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Lecture 3: Infrared subtractions at

next-to-next-to-leading order
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Recap (1)

In the previous lecture, we constructed the next-to-leading order FKS subtraction
scheme, which can be summarized in the following expression:

〈FLM (1, 2, 3)〉 =〈(I − C31 − C32)(I − S3)FLM (1, 2, 3)〉
+〈(C31 + C32)(I − S3)FLM (1, 2, 3)〉+ 〈S3FLM (1, 2, 3)〉,

for a real emission correction qq̄ → V + g.

In the second and third terms, we extract the poles of the real emission
corrections by using the universal factorizations in the soft and collinear
limits (discussed in lecture 1) and integrating over the d-dimensional phase
space of the unresolved parton.

These poles in 1/ε completely describe the singular behavior of the real emission
corrections.

We cancel the poles from the real emission corrections against poles from the
virtual corrections and absorb remaining collinear poles in universal
renormalizations of the parton distribution functions.

We take the ε→ 0 limit and compute the finite remainder in four space-time
dimensions.
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Recap (2)

〈FLM (1, 2, 3)〉 =〈(I − C31 − C32)(I − S3)FLM (1, 2, 3)〉
+〈(C31 + C32)(I − S3)FLM (1, 2, 3)〉+ 〈S3FLM (1, 2, 3)〉.

In the first term, we subtract the leading singularities originating from the soft
and collinear emissions from the full real emission amplitude-squared.

This term is then manifestly finite when integrated over the full phase space
of the emitted parton, and can be evaluated in four space-time dimensions.

The result is a finite expression for the fully differential NLO corrections.

Although we demonstrated this for color singlet production, this subtraction
scheme can be formulated for arbitrary processes at a hadron or lepton collider.

Other NLO subtraction schemes exist for arbitrary processes, the most
commonly used of which is the Catani-Seymour dipole method.
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Subtraction schemes at NNLO

In this lecture we will consider the infrared singularities that appear in
next-to-next-to-leading order (NNLO) corrections.

NNLO corrections have three contributions:

Real-real (RR) corrections: two additional real partons are emitted at tree
level;

Real-virtual (RV) corrections: one additional real parton is emitted at
one-loop;

Virtual-virtual (VV) corrections: two-loop corrections.

RR RV V V
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Infrad singularities at NNLO

As at NLO, the loop corrections give rise to explicit 1/ε singularities, while the real
emissions lead to singularities arising from the unresolved phase space of the
emitted partons.

The virtual-virtual corrections have explicit 1/ε4 (and lower) singularities
which can be calculated using the Catani formula, as at NLO.

The finite contributions of the VV corrections can be tremendously difficult to
calculate (see lectures by Simon Badger and Lorenzo Tancredi).

The real-virtual corrections have explicit 1/ε2 (and lower) poles from the
one-loop integral, which can also be calculated using the Catani formula.

The RV corrections also have singular regions associated with the single real
emission. Since these have the same singular structure as the real corrections at
NLO, the NLO subtraction strategy can be employed here with minor
adjustments. Poles of O(1/ε2) (and lower) are extracted, so the RV corrections
also have poles at O(1/ε4).

The real-real corrections have a much more complicated singular structure than
the real corrections at NLO, and consequently the extraction of the singularities
of real-real corrections is much more difficult. This is the main challenge in the
treatment of IR singularities at NNLO.

Raoul Röntsch (KIT) Infrared subtractions Hangzhou, China 6 / 33



The challenge of double-real emissions (1)

To understand why real-real corrections have such complicated singular behavior,
consider the NLO correction qq̄ → V + g. We identified the following singular
regions:

the radiated gluon is soft;

the radiated gluon is collinear to one of the initial state partons.

The overlap of these two singular regions is the soft-collinear configuration, which
is quite simple.

Consider the emission of two real gluons in color singlet production

q(p1)q̄(p2)→ V + g(p3) + g(p4).

