Soft interactions of top quarks at NNLO

Li Lin Yang Peking University

School and Workshop on pQCD Hangzhou, March 2018

We've learnt a lot

- * Constructing amplitudes
- * Performing loop integrals
- ***** Dealing with IR singularities
- * Resummation (analytically or numerically)

We've learnt a lot

- * Constructing amplitudes
- * Performing loop integrals
- * Dealing with IR singularities
- * Resummation (analytically or numerically)

I'll talk about the application of some of these ideas in the context of top quark physics (with emphasis on soft gluons)

We've learnt a lot

- * Constructing amplitudes
- * Performing loop integrals
- * Dealing with IR singularities
- * Resummation (analytically or numerically)

I'll talk about the application of some of these ideas in the context of top quark physics (with emphasis on soft gluons)

I only have 25 min, so I'll skip technical details

Why top quarks?

Strongly coupled to Higgs, important to gauge hierarchy problem and vacuum stability

$$\tau_{\rm SM} = 10^{139^{+102}_{-51}}$$
 years

A. Andreassen, W. Frost, M. D. Schwartz: 1707.08124

Why top quarks?

We still have many unknowns about the top quark

t

Why top quarks?

Major backgrounds to many searches

Why top quarks? l⁺, q - ν, <u>q</u>' W+___ Decay before hadronization b

Perfect place to study perturbative QCD!

Why soft gluons?

JULY 15, 1937

PHYSICAL REVIEW

VOLUME 52

BN theorem

Note on the Radiation Field of the Electron

F. BLOCH AND A. NORDSIECK*

OURNAL OF MATHEMATICAL PHYSICS VOLUME 3, NUMBER 4 JULY-AUGUST 1962

Mass Singularities of Feynman Amplitudes*

TOICHIRO KINOSHITA

PHYSICAL REVIEW

VOLUME 133, NUMBER 6B

KLN theorem

23 MARCH 1

Degenerate Systems and Mass Singularities*

T. D. LEE[†] AND M. NAUENBERG[‡]

Intimately related to infrared (IR) divergences in scattering amplitudes (which need to be cancelled in physical observables!)

Why soft gluons?

Soft radiations carry universal information about the field theory (independent of particular scattering processes)

PHYSICAL REVIEW

VOLUME 140, NUMBER 2B

25 OCTOBER 1965

Infrared Photons and Gravitons*

STEVEN WEINBERG[†]

PHYSICAL REVIEW

VOLUME 166, NUMBER 5

25 FEBRUARY 1968

Low-Energy Theorem for Graviton Scattering

DAVID J. GROSS* Lyman Laboratory, Harvard University, Cambridge, Massachusetts

AND

ROMAN JACKIW* Isman Laboratory Harvard University Cambridge Massachusetts

PHYSICAL REVIEW

VOLUME 168, NUMBER 5

25 APRIL 1968

Low-Energy Theorems for Massless Bosons: Photons and Gravitons

R. JACKIW*

Why soft gluons?

Generate large logarithmic corrections at each order in perturbation theory

Need to be resummed to all orders!

We should have heard enough of these from Dr. Monni

A standard candle for the LHC and future colliders

Next-to-next-to-leading order: one of the most wanted theoretical results by LHC experiments

ATLAS Collaboration: 1407.0371

Top pair at NNLO

3 ingredients

An important issue: understanding IR divergences and their cancellation among the 3 contributions

IR divergences in scattering amplitudes

Collinear divergence $k^{\mu} \parallel l^{\mu}$ or $k^{\mu} \parallel p^{\mu}$

Easy: only knows about one leg

Soft divergence $k^{\mu} \rightarrow 0$

Hard: probes all legs

Wilson lines

Soft interactions are described by Wilson lines

Two-loop IR massless vs. massive

Purely massless case simple (due to the fact that 3-parton correlations vanish)

Aybat, Dixon, Sterman: hep-ph/0606254

Massive case (top quark) notably more complicated!

