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I'll talk about the application of some of these ideas  
in the context of top quark physics 

(with emphasis on soft gluons)
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I only have 25 min, so I'll skip technical details
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Figure 3: Phase diagram for stability in the m
pole

t /m
pole

h
plane with dotted lines indicating

the scale at which the addition of higher-dimension operators could stabilize the SM. Note
that the curves accumulate on the stability/metastability boundary. ⇤NP curves in the
↵s/m

pole

t plane (not shown) are similar.

arbitrary high scale can destabilize the SM my opening up new tunneling directions [17,46,
58, 81–83]. To stabalize the SM, they have to be strong enough to lift the potential from
negative to positive. In Fig. 3 we see that the density of ⇤NP curves increases near the
absolute stability line. This happens because the absolute stability region is necessarily
insensitive to the addition of a positive operator.

7 Mass Corrections

One remaining technical detail is how to handle the fact that the Higgs potential in the
Standard Model is not exactly scale invariant, since there is a finite mass term for the Higgs
field. We saw in Section 3 that with a scale-invariant classical potential, quantum corrections
naturally pick out the scale µ

? where �(µ) is minimal so that the action is dominated by
bounces of a size R

? = 1

µ? . One hopes that because the Higgs mass parameter m ⇠ 102

GeV is much much smaller than µ
?
⇠ 1017 GeV, the corrections to the decay rate from the

mass term will be completely negligible. Although normally classical e↵ects, like the Higgs
mass term, dominate over quantum e↵ects, in this case the quantum scale violation can be
dominant since it scales as an inverse power of ~ (see Eq. (3.35)). Despite this convincing

51

The third problem we resolved has to do with fluctuations of vector bosons around the
instanton background. When a global internal symmetry is spontaneously broken there are
additional zero modes. In previous treatments the Jacobian for going to collective coordinates
for these symmetries was found to be infinite. We show that this infinity was an artifact of
working in R⇠ gauge where the symmetry is actually explicitly broken by the gauge-fixing.
Instead we work in Fermi gauges, and using the same technique as for the dilatation zero
mode, show that the Jacobian for internal symmetries is finite.

The next new result in our paper is a complete analytic computation of the functional
determinant around the instanton background for real and complex scalar fields, vector
bosons and fermions. Moreover, we showed that the final result is gauge-invariant (of the
parameter ⇠ in Fermi gauges and between Fermi and R⇠ gauges). For the scalars, the
insight which allowed for these exact results was to use the exact spectrum known from the
operator rescaling and mapping to the 4-sphere [59–61]. For the vector bosons, we exploited
a remarkable simplification of the fluctuation equations discovered in [35,36]. These authors
found that the equations that couple the scalar and longitudinally polarized gauge bosons
with the Goldstone bosons can be written in terms of a set of simplified equations using
auxiliary fields. Although the treatment in [35, 36] assumed a mass term for the scalar, so
that their results do not exactly apply to the case of the Standard Model, our treatment
very closely parallels theirs.

Combining all our results together we produced a complete prediction for the lifetime of
our metastable vacuum in the Standard Model. We find the lifetime to be

⌧SM = 10139
+102
�51 years (8.1)

The enormous uncertainty in this number is roughly equal parts uncertainty on the top quark
mass, uncertainty on the value of the strong-coupling constant ↵s and theory uncertainty
from threshold corrections, that is, from matching between observable pole masses and MS
parameters at the electroweak scale. The uncertainty from error on the Higgs boson mass is
small as is, thankfully, uncertainty associated with the unknown NNLO corrections to the
decay rate.

Phase diagrams in the mt/mh plane and the mt/↵s plane are shown in Fig. 2. This figure
indicates that the SM seems to sit in a peculiarly narrow swath of metastability in the phase
space of top quark mass, Higgs boson mass, and strong-coupling constant. An important
fact to keep in mind when interpreting this tuning is that phase diagram assumes no gravity
and no physics beyond the SM. In fact, any arbitrarily high-scale physics can destabilize the
SM by opening up new tunneling directions [17, 46, 58, 81–83]. Moreover, near the absolute
stability boundary, operators at an arbitrarily high scale can also stabilize the SM, as can
be seen from Fig. 3. For the SM, which appears not to be on the stability boundary, the
relevant scale of new physics is around 1013 GeV.

Because of the importance of the top quark mass, the Higgs boson mass and ↵s in
determining stability, it is interesting to look at their allowed ranges. We find that, varying
each parameter separatly, the bounds for the SM to lie in the metastability window are

171.18 <
m

pole

t

GeV
< 177.68, 129.01 >

m
pole

h

GeV
> 111.66, 0.1230 > ↵s(mZ) > 0.1077 (8.2)
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A. Andreassen, W. Frost, M. D. 
Schwartz: 1707.08124

Strongly coupled to Higgs, important to gauge 
hierarchy problem and vacuum stability 
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We still have many unknowns about the top quark

CKM matrix element

Yukawa coupling 
(origin of large mass)
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FIG. 1: Tree-level and one-loop Feynman diagrams for the direct top quark production.
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FCNC?

CP violation?
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Major backgrounds to many searches

box diagram matrix element. At LO, we may write, schematically:

�
LO
HH = |

X

q

(↵qC
(1)

q,tri + �qC
(1)

q,box)|
2 + |

X

q

�qC
(2)

q,box|
2
, (2.1)

where C
(1)

q,tri represents the matrix element for the triangle contributions and C
(i)
q,box

represents the matrix element for the two Lorentz structures (i = 1, 2) coming from

the box contributions [41, 45], for each of the quark flavours q = {t, b}.

The parameters ↵q, �q and �q for quark flavour q are given in terms of the

Standard Model Lagrangian parameters by:

↵q = �yq ,

�q = �q = y
2

q , (2.2)

where q = {t, b}, � is the (normalised) Higgs triple coupling defined in the previous

section and yq is the normalised Hqq̄ coupling (after electroweak symmetry breaking

and assumed to be real) defined with respect to the SM value: yq ⌘ Yq/Y
SM

q (Yq

being the resulting coupling and Y
SM

q the SM value). In contrast, the single Higgs

cross section, again, schematically, will only contain the matrix element squared

|
P

q C
(1)

q,tri|
2.

g H
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g

g H
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Figure 1: The Higgs pair production diagrams contributing to the gluon fusion process

at LO are shown, for a generic fermion f .

We have performed numerical fits using the results of the hpair program [46],

used to calculate the total cross section for Higgs boson pair production at lead-

ing and approximate next-to-leading (NLO) orders. The fits were done employing

MSTW2008lo68cl and MSTW2008nlo68cl parton density functions [47] and using

top and bottom quark masses of 174.0 GeV and 4.5 GeV respectively. We have

obtained:

�
LO

HH [fb] = 5.22�2
y
2

t � 25.1�y3t + 37.3y4t +O(�Yby
2

t ) ,

�
NLO

HH [fb] = 9.66�2
y
2

t � 46.9�y3t + 70.1y4t +O(�Yby
2

t ) , (2.3)

where we are not showing terms suppressed by the (un-normalised) Hbb̄ coupling,

Yb. In fact, we have checked explicitly that a fit performed ignoring the bottom

– 3 –

Higgs pair production 
(Higgs self-coupling)

Top partner searches 
(SUSY, CHM, ExD, LH)
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Decay before hadronization

Perfect place to study perturbative QCD!
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Note on the Radiation Field of the Electron
F. BLocH AND A. NoRDsIEcK*
Stanford University, California
(Received May 14, 1937)

Previous methods of treating radiative corrections in non-
stationary processes such as the scattering of an electron in
an atomic field or the emission of a P-ray, by an expansion'
in powers of e'/kc, are defective in that they predict infinite
low frequency corrections to the transition probabilities.
This difficulty can be avoided by a method developed here
which is based on the alternative assumption that e'co/mc',
kco/mc' and k~/cAp (co=angular frequency of radiation,
Ap=change in momentum of electron) are small compared
to unity. In contrast to the expansion in powers of e'/kc,
this permits the transition to the classical limit k=0.

External perturbations on the electron are treated in the
Born approximation. It is shown that for frequencies such
that the above three parameters are negligible the quantum
mechanical calculation yields just the directly reinterpreted
results of the classical formulae, namely that the total
probability of a given change in the motion of the electron
is unaffected by the interaction with radiation, and that
the mean number of emitted quanta is infinite in such a way
that the mean radiated energy is equal to the energv
radiated classically in the corresponding trajectory.

I. INTRQDUcTIQN
HE quantum theory of radiation has been
successfully applied to radiative emission

and absorption processes. If the methods which
lead to these results are used to obtain more gen-
eral radiative corrections, a characteristic diffi-
culty arises. This difficulty is clearly visible in the
formulae given by Mott, Sommerfeld' and Bethe
and Heitler' for the probability of scattering of an
electron in a Coulomb field accompanied by the
emission of a single light quantum. If the emitted
quantum lies in a frequency range cv to ~+d~,
this probability is for small frequencies propor-
tional to des/a& independently of the angle of
scattering. Taking these formulae literally and
asking for the total probability of scattering with
the emission of any light quantum, one therefore
gets by integration over ~ a result which diverges
logarithmically in the low frequencies. The same
difhculty appears in the radiative correction to
the probability of P-decay, ' and to that of other
nonstationary processes.
This "infrared catastrophe" is obviously unre-

lated to the fundamental "ultraviolet" difficulties
of quantum electrodynamics, exemplified by the
divergent result for the self-energy of the electron.
While the latter is already inherent in the class-
* National Research Fellow.' N. F. Mott. , Proc. Carnb. Phil. Soc. 27, 255 (1931);

A. Sommerfeld, Ann. d. Physik 11, 257 (1931).'H. Bethe and W. Heitler, Proc. Roy Soc. A146, 83
(1934).' J.K. Knipp and G. E.Uhlenbeck, Physica 3, 425 (1936);
F. Bloch, Phys. Rev. 50, 272 (1936); see pp. 276—7 in the
latter.

ical theory, the former has no counterpart there.
There is, however, a feature in the classical
theory which indicates the cause of the diAiculty:
If for simplicity one considers only frequencies
which are small compared to the reciprocal of the
collision time, the mechanism of emission may be
described as follows. The amplitude of each
Fourier component of the proper field of the
electron before the impact retains its value after
the impact. 4 The difference between the new field
and the field proper to the electron in its new
motion is the emitted radiation. The significant
point is now that I„, the radiated intensity per
unit frequency interval, does not approach zero'
as ra—&0. Hence I /ka&, which may be taken as an
estimate of the mean number of light quanta
emitted per unit frequency range, tends to in-
finity as co~0. Since the same result has to be
expected in a rigorous quantum-theoretical treat-
ment, one has to anticipate that only the prob-
ability for the simultaneous emission of infinitely
many quanta can be finite; the probability of
emission of any finite number of quanta must
vanish.

4 This is in strict analogy to the mechanical model of an
oscillator initially held away from its equilibrium position
by a constant force, the value of which suddenly changes.
We shall see later that the same analogy holds in quantum
mechanics, where it finds its mathematical expression in
the expansion of the wave function of an oscillator with one
equilibrium position in terms of the wave functions corre-
sponding to a new equilibrium position.' For a charged particle moving in a pure Coulomb field,I log 1/cur as co~0, where i- is the collision time; in a
field which falls off more rapidly than 1/r' for large r, I„
approaches a finite value.
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Mass Singularities of Feynman Amplitudes* 

TorCHIRO KINOSHITA 

Laboratory of Nuclear Studies, Cornell University, 
I thaca, New York 

(Received January 4, 1962) 

Feynman amplitudes, regarded as functions of masses, exhibit various singularities when masses of 
!n.ternal external lines are allowed to go to zero. In this paper, properties of these mass singular-
ItIes, whICh may be defined as pathological solutions of the Landau condition, are studied in detail. A 
general method is developed that enables us to determine the degree of divergence of unrenormalized 
Feynman at It is also applied to the determination of mass dependence 
of a total transItIOn probabIlIty. It IS found that, although partial transition probabilities may have 
divergences. associated the vanishing of masses of particles in the final state, they always cancel 
each other In the calculatIOn of total probability. However, this cancellation is partially destroyed if 
the charge renormalization is performed in a conventional manner. This is related to the fact that 
interacting particles lose their identity when their masses vanish. A new description of state and a new 
approach to the problem of renormalization seem to be required for a consistent treatment of this limit. 

