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Outline of lectures

o Lecture 1: The origin and universality of infrared divergences in
QCD:
» Infrared singularities due to soft and collinear radiation.
» Universal factorization of infrared radiation.
» Interpretation of infrared singularities.
> Regularization in d-dimensions.
o Lecture 2: Infrared subtractions at next-to-leading order:
> Introduction to the Frixione-Kunszt-Signer subtraction scheme.
> Extraction of soft and collinear poles in color singlet production.
» Partial cancellation of poles between real and virtual corrections.
> Pdf renormalization and cancellation of remaining poles.
> Final result for fully finite NLO correction.
o Lecture 3: Infrared subtractions at next-to-next-to-leading order:
» Obstacles to treating singularities at NNLO.
» Overview of different NNLO subtraction schemes.

> Extension of FKS subtraction scheme — Nested soft-collinear subtraction.
Independence of soft and collinear radiation, phase space partitioning and sector
decomposition.

> (Sketch of) Extraction and cancellation of poles in NNLO corrections to color
singlet production.
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Useful references

@ The calculation of the soft and collinear limit:
S. Catani and M. Grazzini, Nucl. Phys. B570 (2000) 287. [hep-ph/9908523]

o The expression for infrared poles appearing in loop amplitudes:
S. Catani, Phys. Lett. B427 (1998) 161 [hep-ph/9802439]

e “QCD and Collider Physics”, R. K. Ellis, W. J. Stirling and B. R. Webber,
Cambridge University Press (1996).
The IR behavior of QCD is discussed in Chapter 4.3.

e F. Caola, K. Melnikov, R. Réntsch, Eur. Phys. J. C77 (2017) 248
[hep-ph/1702.01352].
The second lecture will follow section 3 of this paper quite closely, and the third
lecture will summarize sections 4 and 8.

o The original references for FKS subtraction:
S. Frixione, Z. Kunszt, A. Signer Nucl. Phys. B467 (1996) 399 [hep-ph/9512328]
S. Frixione, Nucl. Phys. B507 (1997) 295 [hep-ph/9706545]

e Sector decomposition for NNLO subtractions:
M. Czakon, Phys. Lett. B693 (2010) 259 [hep-ph/1005.0274]
M. Czakon, Nucl. Phys. B849 (2011) 250 [hep-ph/1101.0642]
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Lecture 1: The origin and universality of infrared
divergences in QCD
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Preliminary remarks (1)

Perturbative QCD corrections can be divided into two types: real radiation and
virtual (loop) corrections.
o Different final state multiplicity: virtual corrections have n particles, real
corrections have n + 1.

Real and virtual corrections have no physical meaning by themselves:

» We cannot speak of “virtual” or “real radiation” cross sections — only a cross
section (or differential distribution) at LO, NLO, NNLO, etc.

» The division is thus purely for our convenience as we organize the calculation of a
perturbative correction.

Real and virtual corrections are fundamentally linked by their infrared (IR, i.e.
low energy) behavior.

The calculation of loop amplitudes for virtual corrections is being covered by
Simon Badger and Lorenzo Tancredi.

o I will focus on the real radiation corrections in these lectures.
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Drell-Yan production

I will frequently use Drell-Yan production as a test process.
This is just the production of an electron-positron pair at a hadron collider.
At the partonic level at LO this is

qq — e_e+,

and proceeds through the exchange of an offshell photon v* or a Z-boson.

q et

vz

=Y
2y

The matrix element for this is

M(1,2,e7, ") = 6i0(p2) v u(p1) L (pe— , pet ) = 8, M(1,2,e7 ™),

where the factor L, (p.—,p.+) contains the lepton vertex and photon and Z-boson
propagators, which are not relevant for our purposes.

Raoul Réntsch (KIT) Infrared subtractions Hangzhou, China 6 / 43




LO amplitude squared for DY production

The LO matrix element for Drell-Yan production is

M(L,2,e7,e") = 6i;0(p2) v u(p1) Ly (Pe— s et ) = 8iM(1,2,6 ™).

