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Outline of lectures

Lecture 1: The origin and universality of infrared divergences in
QCD:

I Infrared singularities due to soft and collinear radiation.

I Universal factorization of infrared radiation.

I Interpretation of infrared singularities.

I Regularization in d-dimensions.

Lecture 2: Infrared subtractions at next-to-leading order:
I Introduction to the Frixione-Kunszt-Signer subtraction scheme.

I Extraction of soft and collinear poles in color singlet production.

I Partial cancellation of poles between real and virtual corrections.

I Pdf renormalization and cancellation of remaining poles.

I Final result for fully finite NLO correction.

Lecture 3: Infrared subtractions at next-to-next-to-leading order:
I Obstacles to treating singularities at NNLO.

I Overview of different NNLO subtraction schemes.

I Extension of FKS subtraction scheme – Nested soft-collinear subtraction.
Independence of soft and collinear radiation, phase space partitioning and sector
decomposition.

I (Sketch of) Extraction and cancellation of poles in NNLO corrections to color
singlet production.
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Useful references

The calculation of the soft and collinear limit:
S. Catani and M. Grazzini, Nucl. Phys. B570 (2000) 287. [hep-ph/9908523]

The expression for infrared poles appearing in loop amplitudes:
S. Catani, Phys. Lett. B427 (1998) 161 [hep-ph/9802439]

“QCD and Collider Physics”, R. K. Ellis, W. J. Stirling and B. R. Webber,
Cambridge University Press (1996).
The IR behavior of QCD is discussed in Chapter 4.3.

F. Caola, K. Melnikov, R. Röntsch, Eur. Phys. J. C77 (2017) 248
[hep-ph/1702.01352].
The second lecture will follow section 3 of this paper quite closely, and the third
lecture will summarize sections 4 and 8.

The original references for FKS subtraction:
S. Frixione, Z. Kunszt, A. Signer Nucl. Phys. B467 (1996) 399 [hep-ph/9512328]
S. Frixione, Nucl. Phys. B507 (1997) 295 [hep-ph/9706545]

Sector decomposition for NNLO subtractions:
M. Czakon, Phys. Lett. B693 (2010) 259 [hep-ph/1005.0274]
M. Czakon, Nucl. Phys. B849 (2011) 250 [hep-ph/1101.0642]
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Lecture 1: The origin and universality of infrared

divergences in QCD
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Preliminary remarks (1)

Perturbative QCD corrections can be divided into two types: real radiation and
virtual (loop) corrections.

Different final state multiplicity: virtual corrections have n particles, real
corrections have n+ 1.

Real and virtual corrections have no physical meaning by themselves:
I We cannot speak of “virtual” or “real radiation” cross sections – only a cross

section (or differential distribution) at LO, NLO, NNLO, etc.
I The division is thus purely for our convenience as we organize the calculation of a

perturbative correction.

Real and virtual corrections are fundamentally linked by their infrared (IR, i.e.
low energy) behavior.

The calculation of loop amplitudes for virtual corrections is being covered by
Simon Badger and Lorenzo Tancredi.

I will focus on the real radiation corrections in these lectures.
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Drell-Yan production

I will frequently use Drell-Yan production as a test process.

This is just the production of an electron-positron pair at a hadron collider.

At the partonic level at LO this is

qq̄ → e−e+,

and proceeds through the exchange of an offshell photon γ∗ or a Z-boson.

γ∗/Z

e+

e−

q

q̄

The matrix element for this is

M(1, 2, e−, e+) = δij v̄(p2)γµu(p1)Lµ(pe− , pe+) ≡ δijM̃(1, 2, e−, e+),

where the factor Lµ(pe− , pe+) contains the lepton vertex and photon and Z-boson
propagators, which are not relevant for our purposes.
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LO amplitude squared for DY production

The LO matrix element for Drell-Yan production is

M(1, 2, e−, e+) = δij v̄(p2)γµu(p1)Lµ(pe− , pe+) ≡ δijM̃(1, 2, e−, e+).

We will need its absolute value-squared in this lecture.

Squaring the color factor δij gives the number of colors Nc:

|M(1, 2, e−, e+)|2 = Nc|M̃(1, 2, e−, e+)|2.

In more detail∑
hel.

|M(1, 2, e−, e+)|2= Nc
∑
hel.

|v̄(p2)γµu(p1)Lµ(pe− , pe+)|2

= Nc
∑
hel.