I. INTRODUCTION 

FOR any Feynman diagram, the corresponding 
transition amplitude is a function of scalar 

products of external momenta and masses of various 
internal lines. Analyticity of amplitudes regarded 
as functions of external momenta has been clarified 
considerably in the last few years. In these con-
siderations, masses of internal lines are usually 
treated as parameters fixed to their observed values. 
However, it has been noted that some aspects of 
analyticity may be understood more clearly if the 
amplitude is continued analytically with respect to 
its masses.! For a complete characterization of 
Feynman amplitudes, it will be necessary to treat 
both external momenta and internal masses as 
(complex) variables. In this paper, we should like 
to see what happens to the Feynman amplitude when 
the domain of mass variable is extended along the 
real axis. In particular, we are interested in the 
singularities of amplitudes which are encountered 
at the origin of mass variables and at essentially 
arbitrary values of external momenta. To dis-
tinguish these singularities from the usual poles 
and branch points in the complex plane of energy 
or momentum transfer, let us call them mass 
singularities. We want to find out all possible mass 
singularities of Feynman amplitudes and determine 
in particular whether or not the amplitudes are 
divergent at the mass singularity. 

One of the familiar examples of mass singularity 
is the so-called infrared divergence that appears in 

* Supported in part by the joint program of the Office 
of Naval and the U.S. Atomic Energy Commission. 

! See for Instance R. E. Cutkosky, J. Math. Phys. 1 429 
(1960). ' 

connection with the vanishing of the photon mass A. 
The divergence of the total cross section for Coulomb 
scattering is also an example of this sort. There is 
another mass divergence that is even more common 
than the infrared divergence but is rarely referred 
to as such. It is the logarithmic divergence associ-
ated, for instance, with the vanishing of the electron 
mass m in quantum electrodynamics. Of course 
the observed electron mass is different from zero. 
Nevertheless it will be useful to consider the zero-
mass limit since the behavior of Feynman amplitude 
for small m or high energy is determined to a large 
extent by its mass singularities. 

These mass singularities have a remarkable 
property that divergences of partial transition proba-
bilities associated with vanishing masses often cancel 
each other when they are summed into a total transi-
tion probability. This behavior is, of course, well 
known for the infrared divergence.2 For other cases, 
however, the cancellation is more subtle and incom-
plete in general. Thus, it was not recognized clearly 
as a general property of Feynman amplitudes until 
a few years ago when a detailed calculation was 
carried out on radiative corrections to weak inter-
actions, such as the jJ.-e decay, {3 decay, and 7r-jJ. 

(or 7r-e) decay.3 In these calculations, it was found 
that the (unrenormalized) total decay probability 
docs not contain any divergent term like In A or 

2 We quote here only two papers that appeared most 
recently: D. R. Yennie, S. C. Frautschi, and H. Suura, 
Ann. Phys. 13, 379 (1961); K. E. Eriksson, Nuovo cimento 
19, 1010 (1961). We note however that the present work 
should be regarded as an extension of earlier works quoted in 
references 24 and 28. 

3 T. Kinoshita and A. Sirlin, Phys. Rev. 113, 1652 (1959)' 
S. Berman, ibid. 112, 267 (1958); T. Kinoshita, Phys. Rev', 
Letters 2, 477 (1959); S. Berman, ibid. 1,468 (1958)'. 
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Degenerate Systems and Mass Singularities*
T. D. Lzzt AND M. NAUzNBzRGt

Collmbie University, gem York, gem York
(Received 24 October 1963)

For a system with degenerate energies, the power series expansions of the 5-matrix elements may become
singular. An elementary theorem in quantum mechanics is proved which shows that under certain general
conditions such singularities do not appear in the power series expansions of the transition probabilities,
provided these are averaged over an appropriate ensemble of degenerate states. Application of this theorem
leads to the cancellations of mass singularities and infrared divergences in quantum electrodynamics. The
question of whether a charged particle can have zero mass is studied.

I. INTRODUCTION
' "N many cases it has been observed that the perturba-
~ - tion series expansion of the transition probabilities
for a degenerate system often exhibits infinities which,
however, can be cancelled by averaging over an appro-
priate ensemble of states. The well-known problem of
infrared divergence" in electromagnetic theory is one
such example. Another example is given by Kinoshita
and Sirlin' in their calculation of the lowest order
radiative correction to muon decay (or other decays
through weak interactions). If the mass of the electron
m, is set mathematically to be zero, the partial decay
rates of the muon contain (/n m, ) singularities, but the
total decay rate remains finite. By using the detailed
properties of Feynman graphs, Kinoshita has also
investigated the cancellations of such "mass singulari-
ties" for higher order diagrams.
As we shall show, the occurrence of such singularities

and their cancellations are consequences of an ele-
mentary theorem in quantum mechanics which can be
established without any explicit use of Feynman
graphs, nor even the explicit form of the Hamiltonian.
Let us consider an arbitrary Hamiltonian (&o+g&r)

which can be diagonalized by a unitary matrix U.

Ut(Hs+gHr) U= E,

state b is given by

Z ((U—)'*(U—)' X(U )'.(U )

For clarity, we assume the problem contains a certain
parameter p and the degeneracy occurs in the total
Hamiltonian only when ts —+0. For tt&0, the (s,j)th
matrix element of U~ can be expanded in the familiar
power series in g.

(U+)' =4+g(E—E*+' ) '(~—3')(& )'+o(g') (4)
where 8;; is the matrix element of a unit matrix, n is a
positive in6nitesimal quantity, and E, is the ith
diagonal element of the matrix K Furthermore, we
assume that each term in the power series expansion is
finite if there is no degeneracy. As the parameter
p —+ 0, the state of energy E; becomes degenerate with
other states which lie within a certain subset D(E~).
Therefore, if some of the states s, j, a (or b) in (3) are in
the same degenerate set, the power series expansion of
the corresponding transition probability would contain
infinites in the limit p=0. On the other hand, such
infinities can be completely cancelled if we consider the
power series expansion of the sum

U;,U; *—=T;,(E.),
&(&u)

where IID and 8 are both diagonal matrices and g is
the interaction coupling constant. If the problem con-
tains a continuum then U= U or U+ depending on
whether incoming or outgoing scattered waves are used.
The S matrix is given by

S=U tU+,

where t indicates Hermitian conjugation. The cor-
responding transition probability from a state u to a

*Thcs research was supported in part by the U. S. Atomic
Energy Commission.
f Alfred P. Sloan Fellow.
f John S. Guggenheim Fellow.

Hloch and H. Nordsieck, Phys. Rev. 52. 54 (1937).
~ For a recent article with an extensive bibliography see, for

example, D. R. Yennie, S. C. Frautschi, and H. Suura, Ann.
Phys. (N. Y.) 13, 379 (1961).' T. Kinoshita and A. Sirlin, Phys. Rev. 113, 1652 (1959).

4 T. Kinoshita, I. Math. Phys. 3, 650 (1962); Lectures iu
Theoretical Physics University of Colorado, (Interscience Pub-
lishers, Inc., New York, 1961).

where the summation extends over all states a in the
same degenerate subset D(E,) and U can be either
U+ or U . This can be easily verified by using (4) and
neglecting second or higher order terms in g. In an
equally elementary way, we shall establish in the fol-
lowing section a theorem which gives the general
condition under which such cancellations can occur
for every term in the power series expansion.
By applying this theorem to electrodynamics, we

can derive the elimination of the "mass singularities"
in the mathematical limit m.—+ 0 and the cancellations
of the well-known infrared divergences. This will be
done in Sec. III. The question of whether a spin--,'
zero-mass particle can have an electric charge is dis-
cussed in the same section. It is shown that by altering
the usual renormalization program and by limiting
measurements only to the ensemble averages over the
appropriate degenerate sets of both the initial and the

81549

BN theorem

KLN theorem

Intimately related to infrared (IR) divergences 
in scattering amplitudes (which need to be 

cancelled in physical observables!)
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Infrared Photons and Gravitons*
STEVEN %EINSERGt

Deparbnent of Physics, University of California, Berkeley, California
(Received 1 June 1965)

It is shown that the infrared divergences arising in the quantum theory of gravitation can be removed by
the fami1iar methods used in quantum electrodynamics. An additional divergence appears when infrared
photons or gravitons are emitted from noninfrared external lines of zero mass, but it is proved that for
infrared gravitons this divergence cancels in the sum of all such diagrams. (The cancellation does not occur
in massless electrodynamics. ) The formula derived for graviton bremsstrahlung is then used to estimate the
gravitational radiation emitted during thermal collisions in the sun, and we Gnd this to be a stronger source
of gravitational radiation (though still very weak) than classical sources such as planetary motion. %e
also verify the conjecture of Dalitz that divergences in the Coulomb-scattering Born series may be
summed to an innocuous phase factor, and we show how this result may be extended to processes in-
volving arbitrary numbers of relativistic or nonrelativistic particles with arbitrary spin.

I. INTRODUCTION
'HE chief purpose of this article is to show that
the infrared divergences in the quantum theory

of gravitation can be treated in the same manner as in
quantum electrodynamics. However, this treatment
apparently does not work in other non-Abelian gauge
theories, like that of Yang and Mills. The divergent
phases encountered in Coulomb scattering mill inci-
dentally be explained and generalized.
It would be dif5cult to pretend that the gravitational

infrared divergence problem is very urgent. My reasons
for now attacking this question are:

(i) Because I can. There still does not exist any
satisfactory quantum theory of gravitation, and in
lieu of such a theory it would seem well to gain what
experience we can by solving any problems that can
be solved with the limited formal apparatus already at
our disposal. The infrared divergences are an ideal case
of this sort, because we already know all about the
coupling of a very soft graviton to any other particle, '
and about the external graviton line wave functions'
and internal graviton line propagators. '
(2) Because something might go wrong, and that

would be interesting. Unfortunately, nothing does go

~ Research supported in part by the Air Force OfEce of Scientific
Research, Grant No. AF-AFOSR-232-65.
f Alfred P. Sloan Foundation Fellow.' S. steinberg, Phys. Rev. 1%,31049 (1965).
'See, e.g., S. %einberg, Phys. Rev. 13S, 8988 (1965). The

graviton propagator given in Eq. {2.20) of the present article is
not just the vacuum expectation value of a time-ordered product,
but includes the effects of instantaneous "Newton" interactions
that must be added to the interaction to maintain Lorentz in-
variance, and further, it does not include certain non-Lorentz-
invariant gradient terms which disappear because the gravitational
6eld is coupled to a conserved source. This disappearance has so
far only been proved for graviton lines linkinq particles on their
mass shells, and in fact this is the one impechment which keeps
us from claiming that we possess a completely satisfactory
quantum theory of gravitation. In using (2.20} we are to some
extent relying on an act of faith, but this faith seems particularly
weQ-founded in our present context because we use {2.20) here to&» particle lines with momenta only in6nitesimally far from their
mass shells. See also S. steinberg, in Brandeis 1064 Suesmer
Lectures on Theoretica/ Physics (Prentice-Hall, Inc., New York,
1965}.

B

wrong. In Ser. II we see that the dependence on the
infrared cutoQ's of real and virtual gravitons cancels
just as in electrodynamics.
However, there is a more subtle difhculty that might

have been expected. Ordinary quantum electrodynamics
would contain unremovable logarithmic divergences if
the electron mass were zero, due to diagrams in which
a soft photon is emitted from an external electron line
with momentum parallel to the electron's. ' There are
no charged massless particles in the real world, but
hard neutrinos, photons, and gravitons do carry a
gravitational "charge, " in that they can emit soft
gravitons. In Sec. III we show that diagrams in which
a soft graviton is emitted from some other hard mass-
less particle line do contain divergences like the inn,
terms in massless electrodynaInics, but that these
divergences cancel when we sum all such diagrams. '
However, this cancellation is de6nitely due to the
details of gravitational coupling, and does not save
theories (like Yang and Mills's) in which massless
particles can emit soft massless particles of spin one.
(3) Because in solving the infrared divergence prob-

lem we obtain a formula for the emission rate and
spectrum of soft gravitons in arbitrary collision proc-
esses, which may (if our experience in electrodynamics
is a guide) be numerically the most important gravi-
tational radiative correction. In Sec. IV this formula
is used to calculate the soft gravitational inner brems-
strahlung in an arbitrary nonrelativistic collision, and
the result is then used to estimate the thermal gravi-
tational radiation from the sun. The answer is several

'The extra divergences in massless quantum electrodynamics
have long been known to many theorists. Recently, it has been
noted by T. D. Lee and M. Nauenberg, Phys. Rev. 133, 31549
(1964), that these divergences cancel if transition rates are com-
&uted only between suitable ensembles of 6nal amE initial states.
See also T. Kinoshita, J. Math. Phys. 3, 650 (1962)j.However,
these ensembles include not only inde6nite numbers of very soft
quanta but also hard massless particles with indelnite energies,
and I remain unconvinced that transition rates between such
ensembles are the only ones that can be measured and need be
6nite.