We will need its absolute value-squared in this lecture.

Squaring the color factor d;; gives the number of colors Ne:
IM(L,2,e7,e)|* = Ne|M(1,2,e7,e)%
In more detail

DoIM(1,2,e7 ") P= Ne D [o(p2)r" w(pr) Lu(pe- pet )|

hel. hel.

= Ne ) Tr {o(p2)7" w(pr)a(p1)y" v(p2)} | Ll (Pe- Pet)
hel.

= NeTr {p27"p17" } L2 (Pe—, Dot ),

where we used the spinor sums in the final equality, and the notation p = p*v, (you
may be more familiar with the Feynman-slash notation).
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Real corrections to Drell-Yan production

Real radiative corrections to DY production come from the emission of a gluon in the
final state

a(p1)a(p2) — e"e" + g(ps)
and the partonic crossings

a(p1)g(p2) — e e + q(ps) 9(p1)a(p2) — e e + q(ps).

(We should also include the gg, gg and gg channels, but these can be obtained by a
swap p1 <> p2.)

B
(§ —————{OOTD I q *M
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Real radiative corrections to Drell-Yan production

We will focus on the ¢(p1)G(p2) — e~ e™ + g(p3) process.

To obtain the real radiation corrections we need to:

o calculate the tree-level amplitude M(1,2,e,e",3) for this process;

e sum the absolute Value squared of the amplitude over all possible helicities,

Zhel |M(1 2 e 76 ) )|2

e average over initial state colors and spins;

e integrate over the final state phase space.

This is just a tree-level amplitude, so this should be trivial, right? )
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Energy and angular scaling of phase space

To see why this is not trivial, let’s look at the phase space for the radiated gluon. It is

d? dE;E3 , ,
[dp3] = 2E3(12)jr)3 ~ EZ J d913 Sin 013 ~ dE3E3 d913 Sin 913

where we have looked at the scaling of the energy 5 and of the angle 613 between p3
and p1 (p1 is a reference vector about which ps rotates).

We will return to the angular integral shortly; for now, let’s look at the energy
integral.

The limits of the energy integral are 0 and Emax (which is defined by energy
conservation). Thus we have

Emax
/dE3E3|M(172,e_,e+,3)|2.
0

If limp, o0 [M(1,2,e7,e",3)|> ~ E5?, then the integral does not converge on the
required interval.
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Computing the amplitude in the soft limit (1)

We therefore need to check what happens to the amplitude as E3 — 0, i.e. the soft
behavior of the amplitude. The amplitude is

w P1—P3 . . Pa—Ps3
€ — €

M 17276_76+73 :gsTia'T) p2 s
( )= ) [ G e e =)

2 ’YM u(pl)LM(pe* 7pe+)7

where
o The two terms come from the two diagrams shown,

o T is the color matrix for the quark and g is the strong coupling,

€ is the polarization vector for the radiated gluon,

The factor L, (p.—,p.+) is the same as at LO,
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Computing the amplitude in the soft limit (2)

M(1,2,67,%,3) = g To(p2) |7 oo é — e 22 P8t u(p) Ly (e, Pt
( ) J ( ) Y (p1—p3)2 (p2_p3)2’7 ( ) M( )

In the limit E3 — 0:
@ p3 — 0 so we drop ps in the numerators,

o The denominators (p1 — p3)® = —2p1 - p3 ~ F3 and similarly
(p2 — p3)® = —2p2 - p3 ~ B3 so we keep these.

So we have

lim M(1,2,e,e",3) =g, T0 » <p71> é—e<L> “] u
Sim, M( ) =9sT3;0(p2) [v s —— o s ) 7 | 4PV

XLM(pe* 7pe+)’
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Computing the amplitude in the soft limit (3)

Now use

préu(pr)= py " yuvvu(pr) = pi'e” (20 — Yovu)u(p1)
= (2p1 - € — ép1)u(p1) = (2p1 - €)u(pr),

where the last equality follows from the Dirac equation p1u(pi) = 0. Similarly

T(p2)ép2 = B(p2)(2€ - p2 — P2é) = 20(p2)(€ - p2),

using v(p2)p2 = 0.