Tr {v̄(p2)γµu(p1)ū(p1)γνv(p2)} |L|2µν(pe− , pe+)

= NcTr {p̂2γ
µp̂1γ

ν} |L|2µν(pe− , pe+),

where we used the spinor sums in the final equality, and the notation p̂ = pµγµ (you
may be more familiar with the Feynman-slash notation).
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Real corrections to Drell-Yan production

Real radiative corrections to DY production come from the emission of a gluon in the
final state

q(p1)q̄(p2)→ e−e+ + g(p3)

and the partonic crossings

q(p1)g(p2)→ e−e+ + q(p3) g(p1)q̄(p2)→ e−e+ + q̄(p3).

(We should also include the q̄q, gq and q̄g channels, but these can be obtained by a
swap p1 ↔ p2.)

e+

e−

e−

e+

g

q̄g

q

q̄

q̄

g

e−

e+

q

q̄

g

q

e+

e−

q
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Real radiative corrections to Drell-Yan production

We will focus on the q(p1)q̄(p2)→ e−e+ + g(p3) process.

To obtain the real radiation corrections we need to:

calculate the tree-level amplitude M(1, 2, e−, e+, 3) for this process;

sum the absolute value-squared of the amplitude over all possible helicities,∑
hel. |M(1, 2, e−, e+, 3)|2;

average over initial state colors and spins;

integrate over the final state phase space.

This is just a tree-level amplitude, so this should be trivial, right?
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Energy and angular scaling of phase space

To see why this is not trivial, let’s look at the phase space for the radiated gluon. It is

[dp3] =
d3p3

2E3(2π)3
∼ dE3E

2
3

E3
dθ13 sin θ13 ∼ dE3E3 dθ13 sin θ13

where we have looked at the scaling of the energy E3 and of the angle θ13 between ~p3

and ~p1 (~p1 is a reference vector about which ~p3 rotates).

We will return to the angular integral shortly; for now, let’s look at the energy
integral.

The limits of the energy integral are 0 and Emax (which is defined by energy
conservation). Thus we have

Emax∫
0

dE3E3|M(1, 2, e−, e+, 3)|2.

If limE3→0 |M(1, 2, e−, e+, 3)|2 ∼ E−2
3 , then the integral does not converge on the

required interval.
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Computing the amplitude in the soft limit (1)

We therefore need to check what happens to the amplitude as E3 → 0, i.e. the soft
behavior of the amplitude. The amplitude is

M(1, 2, e−, e+, 3) = gsT
a
ij v̄(p2)

[
γµ

p̂1 − p̂3

(p1 − p3)2
ε̂− ε̂ p̂2 − p̂3

(p2 − p3)2
γµ
]
u(p1)Lµ(pe− , pe+),

where

The two terms come from the two diagrams shown,

T aij is the color matrix for the quark and gs is the strong coupling,

ε is the polarization vector for the radiated gluon,

The factor Lµ(pe− , pe+) is the same as at LO,
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Computing the amplitude in the soft limit (2)

M(1, 2, e−, e+, 3) = gsT
a
ij v̄(p2)

[
γµ

p̂1 − p̂3

(p1 − p3)2
ε̂− ε̂ p̂2 − p̂3

(p2 − p3)2
γµ
]
u(p1)Lµ(pe− , pe+)

In the limit E3 → 0:

p3 → 0 so we drop p̂3 in the numerators,

The denominators (p1 − p3)2 = −2p1 · p3 ∼ E3 and similarly
(p2 − p3)2 = −2p2 · p3 ∼ E3 so we keep these.

So we have

lim
E3→0

M(1, 2, e−, e+, 3) =gsT
a
ij v̄(p2)

[
γµ
(

p̂1

−2p1 · p3

)
ε̂− ε̂

(
p̂2

−2p2 · p3

)
γµ
]
u(p1)

×Lµ(pe− , pe+).
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Computing the amplitude in the soft limit (3)

Now use

p̂1ε̂u(p1)= pµ1 ε
νγµγνu(p1) = pµ1 ε

ν(2gµν − γνγµ)u(p1)

= (2p1 · ε− ε̂p̂1)u(p1) = (2p1 · ε)u(p1),

where the last equality follows from the Dirac equation p̂1u(p1) = 0. Similarly

v̄(p2)ε̂p̂2 = v̄(p2)(2ε · p2 − p̂2ε̂) = 2v̄(p2)(ε · p2),

using v̄(p2)p̂2 = 0.