Singularities will arise if:

either radiated gluon is soft;

either radiated gluon is collinear to either initial state parton;

the radiated gluons are collinear to each other.
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Overlapping singularities (1)
Consider the emission of gluons g(p3) and g(p4) from q(p1):

p1
(p1 − p3)

2 (p1 − p3 − p4)
2

p1 p1

p3
p4 p4

p3 p3

p4

(p1 − p4)
2 (p1 − p3 − p4)

2 (p1 − p3 − p4)
2

(p3 + p4)
2

We have the following
propagators:

D13≡ (p1 − p3)2 = −2E1E3ρ13

D14≡ (p1 − p4)2 = −2E1E4ρ14

D34≡ (p3 + p4)2 = 2E3E4ρ34

D134≡ (p1 − p3 − p4)2

= −2E1E3ρ13 − 2E1E4ρ14

+2E3E4ρ34

Consider E3 → 0:

D13 → 0 and D34 → 0 – single-soft
singularities.

D134 → −2E1E4ρ14:

ρ14 → 0⇒ D134 → 0 – overlap between
soft and collinear limits.

Now consider additional limit E4 → 0:

D14 → 0 – “single-soft2”

D134 → 0 – double-soft singularity – more
complicated than “single-soft2”.

Overlap between double-soft and
single-soft limits.
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Overlapping singularities (2)
Consider the emission of gluons g(p3) and g(p4) from q(p1):

p1
(p1 − p3)

2 (p1 − p3 − p4)
2

p1 p1

p3
p4 p4

p3 p3

p4

(p1 − p4)
2 (p1 − p3 − p4)

2 (p1 − p3 − p4)
2

(p3 + p4)
2

D13= −2E1E3ρ13

D14= −2E1E4ρ14

D34= 2E3E4ρ34

D134= −2E1E3ρ13 − 2E1E4ρ14

+2E3E4ρ34

Consider ρ13 → 0:

D13 → 0 – double-collinear singularities.

D34 → 2E3E4ρ14

D134 → 2E4ρ14(−E1 + E3).

Now consider additional limit ρ14 → 0:

D14 → 0 – “double-collinear2”

D134 → 0 – triple-collinear singularities
~p1||~p3||~p4.

These are more complicated than
“double-collinear2”.

Overlap between double-collinear and
triple-collinear limits.
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Overlapping singularities (3)

The overlap of the above regions is now very convoluted; we may have, e.g.:

• Gluons 3 and 4 becoming collinear to an initial
state parton and gluon 4 becoming soft;

• Gluons 3 and 4 becoming soft and collinear to each
other and to one of the initial state partons

• ...

We can also have singularities from radiation from both initial state partons, e.g.:

• Gluon 3 becoming soft and collinear to one initial
state parton and gluon 4 becoming collinear to the
other;
• ...

A subtraction scheme would need to integrate over the unresolved phase space of
each parton while also avoiding overlapping singular regions leading to
non-convergent integrals.
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The presence of multiple overlapping singular regions makes handling the IR
divergences at NNLO non-trivial.

This is an active field of research today.

Two fundamentally different approaches: subtraction schemes and phase
space slicing methods.
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Phase space slicing (1)

From lecture 1: non-converging integrals over energy and angles of the gluon

Emax∫
0

dE3

E3
;

π∫
0

dθ13
θ13

;

π∫
0

dθ23
θ23

.

The subtraction approach is to regulate these singularities by working in d = 4− 2ε
dimensions. One could also introduce cut-offs which remove the singular regions

Emax∫
Emin

dE3

E3
;

π∫
θmin

dθ13
θ13

;

π∫
θmin

dθ23
θ23

,

which converge.

Slicing is intuitive because the soft and collinear radiated partons will not be
resolved into a jet, so it makes sense to slice the phase space into a resolved and
an unresolved region. The above integrals denote the resolved region.

Slicing removes an entire region of phase space which includes the singularities;
subtraction schemes remove the singularities point-by-point. Thus slicing
methods are non-local, while subtraction schemes are (in principle) local.

Slicing methods are fundamentally non-local, i.e. there is no point-by-point
subtraction of the singular phase space (as is done in subtraction schemes).
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Phase space slicing (2)

On the other hand, it is clear from the subtraction methods that unresolved partons
do contribute to the cross sections and distributions. So we also need a way to
calculate the unresolved regions

Emin∫
0

dE3

E3
;

θmin∫
0

dθ13
θ13

;

θmin∫
0

dθ23
θ23

.