Then

lim M(1,2,e,e",3) =g T50 i _pre >_< P2 ) u}u
e Sl ) =9sT50(p2) {7 (_plm e o} (p1)

XL#(pe* 7pe+)

o € e | _
==g 15, [L - L] B(p2)y u(p1) Ly (pe—» pet)

Pp1-Dp3 p2 - p3
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Computing the amplitude in the soft limit (4)

Recall that the LO matrix element is
M(1,2,e7,e") = 650(p2)7V" w(p1) Lu(pe- Pt ) = 65, M (1,2, e™),

where M indicates the LO matrix element without the color factor d;;. This means
we can write the soft limit of the gluon emission amplitude in terms of the LO
amplitude:

lim M(1,2,e”,e",3) = — T“{ 6—”26]/\4(126, .
E3—0 pP1-p3  Dp2-p3
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Squaring the amplitude in the soft limit
We now need to square the amplitude. First we note

(i - €)(p; - €°) = enerpl’ps = —pi-pj,

using the polarization sum ) €,€;, = —g,,. Then we consider

proc _prel _(p-9pi-€)  (p2-)(p2-€)
P1-p3s  Pp2-p3 (p1 - p3)? (p2 - p3)?
(pr-€)(p2-€’)  (p2-€)(p1-€)
(p1-p3)(p2-p3)  (p1-ps)(p2 - ps)
_ 2p1 - p2

(p1 - p3)(p2 'p3)7

where I have used p; - p1 = p2 - p2 = 0 in the first two terms.

Therefore

SN2 —1 2p1 - p2

lim |[M(1,2,e ,et,3)|* =
Eﬁo| ( W=y 2 (p1-p3)(p2-ps3)

IM(1,2,e,eh)?,

where the factor (N2 — 1)/2 comes from squaring the 7 matrix.

v
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Factorization in the soft gluon limit (1)

Recall that the square of the LO amplitude is
|./\/l(l,2,e_,e+)|2 = NC|M(1,2,6_,6+)|2,

where N, is the number of colors, which comes from squaring the color factor J;;.

Therefore

. _ N2 -1 2p1 - p2
lim |M(1,2,e,e",3)?= g2=<
Es—>0| ( =9 2N:  (p1-p3)(p2 - ps)

=Eik(1,2,3)|M(1,2,e,e)[?,

|IM(1,2,e7,eM)?

where 5
. P1 - P2
Eik(1,2,3) = g°Cp——2 2
( ) =g (p1 - p3)(p2 - p3)
o . N2_1 4
is the eikonal factor, and Cr = SN = 3
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Factorization in the soft gluon limit (2)

lim_ IM(1,2,e7,et,3)> =Eik(1,2,3)|M(1,2,e,e")|%.

E3—
with

. 2p1 - p2
Eik(1,2,3) = g2Cp— 2L P2
( )= (o1 ps)(p2 - ps)

In the soft gluon limit, the amplitude-squared factorizes into:
e the amplitude-squared for the hard (i.e. energetic) process without the gluon,
and

e an eikonal factor depending only on the color charges (C'r) and momenta of the
hard partons (p1 and p2) and the momentum of the soft gluon (ps).

We have shown this factorization in the soft gluon limit for Drell-Yan production,
but in fact it is universal.

In the limit of a soft gluon emission, the amplitude-squared factorizes into
a hard amplitude-squared without the additional gluon, and an eikonal
factor which depends on the momenta and colors of the hard partons and
the momentum of the soft gluon.

v
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General expression for the soft gluon limit

For a generic QCD amplitude M with n partons with four-momenta p1,pa, ..., pn
and a soft gluon with vanishing four-momentum ¢, the soft gluon factorization
formula is®

n
IM(p1,p2, -, pn; @)° = —dmasp® Y Siy(@)Ts - Ty IM(p1, 2, - -, pa) [,
4,j=1
where the general eikonal factor is

SN (g) = —PiPi
@ (pi-9)(p; - q)

and the square of color charges are T? =Crifi=gq,q and 7_";2 =Caifi=g.