4 I understand that this cancellation has also been found byR. P. Feynman.
516

Soft radiations carry universal information about the field 
theory (independent of particular scattering processes)
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Low-Energy Theorem for Graviton Scattering
DAVID J. GROSS

Lyman Laboratory, Harvard University, Cambridge, Massachusetts

RoMAN JACKIW
Lyman Laboratory, Harvard University, Cambridge, Massachusetts

and
CARÃ, Geneva, Switzerland
(Received 4 October 1967)

A low-energy theorem for the scattering of gravitons from spin-0 particles is derived. We use the
dispersion-theoretic method, recently utilized by Abarbanel and Goldberger to derive low-energy theorems
for the Compton scattering of photons, to write unsubtracted dispersion relations for physical helicity
amplitudes. The scattering amplitude at fixed angle is shown to be given by the Born approximation up to
fourth-order terms in the graviton energy.

I. INTRODUCTION

~

~ ~
CLASSIC result of quantum-Geld theory is the
derivation of low-energy theorems for Compton

scattering by Low' and by Gell-Mann and Goldberger. 2

To prove these theorems, tacit assumptions about the
commutation relations of Geld and current operators
were made, but the main ingredient in the proofs was
gauge invariance. It should therefore be possible to
derive similar theorems for graviton scattering where
one also has invariance under gauge transformations,
and where charge conservation is replaced by energy-
momentum conservation,
The amplitude for the process, matter state a+

graviton —matter state b is given by A (b~T„„~a)
e„„(k,X), where T„„ is the energy-momentum tensor of
the matter system and e„„(k,X) is the polarization tensor
of the graviton, whose momentum is k. Gravitons are
spin-2 massless particles, and this implies that e„„be
symmetric, traceless, and orthogonal to t|„. Further,
invariance under gauge transformations' 4 allows us to
write e„„=e„e„where e„k„=o, e„~&=0, and to require
that A be invariant under a change of gauge:

epey + epey+ X(kyey+. eplilv) ~

This means that k„(b~ T„„~a)=0.' One can then, as in
the derivation of Low, ' evaluate the matrix elements of
the 4-rnornentum density (b

~
Te„~ a). However, there is

one complication which prevents a straightforward
derivation, i.e., the nonvanishing of the commutators
)T„„,T„„j.In the case of Compton scattering, the
presence of a Schwinger term in [Js,Jrcj is inessential,
in that it merely serves to cancel the seagull term. '
However, here the cornmutators are nontrivial and will

~ Junior Fellow, Society of Fellows.' F. E. Low, Phys. Rev. 96, 1428 (1954).'M. Gell-Mann and M. L. Goldberger, Phys. Rev. 96, 1433
(1954).' S. Weinberg, Phys. Rev. 134, B882 (1964);135,B1049 (1965);
138, B988 (1965).

4 R. P. Feynrnan, Acta Phys. Polon. 24, 697 (1963).' S. G. Brown, Phys. Rev. 158, 1444 (1967}.
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serve to represent the contribution of the graviton-
exchange pole. Such a pole must be present because
gravitons interact with themselves as well as with
matter, i.e., they couple to the total energy-momentum
tensor, including the gravitational part.
Recently, an elegant derivation of the low-energy

theorem for Compton scattering has been given by
Abarbanel and Goldberger. ' They work with physical
helicity amplitudes, gauge invariance appearing only
insofar as the photon has two helicity states. Utilizing
the existence of kinematical zeros and assuming reason-
able high-energy behavior, they deGne new amplitudes
which satisfy unsubtracted dispersion relations. From
these one derives that, at Gxed scattering angle, the
Born term is exact to second order in the photon energy.
It is this method that we shall apply to graviton
scattering. Only one new feature is present —the pole
in the t channel due to graviton exchange, which necessi-
tates a somewhat more involved argument. The result
we obtain is that the low-energy scattering amplitude
as a function of the graviton energy, at Gxed scattering
angle, is determined by the mass of the scalar particle
up to fourth-order terms in the graviton energy, and to
this order the Born approximation is exact.
In Sec. II, we discuss the kinematics and the deriva-

tion of the Born term. The low-energy theorem is
derived in Sec. III, and the results are summarized and
discussed in Sec. IV.

II. KINEMATICS AND THE BORN TERM

The kinematics, crossing relations, and position of
kinematical singularities of the scattering amplitude for
gravitons are identical to those of photons, except, of
course, that the graviton helicity is ~2. Therefore most
of the kinematics is identical to that given in Ref. 6, and
we shall use their notation.
The elastic scattering of a graviton by a scalar particle

' H. D. I. Abarbanel and M. L. Goldberger, Phys. Rev. (to be
published).
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Low-Energy Theorems for Massless Bosons: Photons and Gravitons
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The low-energy theorems for the scattering of massless bosons are discussed. Photon and graviton scat-
tering is examined in detail, using techniques which make no high-energy assumptions. It is shown that
the low-energy form for the amplitude is given by the dispersion-theoretic Born approximation, and that
the energy dependence of the neglected terms is determined by the spin of the scattered boson. It is demon-
strated that Schwinger terms and sea-gull terms do not cancel in gravity theory.

I. INTRODUCTION
ECENTLV, some attention has reverted to the
exact low-energy theorems for the scattering of

massless bosons oR massive particles. These theorems
were 6rst proved by Low' and by Gell-Mann and
Goldberger' for the case of massless spin-1 particles
scattering oR spin- —', systems, viz. , Compton scattering.
Pais and Singh' have extended Low's considerations to
higher energies, and Bell4 has shown that Low's ap-
proach does not contain any high-energy assumptions.
Abarbanel and Goldberger' have given a derivation of
the Compton-scattering low-energy theorem from an
S-matrix point of view, using the techniques of dis-
persion theory. Gross and the present author' used the
method of Abarbanel and Goldberger to give a low-
energy theorem for massless spin-2 particles scattering
oR spin-0 systems, viz. , graviton scattering.
The purpose of the present paper is to reestablish the

graviton-scattering low-energy theorem by a method
which minimizes the assumptions of the derivation.
Specihcally, we show that this theorem follows, in a
model-independent fashion, from gauge invariance and
from assumptions about the analyticity structure of the
scattering amplitude at low energies. The present
argument diRers from the methods previously used
to establish the low-energy theorems, in that the dis-
persion-theoretic results' ' are established without use
of dispersion theory. In order to illustrate our argu-
ment in 3, simple application, we first use it in Sec. II
to study the case of photon scattering. Then, in Sec. III,
we given the low-energy theorem for gravitons. In
Sec. IU, we discuss the divergence conditions in gravity
theory, and show that Schwinger terms do not cancel
sea-gull terms in this theory.

*Junior Fellow, Society of Fellows.' F. E. Low, Phys. Rev. 96, 1428 (1954).
'M. Gell-Mann and M. L. Goldberger, Phys. Rev. 96, 1433

(1954).
'A. Pais, Nuovo Cimento (to be published); V. Singh, Phys.

Rev. Letters 19, 730 (1967).
4 J. S. Bell, Nuovo Cimento 52, 635 (1967).
'H. D. I. Abarbanel and M. L. Goldberger, Phys. Rev. 165,

1594 (&968).' D. Gross and R. Jackiw, Phys. Rev. 166, 1287 (1968).
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II. SPIN-I SCATTERING, PHOTON CASE

We examine brieRy some aspects of the usual deriva-
tions of the low-energy theorems. The dispersive ap-
proach' ' has the attractive feature of using only
physically measurable quantities, since one works with
helicity amplitudes. However, a "no-subtraction"
hypothesis seems to be required, since one writes un-
subtracted dispersion relations for the helicity arnpli-
tudes with their kinematical zeros divided out. This
state of aRairs should be circumvented, because one
believes that low-energy behavior is independent of
subtractions. Moreover, the dispersive approach, as
applied to graviton scattering, suffers from further
shortcomings. First, the partial-wave expansion used
in determining the kinematic zeros fails to exist be-
cause of the long-range force between matter and
gravity, which arises from graviton exchange, and which
leads to a pole in the forward direction. Second, the
dispersive approach does not yield the optima1 estimate
for the energy dependence of the neglected terms.
Speci6cally, the result obtained is that the neglected
terms are quadratic in the graviton energy; yet an in-
dependent argument can be given to show that they
are in fact quartic. ' A 6nal technical shortcoming of
the dispersive method is that a separate argument is
given for di6erent spins of the target particle. As the
result can be stated in a fashion which makes no refer-
ence to the target spin, a more unified treatment is
preferable.
The method of Low, ' in its original form, concentrates

on the evaluation of the time-time component of the
scattering-amplitude tensor. Evidently a specific theo-
retical framework, such as the Lehmann-Symanzik-
Zimmermann (LSZ) formalism, is required to give a
de6nite expression for this object. In addition to the
general assumptions inherent in this formalism, speci6c
assumptions about sea-gull terms and Schwinger terms
are made to arrive at the desired fact that the time-time
component is given by the time-ordered product of
charge densities. Although such assumptions can be
justi6ed in de6nite models of electrodynamics, the
situation in gravitation theory seems to be more obscure.
Bell's modi6cation4 focuses attention on the energy de-
1623
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Figure 1: Tree-level amplitude. Massive quarks are indicated by a thick line.

may be improved upon by more precise determinations of the parton distribution functions

in view of recent and upcoming data from HERA and LHC, the former requires the cal-

culation of perturbative corrections at next-to-next-to-leading order (NNLO) in QCD. By

approximating these corrections with the fixed-order expansion of the NLL prediction, one

finds [17] a projected NNLO scale uncertainty of 3%, which is below the parton distribution

uncertainty, and in line with the anticipated experimental error.

The calculation of the full NNLO corrections to the top quark pair production cross

section requires three types of ingredients: two-loop matrix elements for qq̄ → tt̄ and

gg → tt̄, one-loop matrix elements for hadronic production of tt̄+(1 parton) and tree-level

matrix elements for hadronic production of tt̄+(2 partons). The latter two ingredients

were computed previously in the context of the NLO corrections to tt̄+jet production [10].

They contribute to the tt̄ production cross section through configurations where up to two

final state partons can be unresolved (collinear or soft), and their implementation thus may

require further developments of subtraction techniques at NNLO.

Both two-loop matrix elements were computed analytically in the small-mass expansion

limit s, |t|, |u| ≫ m2 in [20,21], starting from the previously known massless two-loop matrix

elements for qq̄ → q′q̄′ [22] and gg → qq̄ [23]. An exact numerical representation of the

two-loop matrix element qq̄ → tt̄ has been obtained very recently [24]. It is the aim of the

present paper to compute all two-loop contributions to qq̄ → tt̄ arising from closed fermion

loops in a compact analytic form, which provide a first independent validation of the recent

results of [20,24], allow for a fast numerical evaluation, and permit the analytical study of

the behavior of the top quark production cross section at threshold.

This paper is structured as follows. In Section 2, we define our notation and kinematical

conventions. Sections 3 and 4 describe the details of the calculation of the two-loop integrals

and of the renormalization of the amplitudes. The results are presented and discussed

in Section 5. We enclose two appendices describing the special functions used in our

calculation and documenting the newly computed master integrals.

2. Notation and Conventions

We consider the scattering process

q(p1) + q(p2) −→ t(p3) + t(p4) , (2.1)

– 2 –

p1

p2 p4

p3

(a) (b) (c)

Figure 1: Tree-level amplitude. Massive quarks are indicated by a thick line.

heavy-quark loop were evaluated in [25], while the two-loop diagrams contributing to the

leading color coefficient were evaluated in [26]. In both cases, the results obtained retain the

full dependence on the top-quark mass and on the kinematic invariants; they agree with

the numerical results of [24]. Having analytical results available has several advantages

over a purely numerical representation. Besides their considerably shorter evaluation time,

the analytical results also allow for an expansion in different kinematical limits (threshold,

high energy).

In the present paper, an analytical expression for the two-loop diagrams contribut-

ing to the leading color coefficient in the gluon-fusion channel is derived. We carry out

the calculation by employing the technique based on the Laporta algorithm [27] and the

differential equation method [28], already used in [25, 26]. The calculation of the leading

color coefficient in the gluon fusion does not require the calculation of any new master

integrals beyond the ones obtained in the two previous works, such that we do not discuss

the calculational method in full detail. The interested reader can find in [25,26] a detailed

description of the techniques employed.