Then

lim
E3→0

M(1, 2, e−, e+, 3) =gsT
a
ij v̄(p2)

[
γµ
(

p1 · ε
−p1 · p3

)
−
(

p2 · ε
−p2 · p3

)
γµ
]
u(p1)

×Lµ(pe− , pe+)

=−gsT aij
[
p1 · ε
p1 · p3

− p2 · ε
p2 · p3

]
v̄(p2)γµu(p1)Lµ(pe− , pe+)
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Computing the amplitude in the soft limit (4)

Recall that the LO matrix element is

M(1, 2, e−, e+) = δij v̄(p2)γµu(p1)Lµ(pe− , pe+) ≡ δijM̃(1, 2, e−, e+),

where M̃ indicates the LO matrix element without the color factor δij . This means
we can write the soft limit of the gluon emission amplitude in terms of the LO
amplitude:

lim
E3→0

M(1, 2, e−, e+, 3) = −gsT aij
[
p1 · ε
p1 · p3

− p2 · ε
p2 · p3

]
M̃(1, 2, e−, e+).
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Squaring the amplitude in the soft limit

We now need to square the amplitude. First we note

(pi · ε)(pj · ε∗) = εµε
∗
νp
µ
i p
ν
j = −pi.pj ,

using the polarization sum
∑
εµε
∗
ν = −gµν . Then we consider∣∣∣∣ p1 · ε

p1 · p3
− p2 · ε
p2 · p3

∣∣∣∣2 =
(p1 · ε)(p1 · ε∗)

(p1 · p3)2
+

(p2 · ε)(p2 · ε∗)
(p2 · p3)2

− (p1 · ε)(p2 · ε∗)
(p1 · p3)(p2 · p3)

− (p2 · ε)(p1 · ε∗)
(p1 · p3)(p2 · p3)

=
2p1 · p2

(p1 · p3)(p2 · p3)
,

where I have used p1 · p1 = p2 · p2 = 0 in the first two terms.

Therefore

lim
E3→0

|M(1, 2, e−, e+, 3)|2 = g2
s
N2
c − 1

2

2p1 · p2

(p1 · p3)(p2 · p3)
|M̃(1, 2, e−, e+)|2,

where the factor (N2
c − 1)/2 comes from squaring the T a matrix.
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Factorization in the soft gluon limit (1)

Recall that the square of the LO amplitude is∣∣M(1, 2, e−, e+)
∣∣2 = Nc|M̃(1, 2, e−, e+)|2,

where Nc is the number of colors, which comes from squaring the color factor δij .

Therefore

lim
E3→0

|M(1, 2, e−, e+, 3)|2= g2
s
N2
c − 1

2Nc

2p1 · p2

(p1 · p3)(p2 · p3)
|M(1, 2, e−, e+)|2

=Eik(1, 2, 3)|M(1, 2, e−, e+)|2,

where

Eik(1, 2, 3) = g2
sCF

2p1 · p2

(p1 · p3)(p2 · p3)
,

is the eikonal factor, and CF =
N2

c−1

2Nc
= 4

3
.
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Factorization in the soft gluon limit (2)

lim
E3→0

|M(1, 2, e−, e+, 3)|2 =Eik(1, 2, 3)|M(1, 2, e−, e+)|2.

with

Eik(1, 2, 3) = g2
sCF

2p1 · p2

(p1 · p3)(p2 · p3)
.

In the soft gluon limit, the amplitude-squared factorizes into:

the amplitude-squared for the hard (i.e. energetic) process without the gluon,
and

an eikonal factor depending only on the color charges (CF ) and momenta of the
hard partons (p1 and p2) and the momentum of the soft gluon (p3).

We have shown this factorization in the soft gluon limit for Drell-Yan production,
but in fact it is universal.

In the limit of a soft gluon emission, the amplitude-squared factorizes into
a hard amplitude-squared without the additional gluon, and an eikonal
factor which depends on the momenta and colors of the hard partons and
the momentum of the soft gluon.
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General expression for the soft gluon limit

For a generic QCD amplitude M with n partons with four-momenta p1, p2, . . . , pn
and a soft gluon with vanishing four-momentum q, the soft gluon factorization
formula isa

|M(p1, p2, . . . , pn; q)|2 = −4παsµ
2ε

n∑
i,j=1

Sij(q)~Ti · ~Tj |M(p1, p2, . . . , pn)|2 ,

where the general eikonal factor is

S(i,j)(q) =
pi · pj

(pi · q)(pj · q)
,

and the square of color charges are ~T 2
i = CF if i = q, q̄ and ~T 2

i = CA if i = g.

aS. Catani and M. Grazzini, Nucl. Phys. B570 (2000) 287.
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Applying the general soft factorization formula to DY production

If we apply this to DY production, we have

|M(p1, p2, p3)|2 = −g2
s

(
S12(p3)~Tq · ~Tq̄ |M(p1, p2)|2 + S21(p3)~Tq̄ · ~Tq |M(p1, p2)|2

)
,

using 4παs = g2
s (and ignoring the d-dimensional renormalization of αs for now).