?S. Catani and M. Grazzini, Nucl. Phys. B570 (2000) 287.
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Applying the general soft factorization formula to DY production

If we apply this to DY production, we have
M (P, p2, pa)|* = g3 (S1a(ps) Ty - Ty M (p, p2)” + Sa (o) Ty - Ty [M(p, o))

using 47as = g2 (and ignoring the d-dimensional renormalization of as for now).

To calculate fq . ’1_":; = T:i . fq, we use the fact that color conservation implies
= = = -\ 2 = = = =
T+ To=0= (Tq—l—Tg) = 0= 2Cr + 2T, Ty = 0= Ty Ty = —Ch.

Then, using

81 (pg) = 8@V (pg) = %’

we recover the previous expression:

M(p1,p2,p3)* = g22Cr —- P2 | M(py, o) 2.
| (pl p2 p3)| g F(pl -p3)(p2 .p3) ‘ (pl p2)|
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Factorization in the soft gluon limit (3)

The energy scaling of the eikonal factor encountered in DY production is

. 2p1 - p2 1
Eik(1,2,3) = 2Cp—Pr P2
( )=9 F(pl -p3)(p2 - p3) E3

so the energy integral for real emissions does not converge!

Indeed, looking at the general factorization formula, we observe that every term has
a factor 1
560 (g) = =F— ~ 5o,
Pi-q)(p;-a0) Ej

so that the energy integral does not converge for soft gluon emissions in any process!

Emax

v
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Angular phase space and collinear limit of the eikonal function

I will comment on the physical interpretation of these divergences and how to treat
them later.

Now, I want to return to the gluon phase space and consider the angular phase space
integral.

Recall that the gluonic phase space contained an integration over the angles

[dpg] ~ d013 sin 013 613_~>>0 d913 013.

We can immediately see there will be trouble if we consider the emission of a gluon
that is both soft and collinear to pi:
The soft limit gives rise to the eikonal factor which has a factor
p1 - ps = 2E1E3(1 — cos 613) in the denominator.
Applying the limit 613 — 0 limit in addition to the soft limit, we have
p1-p3 ~ 033 = [M|? ~ (p1-p3) "' ~ 0752 and the angular integral also does not
converge,
db13
013
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Collinear limit — Sudakov decomposition

So in the combined soft-collinear limit, both the energy and the angular
integrals do not converge. J

What happens if we consider the emission of a hard but collinear gluon?

To answer this question, we first apply a Sudakov decomposition for the momentum
of the gluon

ps =ap1 +yp2 +pu, (1)
where p1 -p1L =p2-p1L =0 and pi. = (0,p. sin¢, pi cosd,0). The gluon is onshell so
p3 =0=2zy(p1 - p2) —pl = sy =p1, (2)

using the center-of-mass energy s = (p1 + p2)? = 2p1 - pa.
Using Egs. (1) and (2) we get the scaling in the 613 — 0 limit:

p1-ps = y(p1-p2) ~ 013 =y ~ 03
p2-ps=x(p1-p2) ~1=z~1

:sxyws@fg = pL ~ /s 013
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Computing the amplitude in the collinear limit (1)
Recall that the q(p1)G(p2) — e~ e g(ps) amplitude is

M(1,2,e”,e",3) = g T p PP oo D273 |0 o Dot ).
( ) = gsT350(p2) | 01— ps)? 2 —pa)? (p1)Lu(Pe— s Pet)

Looking at the denominators, the first term scales ~ 673> while the second term
scales ~ z ~ 1.

We will need to take the absolute value-squared |M(1,2,e,e™,3)[%

Squaring the first term gives a leading singularity ~ 6’134, while the interference
between the first and second terms gives a subleading singularity ~ 01_32.

This seems to contradict our earlier statement that the leading singularity is
IM(1,2,e et 3)|2 ~ 01_32 in the soft-collinear limit — the leading singularity appears
to be much more severe.