The paper is organized as follows: in Section 2, we introduce our notation and conven-

tions; in Section 3, we summarize the most relevant features of our calculational method.

Section 4 describes the UV renormalization of the bare amplitude. The resulting two-loop

amplitude contributions are described in Section 5, where we also provide numerical val-

ues in some benchmark points, and discuss the expansion in the threshold limit. Finally,

Section 6 contains our conclusions.

2. Notation and Conventions

We consider the scattering process

g(p1) + g(p2) −→ t(p3) + t̄(p4) , (2.1)

in Euclidean kinematics, where p2i = 0 for i = 1, 2 and p2j = −m2 for j = 3, 4. The

Mandelstam variables are defined as follows

s = − (p1 + p2)
2 , t = − (p1 − p3)

2 , u = − (p1 − p4)
2 . (2.2)

Conservation of momentum implies that s+ t+ u = 2m2.

The squared matrix element (summed over spin and color), calculated in d = 4 − 2ε

dimensions, can be expanded in powers of the strong coupling constant αS as follows:

∑

|M|2(s, t,m, ε) = 16π2α2
S

[

A0 +
(αs

π

)

A1 +
(αs

π

)2
A2 +O

(

α3
s

)

]

. (2.3)

– 2 –

A standard candle for the LHC and future colliders
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FIG. 9. (Color online) Normalized differential cross-sections for the (a) transverse momentum of the hadronically decaying
top-quark (ptT), and the (b) mass (mtt̄), (c) transverse momentum (ptt̄T) and the (d) absolute value of the rapidity (|ytt̄|) of the tt̄
system. The distributions are compared to NLO QCD predictions (based on MCFM [70] with the CT10 PDF). The bin ranges
along the horizontal axis (and not the position of the markers) can be associated with the normalized differential cross-section
values along the vertical axis. The error bars correspond to the PDF and fixed scale uncertainties in the theoretical prediction.
The gray bands indicate the total uncertainty on the data in each bin. The lower part of each figure shows the ratio of the
NLO QCD predictions to data. The cross-section in each bin is given as the integral of the differential cross-section over the
bin width, divided by the bin width. The calculation of the cross-sections in the last bins includes events falling outside of the
bin edges, and the normalization is done within the quoted bin width.

ATLAS Collaboration: 1407.0371
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k + l k + p

k

Figure 2.1. One-loop vertex corrections. The Feynman diagram is here shown in terms of fermions
and photons, however, the spin structure is neglected in this section.

strategy to obtain the expansion of a given Feynman integral in a given kinematic limit is the

following [16]:

i) Identify all regions of the integrand which lead to singularities in the limit under con-

sideration,

ii) Expand the integrand in each region and integrate each expansion over the full phase

space.

iii) Add the result of the integrations over the different regions to obtain the expansion of

the original full integral.

In order for the procedure to work, it is necessary to make sure that all of the expanded

integrals are properly regularized. Sometimes dimensional regularization alone is not sufficient

to regularize the integrals in every region, and one might need to employ additional analytic

regulators or to perform subtractions. Below, we will discuss the massive Sudakov form

factor, which is an example where this is necessary. It is also important to consider each

region only once to avoid double counting. As stated above, one needs to identify all regions

of integration which lead to singularities. Often, this is a simple task and the regions which

one encounters at one loop are the same which are relevant at higher order. However, there

are examples in which new regions must be added to the list when increasing the number of

loops present in the diagram [18]. We also stress that there is so far no general proof that

the above procedure always produces the correct result. Recent work towards such a proof

can be found in [19].

We want now to consider the simplest possible example relevant in the context of SCET,

namely a one-loop vertex diagram. We neglect complications related to the spin of the

particles, since the momentum regions that one finds in the calculation of the tensor integrals

are the same that one finds in the calculation of the scalar integral considered below. With

reference to Figure 2.1, the vertex correction requires the evaluation of the following Feynman

integral (all the internal propagators are considered massless):

I = iπ−d/2µ4−d
∫

ddk
1

(k2 + i0) [(k + l)2 + i0] [(k + p)2 + i0]
, (2.22)

– 9 –

Soft divergence

Collinear divergence

kµ ! 0

kµ k lµ kµ k pµor

Easy: only knows about one leg

Hard: probes all legs
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5

(10) implies that

Γ({p}, {m → 0}, µ)
∣

∣

2−parton
− Γ({p}, {0}, µ)

=
∑

I

[

CI γcusp(αs) ln
µ

mI
+ γI(αs) − γi(αs)

]

,
(22)

where Γ({p}, {0}, µ) is the anomalous-dimension matrix
in the massless case, whose conjectured all-order form
is given by the terms shown in the second line in (10)
[7, 12]. In the equation above, γi is the massless single-
parton anomalous dimension belonging to parton I. In
QCD only quarks can be massive, and this result can be
rewritten as a sum over heavy-quark anomalous dimen-
sions

ΓQ(mQ, µ) = CF γcusp(αs) ln
µ

mQ
+ γQ(αs) − γq(αs) ,

(23)
where the one- and two-loop coefficients of the constant
terms are

γQ
0 − γq

0 = CF ,

γQ
1 − γq

1 = C2
F

(

3

2
− 2π2 + 24ζ3

)

+ CF CA

(

373

54
+

5π2

2
− 30ζ3

)

− CF TF nf

(

10

27
+

2π2

3

)

.

(24)

The factor ZQ associated with (23), which is obtained
after substituting the anomalous dimension ΓQ into
the general relation (18), is compatible with the re-
sults of [22, 23]. Specifically, we find that the product
Z−2

Q Z{m|0} is finite, where the quantity Z{m|0} was de-
fined in [22] as the ratio of the massive to the massless
quark form factor in the limit where the quark mass tends
to zero, and without including heavy fermion loops. Note
that our derivation assumed that the massive partons are
heavy enough to be integrated out in the low-energy the-
ory using (21). If this is not the case, then the treatment
of the heavy-flavor contribution is more complicated [23].

IV. THREE-PARTON CORRELATIONS

It was observed in [27] that in the case with massive
partons the anomalous-dimension matrix (4) has a more
complicated structure than in the massless case, and that
at two-loop order non-abelian diagrams connecting three
partons give rise to non-vanishing contributions. The ad-
ditional terms were found to vanish if two of the three
partons are massless,2 or if any pair of the three kine-
matic invariants formed out of the parton momenta are

2 It is noted in [27] that this observation has been made indepen-
dently by Einan Gardi.

ni

nj

nk

vI

vJ

vK

...
...

ni

nj

nk

vI

vJ

vK

...
...

FIG. 1: Graphical representation of the two three-particle
terms in the anomalous-dimension matrix (27). Double lines
represent massive partons, single lines show massless ones.

equal. We will now show that these observations have a
simple explanation.

Adapting the diagrammatic analysis of our paper [12]
to the case with non-zero parton masses, we find that
additional structures arise from two-loop order on, the
reason being that the 4-velocities of the massive partons
are known to both the full and the effective theories. In
HQET the velocities appear as labels on the effective
heavy-quark fields [28, 42]. In the full theory, they are
simply given by vi = pi/mi. While for massless partons
the rewriting from hard to soft variables always intro-
duces collinear logarithms, this is not true for massive
partons, as shown in (6). At two-loop order, the non-
abelian exponentiation theorem then allows additional
structures involving three partons. They are absent in
the massless case, because it is impossible to form a to-
tally anti-symmetric function of three cusp angles βij ,
βjk, βki that is independent of collinear logarithms upon
the substitution shown in the first line in (6) [12]. This
would violate soft-collinear factorization. However, with
massive partons this argument no longer applies. In
fact, in principle the soft anomalous-dimension matrix
can contain the structures

Γs({β}, µ)
∣

∣

3−parton

= ifabc
∑

(I,J,K)

T
a
I T

b
J T

c
K F1(βIJ , βJK , βKI)

+ ifabc
∑

(I,J)

∑

k

T
a
I T

b
J T

c
k F2(βIJ , βJk, βIk)

+ ifabc
∑

I

∑

(j,k)

T
a
I T

b
j T

c
k F3(βIj , βIk, βjk) .

(25)

The function F1 must be totally anti-symmetric in its
arguments, while F2 (F3) must be anti-symmetric in the
last (first) two arguments. Soft-collinear factorization
enforces that after elimination of the cusp angles using
(6) the result (25) must be independent of collinear log-
arithms. This in turn requires that

F2(βIJ , βJk, βIk) = f2(βIJ , βJk − βIk) ,

F3(βIj , βIk, βjk) = 0 ,
(26)

Soft interactions are described by Wilson lines

1 Introduction

2 Formalism

We consider a generic scattering process involving energetic massless quarks, gluons and mas-
sive partons (such as top quarks or some new colored particles often present in models beyond
the SM). The interactions of soft gluons with these energetic partons can be described by
Wilson lines defined as

Si(x) = P exp

✓
igs

Z 0

�1
ds vi ·A

a(x+ svi)T
a
i

◆
, (1)

where P denotes path ordering, vi is a 4-vector pointing to the direction of the momentum of
the i-th parton, which satisfies v

2
i = 0 for massless partons and v

2
i > 0 for massive partons.

The boldface T
a
i is the color generator associated with the i-th parton in the color-space

formalism [?,?]. Note that the Wilson lines are invariant under the rescaling vi ! �vi for any
� > 0, since this change can be compensated by a change of the integration variable s ! s/�.
Putting together, the behavior of the n-parton scattering amplitude in the soft limit can be
obtained via studying the vacuum matrix elements of the Wilson loop operator

W (x, {v}) ⌘ h0|O†
s(x)Os(0)|0i ⌘

*
0

�����

nY

i=1

S
†
i (x)

nY

i=1

Si(0)

����� 0
+

. (2)

It is well-known that the vacuum matrix elements of the Wilson loop operator, when calculated
in perturbation theory, contain ultraviolet (UV) divergences which need to be renormalized
[?,?]. The renormalization properties of the Wilson loops can be used to study the infrared
singularities of scattering amplitudes, as was illustrated in [?,?,?,?,?].

The Wilson loop operator is also an essential ingredient in the factorization of scattering
cross sections in the soft limit. We consider scattering processes at hadron-hadron colliders
with no final state massless partons at the leading order. These include, for example, top quark
pair production (possibly associated with other colorless particles such as the Higgs boson
and electroweak gauge bosons), production of 4 top quarks, squark and gluino productions in
supersymmetric models, as well as productions of top partners in many new physics models. At
higher orders in the strong coupling constant, there will be additional emissions of gluons and
quarks in the final state. We are interested in the case where these additional emissions are all
soft, i.e., with energies much smaller than the typical momentum transfer of the hard-scattering
process. Note that the precise meaning of “soft” depends on the reference frame, which
leads to di↵erent forms of the factorization formula, such as the “pair-invariant-mass” (PIM)
kinematics and the “single-particle-inclusive” (1PI) kinematics in top quark pair production
discussed, e.g., in [?, ?]. While the formalism can be applied to any reference frame, in the
following, we will work in the center-of-mass frame of the two incoming partons, which are
not only good for demonstration purposes, and are also adopted in many existing calculations.
For example, this corresponds to the PIM kinematics in [?] for tt̄ production, in [?,?] for stop
pair production, and in [?,?] for tt̄H production.

1
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Purely massless case simple (due to the 
fact that 3-parton correlations vanish)
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Massive case (top quark) 
notably more complicated!
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Figure 1: Two-loop Feynman graphs (top row) and one-loop counterterm diagrams

(bottom row) contributing to the two-loop renormalization factor Z
(2)
s .

where here and below the superscripts in parenthesis refer in an obvious way to the order in
the expansion in powers of αs/4π. The tree-level matrix element is ⟨⟨Os⟩⟩(0) = 1. The equation

above thus expresses the two-loop renormalization factor Z
(2)
s in terms of two contributions,

Z(2)
s = −

[

⟨⟨Obare
s ⟩⟩(2) + ⟨⟨Obare

s ⟩⟩(1)Z(1)
s

]

UV poles
. (21)

The function F1 is derived from the pole terms in Z
(2)
s with totally anti-symmetric color

structure, so we can limit the discussion to Feynman graphs involving the color generators of
all three partons. Diagrammatically, the first contribution on the right-hand side contains the
UV poles of the planar and non-planar two-loop graphs shown in the first row in Figure 1. The
second contribution corresponds to the UV poles of the one-loop diagrams with a counterterm
insertion, as illustrated in the second row of the figure. In the calculation of the UV poles we
regularize IR divergences by assigning residual external momenta li to the Wilson lines, with
ωi ≡ −vi · li > 0. While the individual contributions depend on the ωi regulators, their sum
does not. Also, for concreteness we perform the calculation with three outgoing Wilson lines
in the fundamental representation. Afterwards we replace the color matrices arising from the
Feynman rules by ta → T a to convert to the color-space formalism. For an incoming line the
color matrix would get transposed, and in addition one would pick up a minus sign since the
velocity in the corresponding heavy-quark propagator is reversed. As a result, in this case the
correspondence would be (−ta)T → T a, in accordance with the rules given in [29, 30].

