8s([£1, £2] +2s88[pP2, £3] s8[pP3, £4] s8[£1, £2] +
2tssp2, £3] ss[p3, 4] ss(£1, £2] -2 s ss[p2, £4] ss[p3, £2] ss[E1, £3] +
2tsspl, £2] ss[p3, £4] ss[&£1, £3] -2sss[p3, £2] ss[p3, £4] ss[E1, £3] +
2tsspl, £2] ss[pl, £3] ss[£1, £4) +2 s ss[pl, £2) ss[p2, £3) ss[£1, £4] +
2tsspl, £2] ss[p2, {3] sa([&1, {4] -2ssa([pl, (3] sa[p3, £2] s8], {4] +
2888 p2, £4] ss[p3, £1] e8[&2, £3] -2888([p2, {1] 88[P3, £4] 88 £2, £3] -
2tss p2, £1] ss[p3, £4] s8[£2, £3] - g* se[£1l, £4] sa[£2, £3] -
stss {1, €4] ss[£2, £3] -2 tss[pl, £3] ss[p2, £1] 885[£2, £4] -
2sss p2, £1] ss[p2, €3] ss[£2, £4] -2t ss[p2, £1] ss[p2, £3] ss[£2, £4] -
2sssp2, £3] ss[p3, £1] ss([£2, £4] +stss[Ll, £3] ss[£2, £4] -
2tss pl, £2] ss[p3, £1] ss8([&£3, £€4) +2s8s8(p2, £1] ss([p3, £2] 88 £3, £4] +
2tss p2, {1] ss[pd, {2] ss([L3, {4] + 28 s8([p3, (1] sa[p3, £2] 88 £3, (4] -
stss[fl, £2] ss[&£3, £4] - t¥ss[&1, £2] 88 [£3, £4]
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Kinematic basis

o Brute-force construction by solving physical constraints

+ 4-gluon with metric # =0: 43 tensor Ansatz

"F1R, Z4R) 55 L2R, 3R], 65 L1R, L3R 65 (L2R, L4R), 85(Z1R, £2R| 85[~3R, £47) , | Metric #=2
88 pl, ¢3R] 88 p2, ¢4R| 8= &£1R, £2R], ss8([p2, £3X] 88[p2, &£4KR] 88[ 1R, £2R],
ss pl, £3R] ss[p3, £4R) ss[£1R, £2R], ss(p2, £3R] ss(p3, £4R] ss[<L1R, £2R],
88 'pl, £2R] 88 [ p2, £4R] 828 [ &1R, £3R], ss[p2, £4%] ss[p3, £2R] 88[£1R, £3R],
ss pl, £2R) 58 p3, £4R) ss(£1R, £3R), ss[p3, £2R] ss[p3, £4R] ss[£1R, £3R], -
88 pl, £2R] 82 pl, &3R] 82| £1R, £4R), ss[pl, £2%] ss[p2, £3R] s8[£1R, £4R], Metric #=1
ss pl, £3R] ss[p3, 42R]) ss[£1R, £4R], ss(p2, £3R] ss(p3, £2R] ss[L1R, £4R],
88 'p2, ¢1R] 88 [p2, £4R)] 88 [&2R, £3R], s8s8([p2, £4R] 8s8([p3, £1R] 88[£2R, 3R],
ss p2, £1R) 558 p3, £4R) ss(£2R, £3R), ss[p3, £1R] ss[p3, £4R] ss[£2R, £3R],
ss pl, €3R) ss p2, €1R] s=[E£2R, £4R), ss[p2, £1R] ss[p2, £3R] ss[£2R, £4R],
ss pl, £3R] ss[p3, £1R] ss[£2R, £4R], ss(p2, £3R] ss(p3, £1R] ss[42R, £4R],
88 'pl, ¢2R] 8= [p2, ¢1R)] 8= [£3R, £4R], ss([pl, £2R] ss([p3, £1R] 8s8[3R, £4R], Metric #=0
ss 'p2, ~1R] 558 'p3, Z2R] s5[£3R, £4R], ss[p3, £1R] ss[p3, £2R] ss[£3R, £4R
a8 pl, c2R) 68 pl, 3R] 68 | p2, :1R| as |p2, 4R |, 88|pl, 2R 88 p2, ¢1R| 68 p2, ¢3R| 68 p2, LR,
ss[pl, £2R) ss[pl, £3R] ss(p2, £4R) ss(p3, £1R), ss(pl, £2R] ss8[p2, £3R) ss8[p2, £4R] ss p3, £1R],
g9 'pl, £3R] ss p2, £1R] ss[p2, £4R] as([p3, £2R], s9([p2, £1R] 819 [ p2, £3R)] s18 p2, £&R] ss p3, £2R],
ss pl, £3R) 58 [p2, £4R) ss(p3, £1R] ss(p3, £2R], ss(p2, £3R] ssp2, £4R) ss8 p3, £1R) 558 p3, £2R],
99 ' pl, £2R)] 55 pl, £3R] ss(p2, £1R] as[p3, £4R), ss[pl, £2R] 88 ' p2, ¢<1lR] s3 2, £3R] ss p3, £4R],
ss[pl, £2R) ss[pl, £3R] ss(p3, £1R) ss(p3, £4R), ss(pl, £2R] ss[p2, £3R) ss[p3, £1R] ss[p3, £4R],
ss'pl, £3R] ss'p2, ¢1R] ss[p3, £2R] as[p3, £4R], 99[92, &1R] 88 p2, ¢3R] s8 p3, ¢2R] ss p3, £&R],

s pl, £3R] ss ' p3, £1R] ss[p3, £2R] ss[p3, £4%], ss[p2, £3R]| 85 'p3, £1R] s5 ' p3, £2R] 55 ' p3, £4R] )
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Example: Four Gluons

e Ten solutions for on-shell constraints
[/ (symmetric) + 3(partial anti-symmetric)

* Projector as diagonal block matrix p — 70
0 P

o Complete symmetric polynomial in Mandelstams

det(P) o< (-4 + D)*(—3 + D)?(—1+ D)
(stu)'®[(s —t)(s —u)(t — w))°