We shall see that using physical polarization vectors for the gluons gives a further
scaling ~ 6%;.

Thus the leading singularity is ~ 7, from the square of the first term, and the
interference between the first and second terms is non-singular O(1).
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Computing the amplitude in the collinear limit (2)

We will therefore only consider the first term

M(17 27 6_7 €+7 3) = gSTz“l]’D(p2) {Wuﬁé] u(pl)L/t(pe— 7pe+) + 0(1)7

and ignore the remaining contributions which are O(1).

Using the Sudakov decomposition we find

. - + _ a u(l_x)ﬁl_yﬁ2_ﬁJ_A
GE;IEOM(L 2, eme 73) _gsT’L]U(p2) |:’Y (pl — p3)2 5:| u(pl)LH(pe— 7pe+)

+0(1)
Since y ~ 073 we can neglect the y term in the numerator as it gives an O(1)
contribution.

Then using as before p1éu(pi) = 2(p1 - €)u(p1) we have

. _ B 2l —x)p1-e—pLé
+ = g H =
G}EEOM(]-’Q’e 76 73) _gSTl]U(pQ) ’Y (pl _p3)2 u(pl)LM(pe 7pe+)

+ 0(1).

v
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Computing the amplitude in the collinear limit (3)

We then use € - p3 =0 = ze-p1 = —ye-p2 — €-p. and drop the y term as before

—2(1—x)

lirno./\/l(l7 2,e,e",3) =g.T;;

013 —

1
(p1 — p3)? o(p2)
XLy(pe—, Pe+ ) + O(1).

(pr -V —"pré| ulpr)

We have to take the absolute value squared of the amplitude, sum over all
polarizations and take the the trace over the gamma matrices:

2 2
_ NZ—1 X
im [M(1,2,e,et,3)° = —2 < Luv|*(pe-, pet) + O(1),
913—>0‘ ( ) (pr —p3)? 2 (:01—133)2| wl (pespet) W
where

X= Tr{ [17(172) (#m eyt — VMﬁﬁ) u(Pl)]

X [ﬂ(m) (@m €'y — é*ﬁLWU> U(pz)] }
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Computing the amplitude in the collinear limit (4)

Using the spinor sums
—2(1 —=x .
X= Tr{ {ﬁ(pz) (%m eyt - 7“me> U(Pl):|

X {a(pl) <#1)L Jelai= é*ﬁl’yu) U(m)} }

4 1—=x 2 - a a v A~ A AA AR A v
= Q(w ~€)(pL - €)Tr {p2y"p1y"'} + Tr {Pay"'prépré™py”}

.’L’2
2(1 — x N A o v 2(1 —z ® A A An v
+7( - )(m ~e)Tr {p2ypr€pLy”} + -2 . )(m € )Tr {pay"pLéprv”},

Using the sum over polarization vectors ) €,€, = —g,. allows us to simplify the
traces:

(pr-€)(pL-€)=—pl
(p1 - OTr {poy"pr€"pry" }= —p1 Tr {poy"pr17"}
Tr {p2y*p1ép1E"p1y" = —Tr {P2y*P 1y DrvpeP1y” }= 2Tx {Pav*Puprp1 7"}
= —2p Tr {pov"p17"}

v
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Computing the amplitude in the collinear limit (5)

Thus 5

1—-2)°+1 R .
X = —%ﬁ%ﬂ {p2y"p1v"} .
Note that since p; ~ 613 and © ~ 1, we have X ~ 673 — i.e. the additional scaling
mentioned earlier.
This justifies considering only the leading singular term, as all other terms are
non-singular ~ O(1) in the collinear limit.

The use of physical gluon polarization vectors in the sum Y e, €5 = —gu, was
essential in computing his behavior for X.