To calculate ~Tq · ~Tq̄ = ~Tq̄ · ~Tq, we use the fact that color conservation implies

~Tq + ~Tq̄ = 0⇒
(
~Tq + ~Tq̄

)2

= 0⇒ 2CF + 2~Tq · ~Tq̄ = 0⇒ ~Tq · ~Tq̄ = −CF .

Then, using

S(1,2)(p3) = S(2,1)(p3) =
p1 · p2

(p1 · p3)(p2 · p3)
,

we recover the previous expression:

|M(p1, p2, p3)|2 = g2
s2CF

p1 · p2

(p1 · p3)(p2 · p3)
|M(p1, p2)|2 .
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Factorization in the soft gluon limit (3)

The energy scaling of the eikonal factor encountered in DY production is

Eik(1, 2, 3) = g2
sCF

2p1 · p2

(p1 · p3)(p2 · p3)
∼ 1

E2
3

,

so the energy integral for real emissions does not converge!

Emax∫
0

dE3

E3
→∞

Indeed, looking at the general factorization formula, we observe that every term has
a factor

S(i,j)(q) =
pi · pj

(pi · q)(pj · q)
∼ 1

E2
q

,

so that the energy integral does not converge for soft gluon emissions in any process!

Emax∫
0

dEq
Eq
→∞
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Angular phase space and collinear limit of the eikonal function

I will comment on the physical interpretation of these divergences and how to treat
them later.
Now, I want to return to the gluon phase space and consider the angular phase space
integral.

Recall that the gluonic phase space contained an integration over the angles

[dp3] ∼ dθ13 sin θ13
θ13→0−→ dθ13 θ13.

We can immediately see there will be trouble if we consider the emission of a gluon
that is both soft and collinear to p1:

The soft limit gives rise to the eikonal factor which has a factor
p1 · p3 = 2E1E3(1− cos θ13) in the denominator.

Applying the limit θ13 → 0 limit in addition to the soft limit, we have
p1 · p3 ∼ θ2

13 ⇒ |M|2 ∼ (p1 · p3)−1 ∼ θ−2
13 and the angular integral also does not

converge,
π∫

0

dθ13

θ13
→∞
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Collinear limit – Sudakov decomposition

So in the combined soft-collinear limit, both the energy and the angular
integrals do not converge.

What happens if we consider the emission of a hard but collinear gluon?

To answer this question, we first apply a Sudakov decomposition for the momentum
of the gluon

p3 = xp1 + yp2 + p⊥, (1)

where p1 · p⊥ = p2 · p⊥ = 0 and p⊥ = (0, p⊥ sinφ, p⊥ cosφ, 0). The gluon is onshell so

p2
3 = 0 = 2xy(p1 · p2)− p2

⊥ ⇒ sxy = p2
⊥, (2)

using the center-of-mass energy s = (p1 + p2)2 = 2p1 · p2.
Using Eqs. (1) and (2) we get the scaling in the θ13 → 0 limit:

p1 · p3 = y(p1 · p2) ∼ θ2
13 ⇒ y ∼ θ2

13

p2 · p3 = x(p1 · p2) ∼ 1⇒ x ∼ 1

⇒ sxy ∼ s θ2
13 ⇒ p⊥ ∼

√
s θ13
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Computing the amplitude in the collinear limit (1)

Recall that the q(p1)q̄(p2)→ e−e+g(p3) amplitude is

M(1, 2, e−, e+, 3) = gsT
a
ij v̄(p2)

[
γµ

p̂1 − p̂3

(p1 − p3)2
ε̂− ε̂ p̂2 − p̂3

(p2 − p3)2
γµ
]
u(p1)Lµ(pe− , pe+).

Looking at the denominators, the first term scales ∼ θ−2
13 while the second term

scales ∼ x ∼ 1.

We will need to take the absolute value-squared |M(1, 2, e−, e+, 3)|2.

Squaring the first term gives a leading singularity ∼ θ−4
13 , while the interference

between the first and second terms gives a subleading singularity ∼ θ−2
13 .

This seems to contradict our earlier statement that the leading singularity is
|M(1, 2, e−, e+, 3)|2 ∼ θ−2

13 in the soft-collinear limit – the leading singularity appears
to be much more severe.

We shall see that using physical polarization vectors for the gluons gives a further
scaling ∼ θ2

13.