It is also clear that introducing a cutoff for every singular region of phase space is not
practical. We should find a single variable which can be used to control all the
singular limits of the phase space. This is called the slicing parameter.

The choice of slicing parameter defines the slicing method.

The two (related) slicing methods being studied and employed for NNLO
calculations are:

qT slicing (Catani, Grazzini) – uses more specialized observable qT ;

N-jettiness slicing (Boughezal, Focke, Liu, Petriello, Gaunt, Stahlhofen,
Tackmann, Walsh) – uses less restricted observable N -jettiness.
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Phase space slicing (3)

Then we can write∫
[dφd] |M|2 FJ =

δ∫
0

[dφd] |M|2 FJ+

∫
δ

[dφ4] |M|2 FJ+O(δ),

where

M is the amplitude for the RR emission,

[dφ] is the RR phase space, in either d or four space-time dimensions,

FJ defines an infrared-safe observable,

δ is the cutoff for the slicing parameter.

The first term has only soft and collinear radiation, and can be computed in
Soft Collinear Effective Theory (SCET) – see lecture by Pier Francesco Monni.

The second term has no singular regions and can be integrated in four space-time
dimensions.

We can regard it as an NLO calculation with an additional hard jet – we can use the
sophisticated NLO techniques developed over the last two decades to compute it.
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Phase space slicing (4)

Thus we have∫
[dφd] |M|2 FJ =

δ∫
0

[
[dφd] |M|2 FJ

]
SCET

+

∫
δ

[dφ4] |M|2 FJ+O(δ).

The difficulty in these methods arises from choosing the parameter δ.

A priori, there is no way of choosing δ.

It needs to be sufficiently small to prevent the power corrections O(δ) from
becoming large
(which would reflect that SCET is not applicable in the whole unresolved region).

One simply picks a small value for δ and then checks that the results are stable
under variations of δ.

I If the results are not stable, then the power corrections are large and δ must be
decreased.

I If the results are stable, δ is assumed to be small enough that the power
corrections are negligible.

Lower values of δ require big increases in computation time.

There has been recent progress in computing the leading power corrections,
which improves the speed and stability of slicing methods.
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Subtraction schemes at NNLO (1)

We write the correction arising from q(p1)q̄(p2)→ V + g(p3) + g(p4) emissions as

dσRR =
1

2s

1

2!

∫
[dp3][dp4]FLM (1, 2, 3, 4),

with the factor 1/2! accounting for the symmetric final state, and FLM (1, 2, 3, 4) is
defined analogously to FLM (1, 2, 3)

FLM (1, 2, 3, 4) = dLipsV |M(1, 2, 3, 4, V )|2 Fkin(1, 2, 3, 4, V ).

Then a NNLO subtraction would be∫
[dp3][dp4]FLM (1, 2, 3, 4) =

∫
[dp3][dp4]

(
FLM (1, 2, 3, 4)− S

)
+

∫
[dp3][dp4]S,

where

S reproduces the leading singular behavior of FLM (1, 2, 3, 4) in all overlapping
singular regions.

The phase space integration over [dp3] and [dp4] integrates over only the
unresolved phase space of each parton while also avoiding overlapping
singular regions leading to non-convergent integrals.
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NNLO subtraction schemes (1)

The main subtraction methods being developed and used are:

Antenna subtractions (Gehrmann-De Ridder, Gehrmann, Glover, Daleo,
Mâıtre, Luisoni, Monni, Boughezal, Ritzmann, Currie, Wells).

Residue-improved sector decomposition (STRIPPER) (Czakon,
Heymes).

Nested soft-collinear subtraction (Caola, Melnikov, R.R.).

CoLoRFulNNLO (Del Duca, Duhr, Kardos, Somogyi, Szőr,Trócsányi,
Tulipánt).

Projection-to-Born (Cacciari, Dreyer, Karlberg, Salam, Zanderighi).
Requires an analytic expression for the NLO result integrated over the
additional radiated parton.