We can use this result for the square of the amplitude in the collinear limit:

92 N2-1 X

lim |M(1,2,e”,e",3 = L2 (0o, pot) + O(1
913~>0| ( )’ (b1 —ps)? 2 (pl—p3)2‘ po|” (De— s De+) (1)
:g2Nc2_1 —2p7 1 1-xz)?+1
* 2 (pr—p3)? (p1—ps3)? 22

xTr {ﬁQ’Yuﬁlfyy} |LHV|2(pe* 7pe+) + 0(1)
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Computing the amplitude in the collinear limit (6)

2 oNZ—-1 —2p% 1 11—z +1

lim |[M(1,2,e ,e",3)] = ¢
913—>0’ ( )I'=9 2 (p1—p3)? (p1 —p3)? z?
XTI' {ﬁ2,}/ﬂﬁlfyl’} |LHV|2(pe_ 7pe+) + 0(1)

W
Now use the Sudakov decomposition ps = zp1 + yp2 + p.1 to write
(p1 — p3)* = —2p1 - p3 = —2yp1 - p2 = —ys,
2 —2p3
and recall that we had p{ = szy = m = 28,
Then
_ NZ -1 1 Q—z)+1
lim |[M(1,2,e,e",3)]* =g —¢
913ﬁ>0| ( )" =g; 2 (p1—p3)? z(l-x)
xTr {ﬁQVHﬁl(l - x),yl/} |LMV|2(pe_ s Pet )
We have the correct scaling |M(1,2,e,e™,3)|> ~ 075 for the leading singularity,
and have dropped the terms ~ O(1).
v
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Factorization in the collinear limit (1)

The Sudakov decomposition also implies, in the collinear limit, x = E—i’

So let’s consider a LO amplitude with the momentum p; rescaled as

p1— (1—x)p1 = ElE;l%pl-

This means that the energy of the quark is rescaled as E; — E1§1E3 FE1 = FE1 — Es.
Calling this amplitude M(1 —3,2,e™,e"), we find (recalling the earlier expression
for the LO amplitude-squared)

— 2 ~ ~ v
’M(l - 37276 7e+)| = NﬁTr {pzﬁ}/#pl(l - IIJ')’Y } |LMV|2(pe—7pe+)'

Thus we find

1 (1—xz)>+1
(p1—ps)* z(l-=)

1 E _
:_292 qu < : )'M(1_3727€ 7€+)|2,

lim |M(1,2,e",e",3)|*= g2Cr M1 —-3,2,e,eh)?
613—0

Ey — E3

2
where Pyq(z) = Cpite.
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Factorization in the collinear limit (2)

. _ E
lim |M(1,2,e,e",3)]> =—2¢7 !

1-3,2,e e
613—0 (p1*p3)2qu <E17E3)|M( 3‘ € € )‘

o In the collinear limit, the amplitude-squared factorizes into:
a hard process without the gluon and with a rescaled momentum for the quark,
and
a splitting function Pyq(z) which depends only on the color charges (Cr) and the
energies of the two collinear partons, E; and E3.
e The splitting function Pyq <ﬁ) gives the probability for the collinear
emission a gluon of energy E3 from a “parent” quark with energy Fi, leaving a
quark carrying a momentum ElE;lE3p1 to enter the hard process.

p3

%ﬂo

b1

WJE] _IE‘ D1

Pyq M(1-3,2)
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Factorization in the collinear limit (2)

We have shown this factorization for the collinear emission of a gluon for Drell-Yan
production, but it is also universal:

In the limit of a gluon emission which is collinear to a quark, the
amplitude-squared factorizes into a splitting function giving the
probability of the collinear emission of the gluon at a given energy by the
quark, and a hard amplitude-squared involving the momentum of the
quark after the gluon emission.

In the collinear limit, the scaling with the angle is

_ 1
lim |M(1,2,e ,e",3)° ~

——— ~ (1 —cosf _1"\‘0_2,
015—0 (pl _p3)2 ( 13) 13

so the angular integral for real emissions does not converge!

[ dbi3
H13

0

Because of the universality of factorization, this is true for real gluon emission
corrections to any process!
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Recap: energy and angular integrals in gluon emissions

We have seen that gluon emissions lead to the integrals

Emax

dBs [ dbss [ d6as
Es’ 613’ Oa3
0 0

in the soft gluon limit F5 — 0 and the collinear limits 613 — 0 and 623 — 0,
respectively. These integrals do not converge.