Thus the leading singularity is ∼ θ−2
13 from the square of the first term, and the

interference between the first and second terms is non-singular O(1).
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Computing the amplitude in the collinear limit (2)

We will therefore only consider the first term

M(1, 2, e−, e+, 3) = gsT
a
ij v̄(p2)

[
γµ

p̂1 − p̂3

(p1 − p3)2
ε̂

]
u(p1)Lµ(pe− , pe+) +O(1),

and ignore the remaining contributions which are O(1).

Using the Sudakov decomposition we find

lim
θ13→0

M(1, 2, e−, e+, 3) =gsT
a
ij v̄(p2)

[
γµ

(1− x)p̂1 − yp̂2 − p̂⊥
(p1 − p3)2

ε̂

]
u(p1)Lµ(pe− , pe+)

+ O(1)

Since y ∼ θ2
13 we can neglect the y term in the numerator as it gives an O(1)

contribution.

Then using as before p̂1ε̂u(p1) = 2(p1 · ε)u(p1) we have

lim
θ13→0

M(1, 2, e−, e+, 3) =gsT
a
ij v̄(p2)

[
γµ

2(1− x)p1 · ε− p̂⊥ε̂
(p1 − p3)2

]
u(p1)Lµ(pe− , pe+)

+ O(1).
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Computing the amplitude in the collinear limit (3)

We then use ε · p3 = 0⇒ xε · p1 = −yε · p2 − ε · p⊥ and drop the y term as before

lim
θ13→0

M(1, 2, e−, e+, 3) =gsT
a
ij

1

(p1 − p3)2
v̄(p2)

[
−2(1− x)

x
(p⊥ · ε)γµ − γµp̂⊥ε̂

]
u(p1)

×Lµ(pe− , pe+) +O(1).

We have to take the absolute value squared of the amplitude, sum over all
polarizations and take the the trace over the gamma matrices:

lim
θ13→0

∣∣M(1, 2, e−, e+, 3)
∣∣2 =

g2
s

(p1 − p3)2

N2
c − 1

2

X

(p1 − p3)2
|Lµν |2(pe− , pe+) +O(1),

where

X= Tr

{[
v̄(p2)

(
−2(1− x)

x
p⊥ · εγµ − γµp̂⊥ε̂

)
u(p1)

]

×
[
ū(p1)

(
−2(1− x)

x
p⊥ · ε∗γν − ε̂∗p̂⊥γν

)
v(p2)

]}
.
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Computing the amplitude in the collinear limit (4)

Using the spinor sums

X= Tr

{[
v̄(p2)

(
−2(1− x)

x
p⊥ · εγµ − γµp̂⊥ε̂

)
u(p1)

]

×
[
ū(p1)

(
−2(1− x)

x
p⊥ · ε∗γν − ε̂∗p̂⊥γν

)
v(p2)

]}

=
4(1− x)2

x2
(p⊥ · ε)(p⊥ · ε∗)Tr {p̂2γ

µp̂1γ
ν}+ Tr {p̂2γ

µp̂⊥ε̂p̂1ε̂
∗p̂⊥γ

ν}

+
2(1− x)

x
(p⊥ · ε)Tr {p̂2γ

µp̂1ε̂
∗p̂⊥γ

ν}+
2(1− x)

x
(p⊥ · ε∗)Tr {p̂2γ

µp̂⊥ε̂p̂1γ
ν} ,

Using the sum over polarization vectors
∑
εµε
∗
ν = −gµν allows us to simplify the

traces:

(p⊥ · ε)(p⊥ · ε∗)= −p2
⊥

(p⊥ · ε)Tr {p̂2γ
µp̂1ε̂

∗p̂⊥γ
ν}= −p2

⊥Tr {p̂2γ
µp̂1γ

ν}
Tr {p̂2γ

µp̂⊥ε̂p̂1ε̂
∗p̂⊥γ

ν}= −Tr {p̂2γ
µp̂⊥γ

ρp̂1γρp̂⊥γ
ν}= 2Tr {p̂2γ

µp̂⊥p̂1p̂⊥γ
ν}

= −2p2
⊥Tr {p̂2γ

µp̂1γ
ν}
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Computing the amplitude in the collinear limit (5)

Thus

X = −2p2
⊥

(1− x)2 + 1

x2
Tr {p̂2γ

µp̂1γ
ν} .

Note that since p⊥ ∼ θ13 and x ∼ 1, we have X ∼ θ2
13 – i.e. the additional scaling

mentioned earlier.

This justifies considering only the leading singular term, as all other terms are
non-singular ∼ O(1) in the collinear limit.

The use of physical gluon polarization vectors in the sum
∑
εµε
∗
ν = −gµν was

essential in computing his behavior for X.