Early attempt: Mitov, Sterman, Sung: 0903.3241

Universal two-loop IR

Ferroglia, Neubert, Pecjak, LLY: PRL 103, 201601 (2009)

The first derivation of the universal two-loop IR structure

$$\Gamma = \sum_{(i,j)} \frac{T_i \cdot T_j}{2} \gamma_{\text{cusp}}(\alpha_s) \ln \frac{\mu^2}{-s_{ij}} + \sum_i \gamma^i(\alpha_s)$$

$$- \sum_{(I,J)} \frac{T_I \cdot T_J}{2} \gamma_{\text{cusp}}(\beta_{IJ}, \alpha_s) + \sum_I \gamma^I(\alpha_s)$$

$$+ \sum_{I,j} T_I \cdot T_j \gamma_{\text{cusp}}(\alpha_s) \ln \frac{m_I \mu}{-s_{Ij}}$$

$$+ \sum_{(I,J,K)} i f^{abc} T_I^a T_J^b T_K^c F_1(\beta_{IJ}, \beta_{JK}, \beta_{KI})$$

$$+ \sum_{(I,J,K)} \sum_k i f^{abc} T_I^a T_J^b T_K^c f_2 \left(\beta_{IJ}, \ln \frac{-\sigma_{Jk} v_J \cdot p_k}{-\sigma_{Ik} v_I \cdot p_k}\right)$$

$$(2 \qquad F_1(\beta_{12}, \beta_{23}, \beta_{31}) = \frac{\alpha_s^2}{12\pi^2} \sum_{i,j,k} \epsilon_{ijk} g(\beta_{ij}) r(\beta_{ki})$$

$$r(\beta) = \beta \coth \beta,$$

$$g(\beta) = \det \beta,$$

$$g(\beta) = \det$$

Generalizing Catani's formula to massive cases

(5)

Universal two-loop IR

Ferroglia, Neubert, Pecjak, LLY: PRL 103, 201601 (2009)

Any gauge theory (any gauge group, SUSY or not) Any external particles (massless or massive, any representation, boson or fermion)

First application: top quark production in QCD

Two-loop IR for top pair

Ferroglia, Neubert, Pecjak, LLY: 0908.3676

$$2\operatorname{Re} \langle \mathcal{M}^{(0)} | \mathcal{M}^{(2)} \rangle_{gg} = (N^2 - 1) \left(N^3 A^g + N B^g + \frac{1}{N} C^g + \frac{1}{N^3} D^g + N^2 n_l E_l^g + N^2 n_h E_h^g + n_l F_l^g + n_h F_h^g + \frac{n_l}{N^2} G_l^g + \frac{n_h}{N^2} G_h^g + N n_l^2 H_l^g + N n_l n_h H_{lh}^g + N n_h^2 H_h^g + \frac{n_l^2}{N} I_l^g + \frac{n_l n_h}{N} I_{lh}^g + \frac{n_h^2}{N} I_h^g \right)$$

Fully analytic results given: important ingredient for the NNLO calculation!

		ϵ^{-4}	ϵ^{-3}	ϵ^{-2}	ϵ^{-1}
A	g	10.749	18.694	-156.82	262.15
B	3 g	-21.286	-55.990	-235.04	1459.8
C	g		-6.1991	-68.703	-268.11
L) g			94.087	-130.96
E	g'_l		-12.541	18.207	27.957
E	f_{h}^{g}			0.012908	11.793
F	l^{g}		24.834	-26.609	-50.754
F	h^{g}			0.0	-23.329
G	ng l			3.0995	67.043
G	h^{g}				0.0
H	I_l^g			2.3888	-5.4520
H	rg lh				-0.0043025
H	I_h^g				
I	$\frac{g}{l}$			-4.7302	10.810
I_l^s	g !h				0.0
Ι	$\frac{g}{h}$				

Table 1: Numerical results for the IR poles in the color coefficients (65) for topquark pair production in the $gg \to t\bar{t}$ channel, evaluated at the point $t_1 = -0.45s$, $s = 5m_t^2$, and $\mu = m_t$. The blank entries are not present in general, while the entries with value 0.0 vanish only for the particular choice $\mu = m_t$.

Soft gluons in cross sections

Soft gluons in amplitudes

Soft gluons in cross sections

Soft functions

NNLO soft function

Only calculated in the massless limit Ferroglia, Pecjak, LLY: 1207.4798

Not really heavy quarks...