Note that it is only the leading soft and collinear terms which do not converge.
Subleading terms in the soft and collinear limits give rise to the integrals

Emax

/ dE3; /d613; /d923,
0 0

0

which do converge.
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Other emissions

Before we address the problem of the non-converging soft and collinear integrals, let’s
look at what happens to other partons in the soft and collinear limits. For example,
we know we have to consider the channel

a(p1)g(p2) — e~ e q(ps)

in the real corrections to Drell-Yan production. What happens if the final state
quark becomes soft, E3 — 07

The amplitude is
R R . P2—Ps . I
M(1g,2g,e",€7,3¢) = gsTiju(p3) E——57 w(P1) Ly (De— s Det)-
(p2 — ps3)
Setting ps — 0 in the numerator, squaring and summing over spins, we find
1 1

)2 Tr {p2€"psépay P17’} = — (

(— Dm0 1 B I T e L.
(=2p2 - ps o {D2" P3Py P17"'}

. *
using Y €65 = — G-
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Soft quark emission

Using v*ps7, = 77 (2ps,p — YpP3) = —2pPs we have

1

1
——— Tr {poP3vebe Py = 2
E r {P27’ P32y 1" } Coms o)

(—2p2 - p3

where I have used papz = pa - p2 = 0.

1

(—2p2 - p3)?

1

(—2p2 - p3)

Tr {papsp2y"Pr1v"}

BB 1
Tr {p27"p17"} ~ B

Thus soft quark emission gives rise to a convergent integral — there are no
divergences associated with soft quark or antiquark emissions!

Tr {(2p2 - p3 — Pap2)P2y" ' P17y"}
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Collinear emissions

There are, however, divergences in q(p1)g(p2) — e et + q(p3) that arise if the final
state quark becomes collinear to the initial state gluon, i.e. f23 — O.

In this limit, the amplitude factorizes as before, with the rescaled quark entering the
hard process. However, the splitting function changes. We can determine the form of
the new splitting function by modifying Pyq.

v

We first consider the color factor of the splitting function. Since the real emission
and LO initial states are now different (¢g and ¢q respectively), we now need to take
into account the color averaging of the initial states

(ag) = N.(NZ=1) (qq) = N2

We then need to multiply the color factor by the (qg)/{qq) = N./(NZ2 — 1), so the
color factor becomes CrN. /(N2 — 1) = 1/2 = Tr.

The argument of the splitting function changes by Ei1 <> E3, becoming Fs3/(E3 — El)J
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Collinear emission of a final state quark

Putting this together, we can rewrite the splitting function for an emitted quark
becoming collinear to an initial state gluon as

Pyy(2) = Tr(z* + (1 - 2)*).

with 2z =1 — E3/E1.

p3

p]m

E—F-
stpl

Fug M(1=3.2)

There are also splitting functions that don’t appear in Drell-Yan but do arise in other
processes, e.g. in g(p1)g(p2) = H + g(ps) when 613 — 0.

As before, in these collinear limits the amplitude factorizes into a hard process
involving a parton with rescaled momentum, and a splitting function.
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Other collinear emissions

o In general, for a splitting a — bc with ¢ collinear to a and b entering the hard
process, the associated splitting function is called Pp,.

o We have already seen a quark entering the hard process after the splittings
q — qg and g — q@, with splitting functions Py, and P, respectively.

e We can also have a gluon entering the hard process, after the splitting ¢ — gg or
q — gq, with splitting functions P,y and Py,.

Fyg M(1—3,2)
P3
1 T s
Jirip]
Pyq M(1-3,2)
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Handling infrared divergences (1)

We have now seen that infrared divergences:

@ appear whenever emitted gluons become soft, or when a parton is emitted
collinear to another parton,

e give rise to universal factorizations, characterized by eikonal functions for
soft emissions and splitting functions for collinear emissions,

o lead to phase space integrals that do not converge.