We find that the 1/ϵ pole terms in the sum of all diagrams can be written as

⟨⟨Obare
s ⟩⟩(2) + ⟨⟨Obare

s ⟩⟩(1)Z(1)
s = −

2

ϵ2

∑

(I,J,K)

(TI · TJ ) (TI · TK) (βIJ cothβIJ) (βIK coth βIK)

−
3

2ϵ
ifabc T a

1 T b
2 T c

3 F (2)
1 (β12, β23, β31) + . . . , (22)
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amplitudes can be removed by a multiplicative renormal-
ization factor Z−1(ϵ, {p}, {m}, µ), which acts as a matrix
on the color indices of the partons. More precisely, the
product Z−1|Mn⟩ is finite for ϵ → 0 after the coupling
constant αQCD

s used in the calculation of the scattering
amplitude is properly matched onto the coupling αs in
the effective theory, in which the heavy partons are inte-
grated out [17]. The relation

Z−1 d

d lnµ
Z(ϵ, {p}, {m}, µ) = −Γ({p}, {m}, µ) (1)

links the renormalization factor to a universal anomalous-
dimension matrix Γ, which governs the scale dependence
of effective-theory operators built out of collinear SCET
fields for the massless partons and soft heavy-quark ef-
fective theory fields for the massive ones. For the case
of massless partons, the anomalous dimension has been
calculated at two-loop order in [8, 9] and was found to
contain only two-parton color-dipole correlations. It has
recently been conjectured that this result may hold to
all orders of perturbation theory [10–12]. On the other
hand, when massive partons are involved in the scattering
process, then starting at two-loop order correlations in-
volving more than two partons appear [16]. At two-loop
order, the general structure of the anomalous-dimension
matrix is [17]

Γ =
∑

(i,j)

Ti · Tj

2
γcusp(αs) ln

µ2

−sij
+

∑

i

γi(αs)

−
∑

(I,J)

TI · TJ

2
γcusp(βIJ , αs) +

∑

I

γI(αs)

+
∑

I,j

TI · Tj γcusp(αs) ln
mIµ

−sIj
(2)

+
∑

(I,J,K)

ifabc T a
I T b

J T c
K F1(βIJ , βJK , βKI)

+
∑

(I,J)

∑

k

ifabc T a
I T b

J T c
k f2

(

βIJ , ln
−σJk vJ · pk

−σIk vI · pk

)

.

The one- and two-parton terms depicted in the first three
lines start at one-loop order, while the three-parton terms
in the last two lines appear at O(α2

s). The notation
(i, j, . . . ) etc. means that the corresponding sum extends
over tuples of distinct parton indices. The cusp angles
βIJ are defined via

coshβIJ =
−sIJ

2mImJ
= wIJ . (3)

They are associated with the hyperbolic angles formed
by the time-like Wilson lines of two heavy partons. The
physically allowed values are wIJ ≥ 1 (one parton in-
coming and one outgoing), corresponding to βIJ ≥ 0, or
wIJ ≤ −1 (both partons incoming or outgoing), corre-
sponding to βIJ = iπ − b with real b ≥ 0. These possi-
bilities correspond to space-like and time-like kinematics,
respectively. Since in a three-parton configuration there

v1

v2 v3

FIG. 1: Two-loop Feynman graphs (top row) and one-loop
counterterm diagrams (bottom row) contributing to the two-
loop coefficient of the renormalization factor Zs.

is always at least one pair of partons either incoming or
outgoing, at least one of the wIJ or vI ·pk variables must
be time-like, and hence the functions F1 and f2 have
non-zero imaginary parts.

The anomalous-dimension coefficients γcusp(αs) and
γi(αs) (for i = q, g) in (2) have been determined to three-
loop order in [12] by considering the case of the massless
quark and gluon form factors. Similarly, the coefficients
γI(αs) for massive quarks and color-octet partons such as
gluinos have been extracted at two-loop order in [17] by
analyzing the anomalous dimension of heavy-light cur-
rents in SCET. In addition, the velocity-dependent func-
tion γcusp(β, αs) has been derived from the known two-
loop anomalous dimension of a current composed of two
heavy quarks moving at different velocity [19, 20].

Here we complete the calculation of the two-loop
anomalous-dimension matrix by deriving closed analytic
expressions for the universal functions F1 and f2, which
parameterize the three-parton correlations in (2).

III. CALCULATION OF F1 AND f2

To calculate the function F1 we compute the two-
loop vacuum matrix element of the operator Os =
Sv1

Sv2
Sv3

, which consists of three soft Wilson lines
along the directions of the velocities of three massive par-
tons, without imposing color conservation. The anoma-
lous dimension of this operator contains a three-parton
term given by 6ifabc T a

1 T b
2 T c

3 F1(β12, β23, β31). The
function F1 follows from the coefficient of the 1/ϵ pole
in the bare matrix element of Os. We will then obtain
f2 from a limiting procedure.

The operator Os is renormalized multiplicatively, so
that OsZs is UV finite, where Zs is linked to the anoma-
lous dimension in the same way as shown in (1). In order
to calculate the two-loop Zs factor, we have evaluated
the two-loop non-planar and planar graphs shown in the
first row of Figure 1, as well as the one-loop countert-
erm diagrams depicted in the second row. Contrary to
a statement made in [16], we find that F1 receives con-
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tributions from all five diagrams, not just from the non-
planar graph. The most challenging technical aspect of
the analysis is the calculation of the diagram involving
the triple-gluon vertex. We have computed this diagram
using a Mellin-Barnes representation and checked the an-
swer numerically using sector decomposition [21]. We
have also checked that for Euclidean velocities our re-
sult for the triple-gluon diagram agrees numerically with
a position-space based integral representation derived in
[16]. Combining all contributions, we find

F1(β12, β23, β31) =
α2

s

12π2

∑

i,j,k

ϵijk g(βij) r(βki) , (4)

where we have introduced the functions

r(β) = β coth β ,

g(β) = coth β

[

β2 + 2β ln(1 − e−2β) − Li2(e
−2β) +

π2

6

]

− β2 −
π2

6
. (5)

The function f2 can be obtained from the above result
by writing w23 = −σ23 v2 · p3/m3, w31 = −σ31 v1 · p3/m3

and taking the limit m3 → 0 at fixed vI ·p3. In that way,
we obtain

f2

(

β12, ln
−σ23 v2 · p3

−σ13 v1 · p3

)

= −
α2

s

4π2
g(β12) ln

−σ23 v2 · p3

−σ13 v1 · p3
.

(6)
Whether a factorization of the three-parton terms into
two functions depending on only a single cusp angle per-
sists at higher orders in αs is an open question.

It is interesting to expand the two functions r(β) and
g(β) about the threshold point β = iπ − b with b → 0+.
We find

r(β) = −
iπ

b
+ 1 + O(b) ,

g(β) = −
π2 + 2iπ ln(2b)

b
+

(

2 +
5π2

6

)

+ O(b) .
(7)

Based on the symmetry properties of F1 and f2, it was
concluded in [16, 17] that these functions vanish when-
ever two of the velocities of the massive partons coin-
cide. Indeed, this seems to be an obvious consequence
of the fact that F1 is totally anti-symmetric in its ar-
guments, while f2 is odd in its second argument. This
reasoning implicitly assumes that the limit of equal ve-
locities is non-singular, but is invalidated by the presence
of Coulomb singularities in r(β) and g(β) near threshold.
Consider the limit where two massive partons 1 and 2 are
produced near threshold, with a small relative 3-velocity
v⃗12 ≡ v⃗1 − v⃗2 defined in their rest frame. It is then
straightforward to derive that

lim
v2→v1

f2 =
α2

s

4π2

[

π2 + 2iπ ln(2|v⃗12|)
]

cos θ , (8)

where θ is the scattering angle formed by the 3-momenta
of particles 1 and 3. A similar formula holds for F1. This
result is anti-symmetric in the parton indices 1 and 2 as
required, but it does not vanish at threshold.

Another interesting limit is that of large recoil, where
all the scalar products wIJ become large in magnitude.
In that case, both F1 and f2 are suppressed like O(1/w2),
because for large β

g(β) =
1

2w2

[

ln2(2w) − ln(2w) +
π2

6
−

1

2

]

+ O
( 1

w3

)

.

(9)
Note that the non-planar contribution from the first
graph in Figure 1, which was studied in the Euclidean
region in [16], contains the leading-power term

F non−planar
1 = −

α2
s

12π2
ln

w12

w23
ln

w23

w31
ln

w31

w12
+ O

( 1

w2

)

(10)
and is unsuppressed in this limit. However, this contri-
bution cancels against a leading-power term in the planar
and counterterm contributions.

Using that wIJ = −sIJ/(2mImJ), we see that the
large-recoil limit corresponds to mImJ → 0 at fixed
sIJ . It follows that the three-parton correlation terms
described by F1 and f2 vanish like (mImJ/sIJ)2 in the
small-mass limit. This observation is in accordance with
a factorization theorem proposed in [14, 15], which states
that massive amplitudes in the small-mass limit can be
obtained from massless ones by a simple rescaling pre-
scription for the massive external legs.

IV. ANOMALOUS DIMENSION FOR qq̄ → tt̄
NEAR THRESHOLD

As a sample application, we apply our formalism to the
calculation of the two-loop anomalous-dimension matri-
ces for top-quark pair production near threshold in the
qq̄ → tt̄ channel. This matrix (along with the correspond-
ing one in the gg → tt̄ channel) forms the basis for soft-
gluon resummation at the next-to-next-to-leading loga-
rithmic (NNLL) order. We adopt the s-channel singlet-
octet basis, in which the tt̄ pair is either in a color-singlet
or color-octet state. For the quark-antiquark annihilation
process ql(p1) + q̄k(p2) → ti(p3) + t̄j(p4), we thus choose
the independent color structures as c1 = δij δkl and c2 =
(ta)ij (ta)kl. In the threshold limit s = 2p1 · p2 → 4m2

t

it is convenient to define the quantity βt =
√

1 − 4m2
t /s,

which is related to the relative 3-velocity v⃗tt̄ between the
top-quark pair in the center-of-mass frame by |v⃗tt̄| = 2βt.
We find that in the limit βt → 0 the two-loop anomalous-
dimension matrices reduces to

Γqq̄ =

[

CF γcusp(αs)

(

ln
s

µ2
−

iπ

2βt
− iπ + 1

)

+ CF γ(2)
cusp(βt) + 2γq(αs) + 2γQ(αs)

] (

1 0
0 1

)
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locities is non-singular, but is invalidated by the presence
of Coulomb singularities in r(β) and g(β) near threshold.
Consider the limit where two massive partons 1 and 2 are
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of particles 1 and 3. A similar formula holds for F1. This
result is anti-symmetric in the parton indices 1 and 2 as
required, but it does not vanish at threshold.

Another interesting limit is that of large recoil, where
all the scalar products wIJ become large in magnitude.
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and is unsuppressed in this limit. However, this contri-
bution cancels against a leading-power term in the planar
and counterterm contributions.

Using that wIJ = −sIJ/(2mImJ), we see that the
large-recoil limit corresponds to mImJ → 0 at fixed
sIJ . It follows that the three-parton correlation terms
described by F1 and f2 vanish like (mImJ/sIJ)2 in the
small-mass limit. This observation is in accordance with
a factorization theorem proposed in [14, 15], which states
that massive amplitudes in the small-mass limit can be
obtained from massless ones by a simple rescaling pre-
scription for the massive external legs.