These methods are at different states of maturity and each have advantages and
disadvantages.

They differ both in how they construct the subtraction term S and in how they
deal with overlapping singular regions.
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NNLO subtraction schemes (2)

None of the NNLO subtraction schemes are at the level of NLO subtractions, i.e. a
method:

which is fully local,

in which the cancellation of the IR poles is shown explicitly and analytically,

which is completely general and may be applied to arbitrary processes at a
hadron or lepton collider,

which allows all amplitudes to be computed in four dimensions.
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Nested soft-collinear subtractions (1)

It is not possible to study any of the NNLO subtraction or slicing methods in the
same detail as we studied FKS subtraction at NLO in the previous lecture.

I will therefore describe the basic idea behind of one of the subtraction schemes – the
nested soft-collinear subtraction scheme – without worrying about the details.

This scheme is a natural continuation of the FKS subtraction method to NNLO, so
this should be possible (hopefully!)

I will consider the real-real corrections to color singlet production

dσRR =
1

2s

1

2!

∫
[dp3][dp4]FLM (1, 2, 3, 4).

from the partonic channel q(p1)q̄(p2)→ V + g(p3) + g(p4).

Other partonic channels, e.g. q(p1)g(p2)→ V + q(p3) + g(p4), would also contribute.
However, quarks emitted in the final state have a simpler singularity structure than
gluons. Therefore the partonic channel qq̄ → V + g + g has the most complicated
singularity structure for color singlet production.
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Nested soft-collinear subtractions (2)

As for the FKS subtraction scheme at NLO, we will construct the subtraction terms
S directly from the soft and collinear limits, using the universal factorizations of the
amplitudes in these limits.

We also need a way to handle the overlapping divergences in the phase space.

The distinguishing feature of the nested soft-collinear subtraction scheme is the use of
color coherence to separate the soft and collinear singularities from the beginning.

We then use:

energy ordering to separate the soft regions, and

phase-space partitioning and sector decomposition (as done in the
residue-improved sector decomposition subtraction method) to separate
the collinear regions.
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Color coherence

Onshell, gauge invariant QCD amplitudes display a property known as color
coherence, which is most commonly considered in the context of parton showers
(see yesterday’s lecture by Stefan Höche).

Consider the emission of a
soft gluon from a quark line
which then undergoes
multiple splittings, which
may or may not be collinear:

The wavelength of the soft gluon is too large to resolve the details of the splittings,
including any potential collinear singularities – it only depends on the total color
charge of all the radiated partons.

Therefore the factorization of the amplitude as a result of the soft radiation is
insensitive to any other radiation. As a result, soft and collinear emissions can
be treated independently of one another.

This allows us to extend part of our NLO strategy to NNLO: we subtract the soft
singularities first, then subtract the collinear singularities.
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Subtracting soft singularities (1)

We begin by defining an energy-ordering: E4 < E3 < Emax, where the energies are
taken in the center-of-mass frame.
As at NLO, the energies of both gluons are also bounded from above by Emax.

We define the RR corrections as

dσRR =
1

2s

∫
[dp3][dp4]FLM (1, 2, 3, 4)θ(E3 − E4) ≡ 〈FLM (1, 2, 3, 4)〉.

The 1/2! factor for symmetric final states is removed by the energy ordering E4 < E3.

We now recall the soft operator Si that we introduced last lecture and introduce a
double-soft operator SS

SiA = lim
Ei→0

A, SSA = lim
E3,E4→0

A at fixed E4/E3.

The energy ordering ensures that p3 can only become soft if p4 is also soft – i.e. in
the double soft limit. Thus the S3 limit does not occur, and the only soft limits are
S4 and SS.
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Subtracting soft singularities (2)

We can now subtract the soft singularities:〈
FLM (1, 2, 3, 4)

〉
=
〈
SSFLM (1, 2, 3, 4)

〉
+
〈
S4(I − SS)FLM (1, 2, 3, 4)

〉
+
〈
(I − S4)(I − SS)FLM (1, 2, 3, 4)

〉
.

The first term on the left-hand side corresponds to the double-soft limit, in
which both gluons decouple completely.