We can use this result for the square of the amplitude in the collinear limit:

lim
θ13→0

∣∣M(1, 2, e−, e+, 3)
∣∣2=

g2
s

(p1 − p3)2

N2
c − 1

2

X

(p1 − p3)2
|Lµν |2(pe− , pe+) +O(1)

= g2
s
N2
c − 1

2

−2p2
⊥

(p1 − p3)2

1

(p1 − p3)2

(1− x)2 + 1

x2

×Tr {p̂2γ
µp̂1γ

ν} |Lµν |2(pe− , pe+) +O(1).
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Computing the amplitude in the collinear limit (6)

lim
θ13→0

∣∣M(1, 2, e−, e+, 3)
∣∣2= g2

s
N2
c − 1

2

−2p2
⊥

(p1 − p3)2

1

(p1 − p3)2

(1− x)2 + 1

x2

×Tr {p̂2γ
µp̂1γ

ν} |Lµν |2(pe− , pe+) +O(1).

Now use the Sudakov decomposition p3 = xp1 + yp2 + p⊥ to write

(p1 − p3)2 = −2p1 · p3 = −2yp1 · p2 = −ys,

and recall that we had p2
⊥ = sxy ⇒ −2p2⊥

(p1−p3)2
= 2x.

Then

lim
θ13→0

|M(1, 2, e−, e+, 3)|2 =g2
s
N2
c − 1

2

1

(p1 − p3)2
2

(1− x)2 + 1

x(1− x)

×Tr {p̂2γ
µp̂1(1− x)γν} |Lµν |2(pe− , pe+).

We have the correct scaling |M(1, 2, e−, e+, 3)|2 ∼ θ−2
13 for the leading singularity,

and have dropped the terms ∼ O(1).
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Factorization in the collinear limit (1)

The Sudakov decomposition also implies, in the collinear limit, x = E3
E1

.

So let’s consider a LO amplitude with the momentum p1 rescaled as
p1 → (1− x)p1 = E1−E3

E1
p1.

This means that the energy of the quark is rescaled as E1 → E1−E3
E1

E1 = E1 − E3.

Calling this amplitude M(1− 3, 2, e−, e+), we find (recalling the earlier expression
for the LO amplitude-squared)∣∣M(1− 3, 2, e−, e+)

∣∣2 = NcTr {p̂2γ
µp̂1(1− x)γν} |Lµν |2(pe− , pe+).

Thus we find

lim
θ13→0

|M(1, 2, e−, e+, 3)|2= g2
sCF

1

(p1 − p3)2
2

(1− x)2 + 1

x(1− x)
|M(1− 3, 2, e−, e+)|2

=−2g2
s

1

(p1 − p3)2
Pqq

(
E1

E1 − E3

)
|M(1− 3, 2, e−, e+)|2,

where Pqq(z) = CF
1+z2

1−z .
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Factorization in the collinear limit (2)

lim
θ13→0

|M(1, 2, e−, e+, 3)|2 =−2g2
s

1

(p1 − p3)2
Pqq

(
E1

E1 − E3

)
|M(1− 3, 2, e−, e+)|2.

In the collinear limit, the amplitude-squared factorizes into:
I a hard process without the gluon and with a rescaled momentum for the quark,

and
I a splitting function Pqq(z) which depends only on the color charges (CF ) and the

energies of the two collinear partons, E1 and E3.

The splitting function Pqq
(

E1
E1−E3

)
gives the probability for the collinear

emission a gluon of energy E3 from a “parent” quark with energy E1, leaving a
quark carrying a momentum E1−E3

E1
p1 to enter the hard process.

p1

p3

E1−E3
E1

p1

Pqq M(1− 3, 2)
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Factorization in the collinear limit (2)

We have shown this factorization for the collinear emission of a gluon for Drell-Yan
production, but it is also universal:

In the limit of a gluon emission which is collinear to a quark, the
amplitude-squared factorizes into a splitting function giving the
probability of the collinear emission of the gluon at a given energy by the
quark, and a hard amplitude-squared involving the momentum of the
quark after the gluon emission.

In the collinear limit, the scaling with the angle is

lim
θ13→0

|M(1, 2, e−, e+, 3)|2 ∼ 1

(p1 − p3)2
∼ (1− cos θ13)−1 ∼ θ−2

13 ,

so the angular integral for real emissions does not converge!

π∫
0

dθ13

θ13
→∞

Because of the universality of factorization, this is true for real gluon emission
corrections to any process!
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Recap: energy and angular integrals in gluon emissions

We have seen that gluon emissions lead to the integrals

Emax∫
0

dE3

E3
;

π∫
0

dθ13

θ13
;

π∫
0

dθ23

θ23
,

in the soft gluon limit E3 → 0 and the collinear limits θ13 → 0 and θ23 → 0,
respectively. These integrals do not converge.