IV. ANOMALOUS DIMENSION FOR qq̄ → tt̄
NEAR THRESHOLD

As a sample application, we apply our formalism to the
calculation of the two-loop anomalous-dimension matri-
ces for top-quark pair production near threshold in the
qq̄ → tt̄ channel. This matrix (along with the correspond-
ing one in the gg → tt̄ channel) forms the basis for soft-
gluon resummation at the next-to-next-to-leading loga-
rithmic (NNLL) order. We adopt the s-channel singlet-
octet basis, in which the tt̄ pair is either in a color-singlet
or color-octet state. For the quark-antiquark annihilation
process ql(p1) + q̄k(p2) → ti(p3) + t̄j(p4), we thus choose
the independent color structures as c1 = δij δkl and c2 =
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it is convenient to define the quantity βt =
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t /s,

which is related to the relative 3-velocity v⃗tt̄ between the
top-quark pair in the center-of-mass frame by |v⃗tt̄| = 2βt.
We find that in the limit βt → 0 the two-loop anomalous-
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−
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Compact analytic expression 
(important for precise cancellation)

Generalizing Catani's formula to massive cases
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calculation, using some of the master integrals computed in [43]. After enforcing momentum
conservation, the color coefficients are functions of the invariants s = s12, t1 = s13 = s24, mt,
and µ. We have verified that our results for the IR poles agree with the numerical ones from
[42], with the analytic results for some of the color coefficients given in [44, 45], and with
the results in the small-mass limit from [23]. In our case, all pole coefficients are available
in analytic form. Since the Born-level qq̄ → tt̄ amplitude is proportional to the color-octet
structure in (51) and the three-parton correlations proportional to f2 enter the anomalous-
dimension matrix (53) only in the off-diagonal terms, the contributions from f2 in the squared
matrix element first appears at three-loop order. This was noted independently in [41].

For the gg → tt̄ channel, we follow [24] and decompose the interference term between the
Born and two-loop amplitudes into color structures as

2 Re ⟨M(0)|M(2)⟩gg = (N2 − 1)

(

N3Ag + N Bg +
1

N
Cg +

1

N3
Dg

+ N2nl E
g
l + N2nh Eg

h + nl F
g
l + nh F g

h +
nl

N2
Gg

l +
nh

N2
Gg

h

+ Nn2
l H

g
l + Nnlnh Hg

lh + Nn2
hH

g
h +

n2
l

N
Ig
l +

nlnh

N
Ig
lh +

n2
h

N
Ig
h

)

.

(65)

The IR poles in the color coefficients are obtained as for the qq̄ channel, except in this case we
use the anomalous-dimension matrix (55). Results in the literature are available only in the
small-mass limit [24], and we have checked the agreement of our exact results with this limiting
case. Since the exact results are new, we list in Table 1 the numerical values for the poles of
the color coefficients at the point t1 = −0.45s, s = 5m2

t , and µ = mt. Again in this case the
results do not depend on f2, the reason being that the corresponding contribution is multiplied
by a color structure which is anti-symmetric under the exchange of the two initial-state gluons,
while the gg → tt̄ amplitude is symmetric under this exchange.

5 Elastic quark-quark scattering in the forward limit

Another interesting application of our general formalism is the case of elastic quark-quark scat-
tering at high energy and fixed momentum transfer (s, m2 ≫ |t|). The anomalous-dimension
matrix for this case was analyzed at two-loop order in [28] by studying the cross singularities of
self-intersecting Wilson loops. We will now show that the results derived in that paper can be
obtained by taking a certain limit of our general results, and that this provides a cross-check
on our calculation of the three-parton correlations governed by the function F1.

Consider the elastic process q1j(p1) + q2l(p2) → q1i(p3) + q2k(p4) for massive quarks (m1 =
m2 ≡ m) in the forward limit

s, m2 ≫ −t ≫ Λ2
QCD . (66)

Here i, j, k, l are color indices, and 1,2 label the quark flavors. The relevant cusp angles can

20

ϵ−4 ϵ−3 ϵ−2 ϵ−1

Ag 10.749 18.694 −156.82 262.15

Bg −21.286 −55.990 −235.04 1459.8

Cg −6.1991 −68.703 −268.11

Dg 94.087 −130.96

Eg
l −12.541 18.207 27.957

Eg
h 0.012908 11.793

F g
l 24.834 −26.609 −50.754

F g
h 0.0 −23.329

Gg
l 3.0995 67.043

Gg
h 0.0

Hg
l 2.3888 −5.4520

Hg
lh −0.0043025

Hg
h

Ig
l −4.7302 10.810

Ig
lh 0.0

Ig
h

Table 1: Numerical results for the IR poles in the color coefficients (65) for top-
quark pair production in the gg → tt̄ channel, evaluated at the point t1 = −0.45s,
s = 5m2

t , and µ = mt. The blank entries are not present in general, while the entries
with value 0.0 vanish only for the particular choice µ = mt.

be expressed in terms of the invariants s = (p1 + p2)2 and t = (p1 − p3)2 as

β12 = β34 = arccosh
(

−
s − 2m2

2m2

)

≡ iπ − γ ,

β13 = β24 = arccosh
(2m2 − t

2m2

)

= O
(

√
−t

m

)

,

β14 = β23 = arccosh
(s + t − 2m2

2m2

)

= γ + O
( t

m2

)

,

(67)

where cosh γ = v1 · v2 = p1 · p2/m2. In the limit t/m2 → 0 these angles are described in terms
of a single variable γ > 0. Starting from the general expression (5), we then obtain for the
cross anomalous-dimension matrix

Γcross(γ, αs) ≡ Γqq(s, t, m
2, µ)

∣

∣

−t≪s,m2

= −2
[

T1 · T2 γcusp(iπ − γ, αs) + T1 · T3 γcusp(0, αs) + T1 · T4 γcusp(γ, αs)
]

+ 4γQ(αs) + 24ifabc T a
1 T b

2 T c
3 F1(iπ − γ, γ, 0) + O(α3

s) ,

(68)
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Figure 1: Two-loop Feynman graphs (top row) and one-loop counterterm diagrams

(bottom row) contributing to the two-loop renormalization factor Z
(2)
s .

where here and below the superscripts in parenthesis refer in an obvious way to the order in
the expansion in powers of αs/4π. The tree-level matrix element is ⟨⟨Os⟩⟩(0) = 1. The equation

above thus expresses the two-loop renormalization factor Z
(2)
s in terms of two contributions,

Z(2)
s = −

[

⟨⟨Obare
s ⟩⟩(2) + ⟨⟨Obare

s ⟩⟩(1)Z(1)
s

]

UV poles
. (21)

The function F1 is derived from the pole terms in Z
(2)
s with totally anti-symmetric color

structure, so we can limit the discussion to Feynman graphs involving the color generators of
all three partons. Diagrammatically, the first contribution on the right-hand side contains the
UV poles of the planar and non-planar two-loop graphs shown in the first row in Figure 1. The
second contribution corresponds to the UV poles of the one-loop diagrams with a counterterm
insertion, as illustrated in the second row of the figure. In the calculation of the UV poles we
regularize IR divergences by assigning residual external momenta li to the Wilson lines, with
ωi ≡ −vi · li > 0. While the individual contributions depend on the ωi regulators, their sum
does not. Also, for concreteness we perform the calculation with three outgoing Wilson lines
in the fundamental representation. Afterwards we replace the color matrices arising from the
Feynman rules by ta → T a to convert to the color-space formalism. For an incoming line the
color matrix would get transposed, and in addition one would pick up a minus sign since the
velocity in the corresponding heavy-quark propagator is reversed. As a result, in this case the
correspondence would be (−ta)T → T a, in accordance with the rules given in [29, 30].

We find that the 1/ϵ pole terms in the sum of all diagrams can be written as

⟨⟨Obare
s ⟩⟩(2) + ⟨⟨Obare

s ⟩⟩(1)Z(1)
s = −

2

ϵ2

∑

(I,J,K)

(TI · TJ ) (TI · TK) (βIJ cothβIJ) (βIK coth βIK)

−
3

2ϵ
ifabc T a

1 T b
2 T c

3 F (2)
1 (β12, β23, β31) + . . . , (22)
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Soft gluons in amplitudes

IR divergences
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Figure 4: Example of a pair of mixed virtual-real one-particle cuts which adds up to a scaleless
integral.
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Figure 5: Examples of non-abelian three-Wilson-line integrals required in the calculation of
the NNLO soft matrix.

Each of the four diagrams in the last two rows of Figure 3, on the other hand, are complicated
functions of two distinct scalar products. However, the sums of the pairs (c)+(d) and (e)+(f)
are proportional to symmetric color structure w(8):
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Furthermore, after partial fractioning, the sum of the two integrals yields the factorized integral
(36). Therefore, these abelian diagrams do not introduce any new calculational complications.
In Appendix B we explain how the non-abelian exponentiation theorem implies the simple
factorized form of the integral multiplying the symmetric color structure (35). The color
matrices for the qq̄ channel are
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Structure of soft real emissions (in 
particular, 3-parton correlations)

Only calculated in the massless limit
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Rule of thumb: finite piece significantly 
more difficult than divergent piece
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Figure 3: The abelian three-Wilson-line integrals required in the calculation of the NNLO soft
matrix.

12

Requires more 
systematic methods!

Integration-by-parts identities

Differential equations

Wang, Xu, LLY, Zhu: 1804.xxxxx

We should have heard enough of these from Dr. Tancredi 



Integration-by-parts
 22

1. Introduction

In modern elementary particle physics one often needs to evaluate thou-
sands and millions of Feynman integrals. An already classical approach is to
apply the so-called integration by parts (IBP) relations [1] (see Chapter 6 of
[2] for a recent review) and reduce all integrals to a smaller set, the master
integrals1.

There are multiple programs performing the task of Feynman integral
reduction, one of those presented by the author of this paper a few years
ago. The initial version of FIRE [4, 5] was written in Wolfram Mathematica.
For other public products see [6, 7, 8, 9, 10, 11]

The goal of this paper is to present the C++ version of FIRE — a powerful
program for Feynman integral reduction. Recently FIRE was able to perform
a reduction with about 3 billion integrals involved. It was successfully applied
in [12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26] as well as in several
pending projects.

2. Basic definitions

This section almost entirely copies the similar section from the previous
paper on FIRE4. However, the following definitions should be given to make
the paper self-consistent.

Let us consider a family of Feynman integrals as functions of n integer
variables (indices),

F (a1, . . . , an) =
∫

· · ·
∫ ddk1 . . .d

dkh
Ea1

1 . . . Ean
n

, (1)

where the denominator factors Ei are linear functions with respect to scalar
products of loop momenta ki and external momenta pi, and dimensional
regularization with d = 4− 2ϵ is applied.

The integration by parts relations [1]

∫

. . .
∫

ddk1d
dk2 . . .

∂

∂ki

(

pj
1

Ea1
1 . . . Ean

n

)

= 0 (2)

1It has been shown in [3] that the number of master integrals is always finite, so
theoretically, this approach should be successful.

4Leads to relations among different Feynman integrals

Significantly reduces number of integrals to compute 
(“master integrals”)

Chetyrkin, Tkachov: NPB 192, 159 (1981)



Differential equations
 23

The “master integrals” form a basis 
in the space of all integrals

They satisfy a system of linear 
differential equations

Kotikov: PLB 254, 158 (1991); 
Remiddi: hep-th/9711188

New development: “canonical form” greatly 
simplifying the solution (when applicable)

Henn: 1304.1806
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such a general solution is not known, so that for each case under consideration one usually
constructs a sufficient number of IBP relations. Although straightforward in principle, this
is rather tedious to do by hand, so that one usually employs some appropriate computer
algebra program. Various implementations exist, see [19–22].

3.2 Differential equations

One result of the previous section was that for a given family of Feynman integrals there
exists a finite-dimensional basis ~f . In practice, the latter is found by writing down a
sufficient number of IBP relations. Given such a basis, any integral in the family can be
written in terms of a linear combination of basis integrals, with rational prefactors in the
kinematic variables and D. Therefore it is sufficient to compute the basis integrals. We will
use differential equations in the kinematic variables to that end.

In the example of the one-loop box integral family, the kinematical variables are s and
t. We implement differential operators @s and @t acting on the integral representation (3.1),
which depends on the vectors yi (or, equivalently, on the pi), via the chain rule. When
doing so one has to make sure that the differential operators commute with the on-shell
and momentum conservation constraints.

For an analogy, think of a two-dimensional space with constraint x2+y
2 = 1, i.e. points

lying on the unit circle. In that case, only the operator y@x � x@y is allowed. Of course,
one could also introduce radial coordinates x = r cos ✓, y = r sin ✓, so that the constraint
becomes r

2 = 1, which means that one can freely vary ✓. For on-shell massless scattering
amplitudes, likewise, one can solve the momentum conservation and on-shell constraints
using momentum twistor variables [23]. Here we will use the momentum-space variables
and construct differential operators commuting with the constraints.