The second term captures the limit where g4 is soft but singularities from S3 are
removed.

The final term has all soft singularities removed. However, it still contains
collinear singularities and is thus not integrable. The different singular
collinear limits overlap, and these must be disentangled.
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Soft limits

For the double-soft limit 〈SSFLM (1, 2, 3, 4)〉:

Both radiated gluons decouple completely, and the amplitude factorizes into an
amplitude-squared with no gluon emissions and the double-soft eikonal function:

SSFLM (1, 2, 3, 4) =Eik2(1, 2, 3, 4)FLM (1, 2).

We can integrate the double-soft eikonal function over the energies and angles of
the decoupled gluons, to obtain poles at O(1/ε4) and lower.

For the single-soft limit
〈
S4(I − SS)FLM (1, 2, 3, 4)

〉
:

g(p4) decouples completely and we integrate over its energies and angles.

This leaves us with an NLO-like expression FLM (1, 2, 3) which still has
singularities related to g(p3).

These can be treated as at NLO, resulting in poles at O(1/ε3) and lower.
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Phase space partitions (1)

Both the double-soft limit
〈
SSFLM (1, 2, 3, 4)

〉
and soft-subtracted term〈

(I − S4)(I − SS)FLM (1, 2, 3, 4)
〉

contain overlapping collinear singularities, which
must be disentangled before they can be extracted.

We do this in two steps. First, we define phase space partition functions:

w13,14 =
ρ23ρ24
d3d4

(
1 +

ρ13
d3421

+
ρ14
d3412

)
, w13,24 =

ρ23ρ14ρ34
d3d4d3412

,

w23,24 =
ρ13ρ14
d3d4

(
1 +

ρ24
d3421

+
ρ23
d3412

)
, w23,14 =

ρ13ρ24ρ34
d3d4d3421

.

where

di=3,4 = ρ1i + ρ2i, d3421 = ρ34 + ρ23 + ρ14, d3412 = ρ34 + ρ13 + ρ24.

The phase space partition functions have the following collinear limits:

C32w
13,14 = C42w

13,14 = 0 C32w
13,24 = C41w

13,24 = C34w
13,24 = 0

C31w
23,24 = C41w

23,24 = 0 C31w
23,14 = C42w

23,14 = C34w
23,14 = 0,
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Phase space partitions (2)

The behavior of the partition functions in the collinear limits

C32w
13,14 = C42w

13,14 = 0 C32w
13,24 = C41w

13,24 = C34w
13,24 = 0

C31w
23,24 = C41w

23,24 = 0 C31w
23,14 = C42w

23,14 = C34w
23,14 = 0,

means that only certain collinear limits are relevant in each partition:

w13,14 : C31, C41, C34 w13,24 : C31, C42

w23,24 : C32, C42, C34 w23,14 : C32, C41

Moreover,
w13,14 + w23,24 + w13,24 + w14,23 = 1,

so we can insert the sum over all partitions into a phase space integral,∫
[dp3][dp4] =

∫
[dp3][dp4]

(
w13,14 + w13,24 + w23,24 + w23,14)

thus dividing the phase space into four partitions w13,14, w13,24, w23,24 and w23,14.
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Double-collinear partitions

The phase space partitions have a physical interpretation.

The partitions w13,24 and w23,14 only have singularities if one of the emitted gluons is
collinear to one initial state parton and the other emitted gluon is collinear to the
other initial state parton – i.e. the gluons are well-separated in rapidity.

w13,24

1 2

43

w23,14

1 2

4 3

The configurations can be thought of as “NLO × NLO” – there are no overlapping
singularities!

These are called the double-collinear partitions, since only two partons can be
collinear to one another in these partitions.
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Triple-collinear partitions

The other two partitions have gluons close in rapidity, which allows three partons to
be simultaneously collinear to one another:

w13,14 : ~p1||~p3||~p4 w23,24 : ~p2||~p3||~p4

and are thus called triple collinear partitions.

w13,14
1 2

3 4

1 2

3

4

w23,24
1 2

3 4

1 2

3
4

These still contain overlapping singularities.

We need to do one more thing to separate the singularities: perform a sector
decomposition.
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Sector decomposition

Let’s consider partition w13,14.