Note that it is only the leading soft and collinear terms which do not converge.
Subleading terms in the soft and collinear limits give rise to the integrals

Emax∫
0

dE3;

π∫
0

dθ13;

π∫
0

dθ23,

which do converge.
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Other emissions

Before we address the problem of the non-converging soft and collinear integrals, let’s
look at what happens to other partons in the soft and collinear limits. For example,
we know we have to consider the channel

q(p1)g(p2)→ e−e+q(p3)

in the real corrections to Drell-Yan production. What happens if the final state
quark becomes soft, E3 → 0?

The amplitude is

M(1q, 2g, e
−, e+, 3q) = gsT

a
ij ū(p3)

[
ε̂
p̂2 − p̂3

(p2 − p3)2
γµ
]
u(p1)Lµ(pe− , pe+).

Setting p̂3 → 0 in the numerator, squaring and summing over spins, we find

1

(−2p2 · p3)2
Tr {p̂2ε̂

∗p̂3ε̂p̂2γ
µp̂1γ

ν} = − 1

(−2p2 · p3)2
Tr {p̂2γ

ρp̂3γρp̂2γ
µp̂1γ

ν}

using
∑
εµε
∗
ν = −gµν .
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Soft quark emission

Using γρp̂3γρ = γρ(2p3,ρ − γρp̂3) = −2p̂3 we have

− 1

(−2p2 · p3)2
Tr {p̂2γ

ρp̂3γρp̂2γ
µp̂1γ

ν}= 2
1

(−2p2 · p3)2
Tr {p̂2p̂3p̂2γ

µp̂1γ
ν}

= 2
1

(−2p2 · p3)2
Tr {(2p2 · p3 − p̂3p̂2)p̂2γ

µp̂1γ
ν}

= 2
1

(−2p2 · p3)
Tr {p̂2γ

µp̂1γ
ν} ∼ 1

E3
,

where I have used p̂2p̂2 = p2 · p2 = 0.

Thus soft quark emission gives rise to a convergent integral – there are no
divergences associated with soft quark or antiquark emissions!
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Collinear emissions

There are, however, divergences in q(p1)g(p2)→ e−e+ + q(p3) that arise if the final
state quark becomes collinear to the initial state gluon, i.e. θ23 → 0.
In this limit, the amplitude factorizes as before, with the rescaled quark entering the
hard process. However, the splitting function changes. We can determine the form of
the new splitting function by modifying Pqq.

We first consider the color factor of the splitting function. Since the real emission
and LO initial states are now different (qg and qq̄ respectively), we now need to take
into account the color averaging of the initial states

〈qg〉 =
1

Nc(N2
c − 1)

〈qq̄〉 =
1

N2
c

.

We then need to multiply the color factor by the 〈qg〉/〈qq̄〉 = Nc/(N
2
c − 1), so the

color factor becomes CFNc/(N
2
c − 1) = 1/2 = TR.

The argument of the splitting function changes by E1 ↔ E3, becoming E3/(E3 − E1).
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Collinear emission of a final state quark

Putting this together, we can rewrite the splitting function for an emitted quark
becoming collinear to an initial state gluon as

Pqg(z) = TR(z2 + (1− z)2).

with z = 1− E3/E1.

p1

p3

E1−E3
E1

p1

Pqg M(1− 3, 2)

There are also splitting functions that don’t appear in Drell-Yan but do arise in other
processes, e.g. in g(p1)g(p2)→ H + g(p3) when θ13 → 0.
As before, in these collinear limits the amplitude factorizes into a hard process
involving a parton with rescaled momentum, and a splitting function.
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Other collinear emissions

In general, for a splitting a→ bc with c collinear to a and b entering the hard
process, the associated splitting function is called Pba.

We have already seen a quark entering the hard process after the splittings
q → qg and g → qq̄, with splitting functions Pqq and Pqg respectively.

We can also have a gluon entering the hard process, after the splitting g → gg or
q → gq, with splitting functions Pgg and Pgq.

p1

p3

E1−E3
E1

p1

Pqg M(1− 3, 2)

p1

p3

E1−E3
E1

p1

Pgq M(1− 3, 2)
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Handling infrared divergences (1)

We have now seen that infrared divergences:

appear whenever emitted gluons become soft, or when a parton is emitted
collinear to another parton,

give rise to universal factorizations, characterized by eikonal functions for
soft emissions and splitting functions for collinear emissions,

lead to phase space integrals that do not converge.

Usually the appearance of infinities indicates that there is something wrong with our
approach.