Example: differential operators

Let us use the momentum-space notation for the family of one-loop box integrals, and
eliminate p4 using momentum conservation,

Ga1,a2,a3,a4 =

Z
d
D
k

i⇡D/2

1

[�k2]a1 [�(k + p1)2]a2 [�(k + p1 + p2)2]a3 [�(k + p1 + p2 + p3)2]a4
,

(3.6)

Let us construct a differential operator for @s that can act on the r.h.s. of this equation.
This is easily achieved by making the ansatz

@s = (�1p1 + �2p2 + �3p3) · @p1 . (3.7)

Imposing that this operator should commute with the on-shell conditions p
2
1 = 0 and

(p1 + p2 + p3)2 = 0, and imposing the normalization condition @s(p1 + p2)2 = 1 fixes the
parameters in eq. (3.7) to be

�1 =
2s+ t

2s(s+ t)
, �2 =

1

2s
, �3 =

1

2(s+ t)
. (3.8)

When acting with such differential operators on the Feynman integral representation,
we have to perform algebraic manipulations similar to those when deriving the IBP relations.

– 9 –

Henn: 1412.2296

general conclusions.
These lecture notes are organized as follows. In section 2, we recall basic definitions of

Feynman integrals and mention important properties that follow from them. We continue in
section 3 to introduce notions that allow to understand algebraic relations between different
Feynman integrals and to derive differential equations for them. In section 4 we show how
general properties of Feynman integrals allow to transform the differential equations into
a canonical form. In section 5 we discuss solutions in the case where the answer is given
by iterated integrals. In section 6, we explain the analysis of generalized cuts / leading
singularities of Feynman integrals, and d-log representations to choose an optimal basis.
As an example, we fully explain the basis choice made in ref. [9] using these concepts. The
final section 7, which can be read independently, combines the ideas of the previous sections
for a sample application, namely the computation of single-scale integrals via differential
equations.

2 Definition and basic properties of Feynman integrals

Let us begin by recalling the main definitions and introduce the notation that we will use
in the following. Our aim will be to be brief, as more details can be found in standard
textbooks, e.g. [15, 16]. The main conclusions of this section are summarized at the end
for the benefit of the reader already familiar with this material.

2.1 Definitions and Feynman parametrization

We will discuss Feynman integrals in D-dimensional quantum field theory. In the momen-
tum space language, we have integrals over D-dimensional space d

D
k, with the integrand

consisting of propagator factors like 1/[�(k+ p)2 +m
2
� i0]. The Feynman i0 prescription

allows one to perform a Wick rotation from Minkowski space with metric + � ...� to Eu-
clidean space, see e.g. [15, 16]. In most of the following we drop the i0 from our formulas
for simplicity of notation.

As an example, let us start with a momentum-space box integral at one loop. This
example will recur frequently in these notes.

Ibox =

Z
d
D
k

i⇡D/2

1

k2(k + p1)2(k + p1 + p2)2(k � p4)2
, (2.1)

Here p1, p2, p3, p4 are D-dimensional momenta satisfying momentum conservation
P4

i=1 pi = 0

and the on-shell conditions p
2
i = 0.

Poincaré invariance implies that the integral depends on the Mandelstam invariants
s = (p1+p2)2 and t = (p2+p3)2 only. Moreover, the integral is covariant under dilatations,
so that after normalizing it with some appropriate power of s or t it becomes a function of
the dimensionless variable x = t/s only.

Quelle absurde nécessité de faire un article ou un livre ! Où trois lignes suffisent, je n’en mettrai pas une

de plus. (A. Gide, Notes de journal, 1932)
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It is clear that one obtains integrals within the same family of integrals. The fact that there
is a basis means that we can rewrite the result of the differentiation as a linear combination
of basis integrals. In other words, we have

@s
~f(s, t; ✏) = As(s, t, ✏)~f(s, t; ✏) , (3.9)

@t
~f(s, t; ✏) = At(s, t, ✏)~f(s, t; ✏) . (3.10)

where As and At are N by N matrices, with N being the number of basis integrals ~f . By
construction, they contain only rational functions of s, t, ✏ as entries.

In other words, Feynman integrals satisfy first-order systems of (partial) differential
equations. The matrices Ai can be computed algorithmically, as outlined in this section.

Example: Differential equations for the family of one-loop 2 ! 2 integrals.

We already saw that in this example there are three basis integrals. Integral reduction
suggests the following basis choice,

f1 =G0,1,0,1 ,

f2 =G1,0,1,0 , (3.11)
f3 =G1,1,1,1 .

With this choice, we find the following matrices in eq. (3.9),

As =

0

B@
0 0 0

0 �
✏
s 0

�2(1�2✏)
st(s+t)

2(1�2✏)
s2(s+t) �

s+t+✏t
s(s+t)

1

CA , At =

0

B@
�

✏
t 0 0

0 0 0
�2(1�2✏)
t2(s+t)

�2(1�2✏)
st(s+t) �

s+✏s+t
t(s+t)

1

CA . (3.12)

We can make the following observations.

• Computing sAs+tAt = diag(�✏,�✏,�2�✏), the scaling dimensions of the integrals are
correctly reproduced. We can set them to zero by choosing appropriate dimensional
normalization factors, so that we only have one non-trivial variables x = t/s.

• The equations for the bubble integrals f1 and f2 are trivial, and indeed being single-
scale integrals, their functional dependence follows from dimensional analysis.

• The equations have the singular points s = 0, t = 0, s = 1, t = 1, and s = �t (i.e.
u = 0). The latter singularity may be surprising for planar integrals, and as we will
see occurs only after analytic continuation.

As a preview of the general method to be discussed in the following sections, let us
make the following educated basis choice (to be justified later),

g1 =c(�s)✏tG0,1,0,2 ,

g2 =c(�s)✏sG1,0,2,0 , (3.13)
g3 =c✏(�s)✏stG1,1,1,1 ,

– 10 –

with c = ✏e
✏�E being a normalization factor, and with �E being Euler’s constant. The gi

are chosen to be dimensionless, such that they depend on x and ✏ only. Implementing the
derivative @s as explained above, and using the chain rule, we find

@x~g(x; ✏) = ✏


a

x
+

b

1 + x

�
~g(x, ✏) , (3.14)

where

a =

0

B@
�1 0 0

0 0 0

�2 0 �1

1

CA , b =

0

B@
0 0 0

0 0 0

2 2 1

1

CA . (3.15)

The system (3.14) can be solved easily in an expansion in ✏. One sets

~g =
X

k�0

✏
k
~g
(k)(x) , (3.16)

and plugging this into eq. (3.14) it becomes clear that at each order in ✏, the r.h.s. of that
equation is known and can be integrated.

Let us discuss the boundary conditions for the equations. As already discussed, the
bubble integrals are trivially known: a short calculation using the formulas of section 2
shows that they are given by

Ga1,0,a2,0 = (�s)D/2�a�(a�D/2)�(D/2� a1)�(D/2� a2)

�(a1)�(a2)�(D � a)
, (3.17)

with a = a1 + a2. In application to our case, we have

g1 = x
✏
g2 , g2 = �e

✏�E �
2(1� ✏)�(1 + ✏)

�(1� 2✏)
. (3.18)

Finally, we need a boundary condition for g3. We can use the fact that planar integrals
should not have u-channel singularities, which implies that g3 should stay finite as x ! �1,
despite the presence of the matrix b in eq. (3.14).

This fixes the solution to all orders in the ✏ expansion. The first few orders are given
by

g3 =4 + ✏ [�2 log x] + ✏
2


�
4⇡2

3

�
+ ✏

3


7⇡2

6
log x+

1

3
log3 x� ⇡

2 log(1 + x)

� log2 x log(1 + x)� 2 log xLi2(�x) + 2Li3(�x)�
34

3
⇣3

�
+O(✏4) , (3.19)

where Lin is a polylogarithm, defined by

Li1(x) = � log(1� x) , x @xLin(x) = Lin�1(x) , n > 1 , (3.20)

and Lin(0) = 0. In section 5 we will discuss a more general class of functions that is useful
for writing the solutions to such differential equations.
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Solution in terms of iterated 
integrals order by order in ε
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~60 master integrals
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It is interesting to check the threshold limit 
where the top quarks are produced at rest

Color singlet: same as Drell-Yan 
and Higgs production

Color octet

Belitsky: hep-ph/9808389

Czakon, Fiedler: 1311.2541
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In the limit where the top quarks are highly boosted

Ferroglia, Pecjak, LLY: 1205.3662Factorization
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2
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soft fragmentation function
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Figure 4: Example of a pair of mixed virtual-real one-particle cuts which adds up to a scaleless
integral.
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Figure 5: Examples of non-abelian three-Wilson-line integrals required in the calculation of
the NNLO soft matrix.

Each of the four diagrams in the last two rows of Figure 3, on the other hand, are complicated
functions of two distinct scalar products. However, the sums of the pairs (c)+(d) and (e)+(f)
are proportional to symmetric color structure w(8):

D(c)+(d)
8 →

(

T b
i T

a
i + T a

i T b
i

)

T a
j T

b
k

∫

[dk] [dl]
ni · nj ni · nk δ(ω − n0 · (k + l))

ni · l ni · (k + l) nj · k nk · l
,

D(e)+(f)
8 →

(

T a
i T b

i + T b
i T

a
i

)

T a
j T

b
k

∫

[dk] [dl]
ni · nj ni · nk δ(ω − n0 · (k + l))

ni · k ni · (k + l) nj · k nk · l
. (38)

Furthermore, after partial fractioning, the sum of the two integrals yields the factorized integral
(36). Therefore, these abelian diagrams do not introduce any new calculational complications.
In Appendix B we explain how the non-abelian exponentiation theorem implies the simple
factorized form of the integral multiplying the symmetric color structure (35). The color
matrices for the qq̄ channel are

w
(8)
123 = w

(8)
214 = w

(8)
314 = w

(8)
423 =

CF

2

(

0 N2−2
2N
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2N2
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,
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(8)
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(8)
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(8)
324 = w

(8)
413 =

CF

2

(

0 −N2−2
2N

−N2−2
2N − 1

N2

)

,

13

Resummation is achieved by evolving 
from the scale of hard scatterings

to the scale of soft (and/or 
collinear) interactions
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plot the differential cross sections normalized to our default
prediction, i.e., the ratio defined by

ratio≡ dσ
dσNLOþNNLL0ðμi ¼ μdefaulti Þ

: ð2Þ

Figure 1 compares our NLOþ NNLL0 resummed pre-
diction for the normalized pT distribution to the CMS
measurement [3] in the leptonþ jet channel at the LHC
with a center-of-mass energy

ffiffiffi
s

p
¼ 8 TeV. Also shown is

the NNLO result from Ref. [1], which adopted by default
the renormalization and factorization scales μr ¼ μf ¼ mt
and also used a slightly different top-quark mass,
mt ¼ 173.3GeV. At low pT, it is clear that both the
NLOþ NNLL0 and the NNLO results describe the data
fairly well. With the increase of pT , it appears that the
NNLO prediction systematically overestimates the data,
although there is still agreement within errors. On the other
hand, with the simultaneous resummation of the soft-gluon
logarithms and the mass logarithms and also with the
dynamical scale choices, our NLOþ NNLL0 resummed
formula produces a softer spectrum which agrees well with
the data.
In Ref. [4], the ATLAS Collaboration carried out a

measurement of the pT spectrum in the highly boosted
region using fat-jet techniques. Although the experimental
uncertainty is rather large due to limited statistics, it is
interesting to compare it with the theoretical predictions
here, since it is expected that the soft and small-mass
logarithms become more relevant at higher energies. In
Fig. 2, we show such a comparison. The NNLO result for
such high pT values is not yet available, so we compare

instead with the NLO result computed using MCFM with
MSTW2008 NLO PDFs and dynamical renormalization
and factorization scales, whose default values are
μr ¼ μf ¼ mT . Scale uncertainties of the NLO results
are estimated through variations of μr ¼ μf by a factor
of 2 around the default value. From the plot, one can see
that the NLO result calculated in this way does a good job
in estimating the residual uncertainty from higher-order
corrections, as the resummed band lies almost inside
the NLO one up to pT ¼ 1.2 TeV. On the other
hand, the inclusion of the higher-order logarithms in the
NLOþ NNLL0 result significantly reduces the theoretical
uncertainty, which is crucial for future high-precision
experiments at the LHC.
Our formalism is flexible and can be applied to other