Structure of soft real emissions (in particular, 3-parton correlations) Why do we care? Higher accuracy in resummation

NNLO soft function

Wang, Xu, LLY, Zhu: 1804.xxxxx

Rule of thumb: finite piece significantly more difficult than divergent piece

Requires more Integration-by-parts identities systematic methods! Differential equations

We should have heard enough of these from Dr. Tancredi

Integration-by-parts

$$\int \dots \int \mathrm{d}^d k_1 \mathrm{d}^d k_2 \dots \frac{\partial}{\partial k_i} \left(p_j \frac{1}{E_1^{a_1} \dots E_n^{a_n}} \right) = 0$$

Leads to relations among different Feynman integrals

Significantly reduces number of integrals to compute ("master integrals")

Chetyrkin, Tkachov: NPB 192, 159 (1981)

Differential equations

The "master integrals" form a basis in the space of all integrals

> Kotikov: PLB 254, 158 (1991); Remiddi: hep-th/9711188

They satisfy a system of linear differential equations

New development: "canonical form" greatly simplifying the solution (when applicable)

Henn: 1304.1806

Differential equations Henn: 1412.2296

$$G_{a_1,a_2,a_3,a_4} = \int \frac{d^D k}{i\pi^{D/2}} \frac{1}{[-k^2]^{a_1} [-(k+p_1)^2]^{a_2} [-(k+p_1+p_2)^2]^{a_3} [-(k+p_1+p_2+p_3)^2]^{a_4}}$$

$$p_i^2 = 0$$
 $s = (p_1 + p_2)^2$ and $t = (p_2 + p_3)^2$

$$g_1 = c(-s)^{\epsilon} t G_{0,1,0,2} ,$$

$$g_2 = c(-s)^{\epsilon} s G_{1,0,2,0} ,$$

$$g_3 = c \epsilon (-s)^{\epsilon} s t G_{1,1,1,1} ,$$

$$\partial_x \vec{g}(x;\epsilon) = \epsilon \left[\frac{a}{x} + \frac{b}{1+x}\right] \vec{g}(x,\epsilon)$$

$$a = \begin{pmatrix} -1 & 0 & 0 \\ 0 & 0 & 0 \\ -2 & 0 & -1 \end{pmatrix}, \qquad b = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 2 & 2 & 1 \end{pmatrix}$$

Solution in terms of iterated integrals order by order in ϵ

NNLO diagrams

Wang, Xu, LLY, Zhu: 1804.xxxxx

Solving integrals

Wang, Xu, LLY, Zhu: 1804.xxxxx

~60 master integrals

Differential equations $\partial_{\beta}\vec{f}(\epsilon,\beta,\cos\theta) = \epsilon \left(\frac{A}{\beta-1} + \frac{B}{\beta} + \frac{C}{\beta+1} + \frac{D}{\beta-1/\cos\theta} + \frac{E}{\beta+1/\cos\theta}\right)\vec{f}(\epsilon,\beta,\cos\theta)$

Solution in terms of generalized polylogarithms

Difficult part: boundary conditions

Validation: threshold limit

It is interesting to check the threshold limit where the top quarks are produced at rest

Color singlet: same as Drell-Yan and Higgs production Belitsky: hep-ph/9808389

Color octet Czakon, Fiedler: 1311.2541

Validation: boosted limit

In the limit where the top quarks are highly boosted

Factorization Ferroglia, Pecjak, LLY: 1205.3662

$$S_{\text{massive}}(s,t,m_t) \rightarrow S_{\text{massless}}(s,t) S_D^2(m_t)$$

soft fragmentation function

Soft gluon resummation

Resummation is achieved by evolving from the scale of hard scatterings

to the scale of soft (and/or collinear) interactions

Soft gluon resummation

Resummation is achieved by evolving from the scale of hard scatterings

Governed by IR structure

to the scale of soft (and/or collinear) interactions

NLO+NNLL' (boosted) top

Pecjak, Scott, Wang, LLY: PRL 116, 202001 (2016)

Resum soft logarithms and small-mass logarithms beyond NNLO

NLO+NNLL' (boosted) top

Pecjak, Scott, Wang, LLY: PRL 116, 202001 (2016)

Matching to NNLO

Matching to NNLO

Resummed result much less sensitive!

Summary and outlook

- * Soft gluons and top quarks are important and interesting
- * We have thoroughly studied their interactions at NNLO
 - * Universal two-loop IR structure
 - * NNLO soft real emissions
 - * Resummation of soft logarithms

Thank you!