Perhaps because we are using gluons and quarks as degrees of freedom below the
QCD scale ΛQCD?

We could then try to introduce an IR cutoff at ΛQCD:

Emax∫
ΛQCD

dE3

E3
;

π∫
ΛQCD

dθ13

θ13
;

π∫
ΛQCD

dθ23

θ23
,

which gives rise to terms ∼ log(ΛQCD) – i.e. our perturbative calculation is now
sensitive to non-perturbative effects.
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Handling infrared divergences (2)

This is also a problem as we have no method for analytically calculating
non-perturbative QCD effects from first principles.

Thankfully, it is not the end of the story.

Recall that for a NLO calculation, we also need to include the virtual contributions.
When we compute these, we see infrared divergences arising from loop integrals when
the loop momentum becomes soft and/or collinear to another parton.

The infrared divergences are guaranteed to cancel when we sum the real and virtual
corrections (Bloch-Nordsieck and Kinoshita-Lee-Nauenberg theorems).

This means that perturbative QCD corrections are insensitive to the IR physics.

The presence of IR divergences in the real and virtual corrections separately is an
indication that this separation is not physical, it is something we impose as a way of
organizing the calculation.

We will see the cancellation of poles for color singlet production explicitly in
tomorrow’s lecture.
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Regularizing infrared divergences

To combine real emission and virtual corrections, we need a way of regularizing the
divergences that appear in the phase space integrals so that they become
manageable. With the virtual corrections in mind, a natural approach is to treat the
dimensions of space-time as a non-integer d = 4− 2ε, with the aim of taking the limit
ε→ 0 at the end of the calculation.

We start with the d-dimensional phase space measure

[dp] =
|~p|d−2d|~p| dΩd−1

2p0(2π)d−1
=
Ed−3dE dΩd−1

2(2π)d−1
, (3)

where we have used, for a massless particle, |~p| = p0 = E. The angular phase space is
defined recursively

dΩd−1 = d cos θ(1− cos2 θ)d/2−2dΩd−2

and the solid angle is given by

Ωd =
2πd/2

Γ(d/2)

where Γ is the Euler gamma function. We can easily check by setting d = 4 that we
recover the usual four-dimensional phase space measure.

Raoul Röntsch (KIT) Infrared subtractions Hangzhou, China 40 / 43



Soft and collinear factorization in d-dimensions (1)

In d-dimensions, the factorization expressions in the soft and collinear limits should
include a renormalization scale µ2ε to balance the E−2ε

3 that now appears in the
energy integration measure.
We already saw this µ2ε in the expression for the universal soft gluon factorization:

|M(p1, p2, . . . , pn; q)|2 = −4παsµ
2ε

n∑
i,j=1

Sij(q)~Ti · ~Tj |M(p1, p2, . . . , pn)|2 ,

The splitting functions Pij also acquire terms dependent on ε, e.g.

Pqq(z) = CF

(
1 + z2

1− z +ε(1− z)
)
.
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Evaluating soft and collinear integrals in d-dimensions

In the soft limit, the energy integral is now

Emax∫
0

dE3
E1−2ε

3

E2
3

=

Emax∫
0

dE3

E1+2ε
3

= − 1

2ε
E−2ε

max = − 1

2ε
+O(ε0).

The collinear integral is

+1∫
−1

d cos θ(1− cos2 θ)d/2−2

1− cos θ
=

1∫
0

dx

(4x(1− x))ε
1

x
= 2−2εB(−ε, 1− ε)

where I have used x = 1−cos θ
2

in the first equality, and the definition of the Euler
Beta-function B in the second equality. Using xΓ(x) = Γ(1 + x)

2−2εB(−ε, 1− ε) = 2−2εΓ(−ε)Γ(1− ε)
Γ(1− 2ε)

= −2−2ε

ε

Γ2(1− ε)
Γ(1− 2ε)

= −1

ε
+O(ε0),

So both the soft and collinear integrals can now be evaluated, and give rise to 1/ε
poles which capture the singularities in the real corrections.
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Preview of next lecture

When we sum the real and virtual corrections, these 1/ε poles are guaranteed to
cancel against the 1/ε poles that appear in the virtual corrections.

This leaves a finite result and allows us to take the limit ε→ 0 to recover the usual
four space-time dimensions.

However, summing the real and virtual corrections in such a way as to cancel the
1/ε poles is not straightforward. This is due to the different number of final
state particles: the virtual corrections inhabit an n-particle phase space while the
real corrections inhabit an (n+ 1)-particle phase space.

The methods of manipulating the real corrections to allow the cancellation of the
poles are called subtraction schemes and will be the topic of the next two lectures.
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