differential distributions as well. To demonstrate this fact,
in Fig. 3, we show the NLOþ NNLL0 resummed predic-
tion for the top-quark pair invariant mass distribution along
with a measurement from the ATLAS Collaboration [16] at
the 8 TeV LHC. Since the NNLO result in Ref. [1] for this
distribution has an incompatible binning, it is currently not
possible to include it in the plot, so we show instead the
NLO result computed with the same input as in Fig. 2, but
this time with the default scale choice μr ¼ μf ¼ Mtt̄. One
can see from the plot that the NLO result with this scale
choice is consistently lower than the experimental data. The
resummation effects significantly enhance the differential
cross sections, especially at high Mtt̄. As a result, the
NLOþ NNLL0 prediction agrees with the data quite well.
We have found that choosing the default renormalization
and factorization scales to be half the invariant mass
increases the fixed-order cross section and therefore mimics
to some extent the resummation effects. In fact, this
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plot the differential cross sections normalized to our default
prediction, i.e., the ratio defined by
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with a center-of-mass energy
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¼ 8 TeV. Also shown is

the NNLO result from Ref. [1], which adopted by default
the renormalization and factorization scales μr ¼ μf ¼ mt
and also used a slightly different top-quark mass,
mt ¼ 173.3GeV. At low pT, it is clear that both the
NLOþ NNLL0 and the NNLO results describe the data
fairly well. With the increase of pT , it appears that the
NNLO prediction systematically overestimates the data,
although there is still agreement within errors. On the other
hand, with the simultaneous resummation of the soft-gluon
logarithms and the mass logarithms and also with the
dynamical scale choices, our NLOþ NNLL0 resummed
formula produces a softer spectrum which agrees well with
the data.
In Ref. [4], the ATLAS Collaboration carried out a

measurement of the pT spectrum in the highly boosted
region using fat-jet techniques. Although the experimental
uncertainty is rather large due to limited statistics, it is
interesting to compare it with the theoretical predictions
here, since it is expected that the soft and small-mass
logarithms become more relevant at higher energies. In
Fig. 2, we show such a comparison. The NNLO result for
such high pT values is not yet available, so we compare

instead with the NLO result computed using MCFM with
MSTW2008 NLO PDFs and dynamical renormalization
and factorization scales, whose default values are
μr ¼ μf ¼ mT . Scale uncertainties of the NLO results
are estimated through variations of μr ¼ μf by a factor
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hand, the inclusion of the higher-order logarithms in the
NLOþ NNLL0 result significantly reduces the theoretical
uncertainty, which is crucial for future high-precision
experiments at the LHC.
Our formalism is flexible and can be applied to other

differential distributions as well. To demonstrate this fact,
in Fig. 3, we show the NLOþ NNLL0 resummed predic-
tion for the top-quark pair invariant mass distribution along
with a measurement from the ATLAS Collaboration [16] at
the 8 TeV LHC. Since the NNLO result in Ref. [1] for this
distribution has an incompatible binning, it is currently not
possible to include it in the plot, so we show instead the
NLO result computed with the same input as in Fig. 2, but
this time with the default scale choice μr ¼ μf ¼ Mtt̄. One
can see from the plot that the NLO result with this scale
choice is consistently lower than the experimental data. The
resummation effects significantly enhance the differential
cross sections, especially at high Mtt̄. As a result, the
NLOþ NNLL0 prediction agrees with the data quite well.
We have found that choosing the default renormalization
and factorization scales to be half the invariant mass
increases the fixed-order cross section and therefore mimics
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procedure has been extensively employed in the literature
for processes such as Higgs production [17], where higher-
order corrections are also large. Consequently, it may be
advisable to employ a renormalization and factorization
scale of the order of Mtt̄=2 in fixed-order calculations
(and Monte Carlo event generators), and we shall use this
choice when studying the Mtt̄ distribution at the 13 TeV
LHC below.
The LHC has started the 13 TeV run in 2015. So far,

there are only two CMS measurements [18,19] of differ-
ential cross sections for tt̄ production, based on just
42 pb−1 of data. The resulting experimental uncertainties
are therefore quite large, and it is not yet possible to probe
higher pT or Mtt̄ values. Nevertheless, in the near future
there will be a large amount of high-energy data, which will
enable high-precision measurements of tt̄ kinematic dis-
tributions, also in the boosted regime. In Fig. 4, we show
our predictions for the pT and Mtt̄ spectrum up to pT ¼
2 TeV and Mtt̄ ¼ 4.34 TeV, contrasted with the NLO
results. Note that, for theMtt̄ distribution, we have changed
the default μf to a lower value Mtt̄=2 for the reasons
explained above. The plots exhibit similar patterns as
observed at 8 TeV, namely, that the higher-order resum-
mation effects serve to soften the tail of the pT distribution
but enhance that of the Mtt̄ distribution compared to a pure
NLO calculation.
As mentioned before, we would like to match our

calculations with the NNLO results when they become
available in the future. We end this section by discussing
the expected effects of such a matching, by estimating the
size of resummation corrections beyond NNLO. We do this
in Fig. 5, where the relative sizes of the beyond-NNLO
corrections generated through the resummation formula are
displayed as a function of Mtt̄ or pT with the default scale

choices. The exact NNLO results for these scale choices
are not yet available, so we show in comparison the
relative sizes of the approximate NNLO (aNNLO)
corrections obtained by expanding and truncating our
NLOþ NNLL0 formula to that order. More precisely, the
blue and black curves in Fig. 5 correspond to

aNNLO correction≡ dσaNNLO − dσNLO

dσNLO
;

beyond NNLO≡ dσNLOþNNLL0 − dσaNNLO

dσNLO
; ð3Þ

where dσaNNLO refers to the approximate NNLO result. The
figure clearly shows that corrections beyond NNLO are
significant in the tails of the distributions, especially in the
case of the Mtt̄ distribution.
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and the resummation group
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from Eq. (24), (though we have lowered the lable m to avoid clutter) with the superscript
(n) again indicating which order of their respective expansions have been used. Note for the
second order terms (2), only the logarithmic terms generated by RG running will be present
as indicated in the discussion above. We have kept only the argument indicating which scale
the function should be evaluated at. Thus we arrive at a result for the NNLO expansion of
the NNLLm resummed result for use in matching to exact fixed order NNLO calculations.

To match the NNLL0 resummed result Eq. (35) in the boosted soft limit with Eq. (43),
we need to remove the overlap between the NNLL0 boosted resummed result and the NNLLm

result to all orders in ↵s. This appears complicated at first sight, but is actually rather
straightforward after exploiting the fact that the boosted resummation formula is the small-
mass limit of the soft resummation formula at any fixed order in ↵s. In the following we
use NNLLb and NNLL0

b to denote the NNLL accuracy and NNLL0 accuracy of the boosted
resummation formula Eq. (35). The fully matched result is then given by

d�
NNLO+NNLL

0
= d�

NNLL
0
b +

⇣
d�

NNLLm � d�
NNLLb

��µds=µs
µdh=µh

⌘

+

✓
d�

NNLO
� d�

“top line”
��

NNLO
Expansion

◆
, (45)

The term in the parenthesis on the first line accounts for contributions beyond NLO which
are suppressed by mt/M in the boosted soft limit, but are dominant in the threshold region
i.e. leading in 1/N . This is achieved by setting µdh = µh and µds = µs in the boosted result,
which removes RG evolution between the functions H and cD in Eq. (32), and es and esD in
Eq. (33), thus leaving behind the leading contributions from threshold resummation in the
limit mt/M ! 0. The term in the parenthesis on the second line accounts for 1/N suppressed
contributions up to NNLO, analogous to that in Eq. (43). The NNLO expansion of d�

NNLL
0
b is

obtained by simply setting all the matching scales equal to the factorization scale in complete
analogy with the NLO case discussed below Eq. (43) where the methods used to obtain the
NNLO expansion of d�

NNLLm are also outlined. The expansion of d�
NNLLb

��µds=µs
µdh=µh

proceede in

the same manner as the expanison of d�
NNLLm , though now we must include the additional

matching functions CD and esD which in the last line of Eq. (44) would be evaluated at µh and
µs respectively.

Eq. (45) serves as our best prediction for di↵erential cross sections in top quark pair
production, valid in the full phase space, and is the starting point for our phenomenological
investigations in Section 4. However, in the following sections, it will be illuminating to
compare the resummation formulas matched to NNLO with those matched to NLO and so we
briefly outline the matching procedure necessary for the latter.

d�
NLO+NNLL

0
= d�

NNLL
0
b +

⇣
d�

NNLLm � d�
NNLLb

��µds=µs
µdh=µh

⌘

+

✓
d�

NLO
� d�

NNLLm
��µs=µf
µh=µf

◆
. (46)

The first line in Eq. (46) is identical to that in Eq. (45) since it simply matches the two
resummed results. This produces a result which is only missing terms subleading in 1/N
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Figure 4. Results for the absolute (left) and normalized (right) top-pair invariant mass

distribution at the LHC with
p

s = 13 TeV. In all cases the ratio is to the NNLO result with

µf = HT /4. The uncertainty bands are obtained through scale variations as described at the

beginning of section 5 and in eqs. (5.1) and (5.2).

5 Results and discussion

In this section we give our main results for the top-pair invariant mass and (anti) top-

quark pT distributions, as well as the total cross section, with a focus on comparing

NNLO results with NNLO+NNLL0 ones. Some further comparisons across di↵erent

perturbative orders are presented in appendix A. Although we present only a limited

set of results for the LHC operating at a center-of-mass energy of 13 TeV, distributions

with alternate binning and at di↵erent collider energies can be produced on request

from the authors.

Results for the absolute (normalized) Mtt̄ distribution are shown in left (right)

panel of figure 4. The NNLO results use µf = HT/4 by default (we shall always set the

renormalization scale appearing in the NNLO calculation to µr = µf unless otherwise

specified), which is the scale favored by the analysis of perturbative convergence of

the fixed-order series performed in [24]. The NNLO+NNLL0 results are obtained from

the matching relation eq. (2.5). All pieces of that equation must be evaluated at a

common µf , which is also chosen as µf = HT/4 by default. In addition, we draw on

the analysis of the previous section and use µh = HT/2 and µs = HT/N̄ by default, as

well as µdh = mt and µds = mt/N̄ . In both the NNLO and the NNLO+NNLL0 results,

the bands in figure 4 represent perturbative uncertainties estimated through scale vari-

ations. For the NNLO calculation, we obtain the bands by keeping the factorization
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Figure 5. Results for the absolute (left) and normalized (right) top-pair invariant mass

distribution at the LHC with
p

s = 13 TeV as a ratio to the NNLO result evaluated using

µf = HT /4. The uncertainty bands are obtained through scale variations as described at the

beginning of section 5 and in eqs. (5.1) and (5.2).

result (with either scale choice) and the NNLO result with µf = HT/4 is a highly

non-trivial fact. This provides an important confirmation of the result of [24], which

favors the choice µf = HT/4 for the fixed-order calculation of the Mtt̄ distribution. The

overall picture emerging from the above analysis is that the perturbative description of

the top-quark pair invariant mass distribution is under good control.

Results for the absolute (normalized) average top/anti-top (pT,avt) distribution at

NNLO and NNLO+NNLL0 are shown in the left (right) panel of figure 6. The NNLO

results (with which resummation is matched) have been calculated using the definition

d�

dpT,avt
=

1

2

✓
d�

dpT,t
+

d�

dpT,t̄

◆
, (5.3)

where pT,t (pT,t̄) denotes the transverse momentum of the top (anti-top) quark, and we

have labeled the distributions in figure 6 accordingly. The pT distribution is calculated

using the scale choice µf = mT/2 (where mT refers to the transverse mass of either

the top or anti-top quark depending on the distribution under consideration), which is

favored by the study [24]. The resummed results use µh = mT and µs = 2mT/N̄ by de-

fault, as justified in the previous section. The bands refer to perturbative uncertainties

estimated through scale variations using the same procedure as for the Mtt̄ distribution

above. We see that the NNLO+NNLL0 result is consistent with the NNLO one. On

the other hand, we show in appendix A that upgrading matching with fixed-order from
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NNLO sensitive to scale choice

Resummed result much less sensitive!



Summary and outlook

Soft gluons and top quarks are important and 
interesting 

We have thoroughly studied their interactions at NNLO 

Universal two-loop IR structure 

NNLO soft real emissions 

Resummation of soft logarithms
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Thank you!