The angular integration space containing the singularities is the square
0 < η13, η14 < 1. We decompose this into four sectors using an angular ordering in
η13 and η14:

1 = θ
(
η14 <

η13
2

)
+ θ

(η13
2

< η14 < η31
)

+ θ
(
η13 <

η14
2

)
+ θ

(η14
2

< η13 < η41
)

≡ θ(a) + θ(b) + θ(c) + θ(d).

Thus the limits are:

• θ(a) : C14 • θ(b) : C34

• θ(c) : C13 • θ(d) : C34

There is only one collinear limit in each sector of
the w13,14 partition, so we have separated the
overlapping singularities for this partition.

We can perform an analogous decomposition for
w23,24 by ordering η23 and η24.

(a)

(c) (d)

(b)

η13

η14

1

1
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Removing collinear singularities

We can apply the phase space partitioning and sector decomposition to
separate the overlapping collinear limits in the soft-subtracted term〈

(I − S5)(I − SS)FLM(1, 2, 4, 5)
〉

=
〈
F srcsLM (1, 2, 4, 5)

〉
+
〈
F srctLM (1, 2, 4, 5)

〉
+
〈
F srcrLM (1, 2, 4, 5)

〉
,

where〈
F srcsLM (1, 2, 4, 5)

〉
gives the single-collinear limits, with poles at O(1/ε2) and

lower.〈
F srctLM (1, 2, 4, 5)

〉
gives the triple-collinear limits, with poles at O(1/ε).〈

F srcrLM (1, 2, 4, 5)
〉

has all singularities removed through the nested subtractions
and is therefore finite, and may be evaluated in four space-time dimensions and
integrated numerically.

In each of these three terms, the phase space is separated into partitions and
sectors, each of which contains only one collinear singularity.
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Recap (1)

Thus we have replicated our NLO procedure at NNLO:

We have subtracted all the singular regions, resulting in an integral〈
F srcrLM (1, 2, 4, 5)

〉
,

that is finite and can be evaluated in four space-time dimensions.

We have subtraction terms〈
SSFLM (1, 2, 3, 4)

〉 〈
S4(I − SS)FLM (1, 2, 3, 4)

〉〈
F srcsLM (1, 2, 4, 5)

〉 〈
F srctLM (1, 2, 4, 5)

〉
,

in which the gluons decouple either partially (in the case of collinear limits) or
completely (in the case of soft limits).

Only one singularity is present in each phase space partition and sector,
allowing us to integrate the subtraction terms over the unresolved phase space of
the gluons without encountering additional singularities that would prevent this
integral from converging.

We obtain lower multiplicity processes (ÔNLOFLM (1, 2, 3), FLM (z · 1, 2),
FLM (1, 2) etc.) multiplied with explicit poles in 1/ε which capture the singular
behavior.
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Recap (2)

After including the RV and VV corrections and renormalizing the pdfs, we
observe that the poles cancel (not shown here...).

Relatively compact expressions are found for the finite remainders, which
may be calculated in four dimensions.

Thus the d-dimensional calculation is only needed for the extraction and
cancellation of the poles. Once this is done, all contributions may be computed
in four space-time dimensions.

We have only performed an analytic integration over the unresolved phase space
of the radiated gluons, never over the resolved phase space, meaning that our
results are again fully differential.
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Summary

The presence of soft and collinear emissions means that evaluating real
radiative corrections in a fully differential way is not straightforward.

We need to regularize the singularities by extending the phase space integration
to d-dimensions.

We then construct an NLO subtraction procedure which:
I removes the singular regions, allowing the integration over the full phase space of

the emitted partons to be performed, and
I allows the singularities to be identified as poles in 1/ε after integrating over the
d-dimensional phase space of the unresolved partons.

The infrared poles from the subtraction procedure cancel against the poles from
the virtual corrections and remaining collinear poles are absorbed into the pdf
renormalization.

At NNLO, the singularities of the real-real corrections become more
complicated, with overlapping collinear singularities.

Several subtraction and slicing approaches are being investigated and employed
for NNLO calculation.
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