Usually the appearance of infinities indicates that there is something wrong with our
approach.

Perhaps because we are using gluons and quarks as degrees of freedom below the
QCD scale Aqep?

We could then try to introduce an IR cutoff at Aqcp:

Emax

) )
E3 ‘913
Aqcp Aqcp Aqcp

dBs b f dfas
023’

which gives rise to terms ~ log(Aqcp) — i.e. our perturbative calculation is now
sensitive to non-perturbative effects.

v
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Handling infrared divergences (2)

This is also a problem as we have no method for analytically calculating
non-perturbative QCD effects from first principles.

Thankfully, it is not the end of the story.

Recall that for a NLO calculation, we also need to include the virtual contributions.
When we compute these, we see infrared divergences arising from loop integrals when
the loop momentum becomes soft and/or collinear to another parton.

v

The infrared divergences are guaranteed to cancel when we sum the real and virtual
corrections (Bloch-Nordsieck and Kinoshita-Lee-Nauenberg theorems).

This means that perturbative QCD corrections are insensitive to the IR physics.

The presence of IR divergences in the real and virtual corrections separately is an
indication that this separation is not physical, it is something we impose as a way of
organizing the calculation.

We will see the cancellation of poles for color singlet production explicitly in
tomorrow’s lecture.

v
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Regularizing infrared divergences

To combine real emission and virtual corrections, we need a way of regularizing the
divergences that appear in the phase space integrals so that they become
manageable. With the virtual corrections in mind, a natural approach is to treat the
dimensions of space-time as a non-integer d = 4 — 2¢, with the aim of taking the limit
€ — 0 at the end of the calculation.

v

We start with the d-dimensional phase space measure

(dp] = p1°2d|p) dQa—1 _ E*°dE dQ4s 3)
2po (2m)d1 2(2m)d—1

where we have used, for a massless particle, |p] = po = E. The angular phase space is
defined recursively
dQy_1 = dcosf(1 — cos® 0)¥272dQy_»

and the solid angle is given by

9rd/2

Qu =~

I'(d/2)
where I" is the Euler gamma function. We can easily check by setting d = 4 that we
recover the usual four-dimensional phase space measure.

v
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Soft and collinear factorization in d-dimensions (1)

In d-dimensions, the factorization expressions in the soft and collinear limits should
include a renormalization scale ;1°° to balance the Es 2¢ that now appears in the
energy integration measure.

We already saw this ;¢ in the expression for the universal soft gluon factorization:

n
IM(p1,p2,. - o @)* = —dmai® Y Si(@)Ts - Ty IM(p1,p2, - -, pa)
i,j=1
The splitting functions P;; also acquire terms dependent on e, e.g.

Pyo(2) = Cr ( lltzj Fe(1— z)).
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Evaluating soft and collinear integrals in d-dimensions

In the soft limit, the energy integral is now

B Emax
JoEEE dEs 1 __4 1
dE; =3 = — 2 = F 2= _— 4 O®).
/ 7 / EIFE = e tmax =~ T Ol)
0 0

The collinear integral is

+1 1

/dcos@(l—cos 0) w2=2 / E_Z,QSB(_G - o
1— cosf 4x( 1—35 €z ’

=1 0

where I have used z = 1=25% in) the first equality, and the definition of the Fuler

Beta-function B in the second equality. Using «I'(z) = I'(1 + )
L(—gl(l—¢) _ 27*T%(1—¢)
I'(1—2¢) e T(1-2¢

27%B(—€,1—€) =27 = —% +O(e"),

So both the soft and collinear integrals can now be evaluated, and give rise to 1/e
poles which capture the singularities in the real corrections.

v
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Preview of next lecture

When we sum the real and virtual corrections, these 1/e poles are guaranteed to
cancel against the 1/e poles that appear in the virtual corrections.

This leaves a finite result and allows us to take the limit ¢ — 0 to recover the usual
four space-time dimensions.

However, summing the real and virtual corrections in such a way as to cancel the
1/€ poles is not straightforward. This is due to the different number of final
state particles: the virtual corrections inhabit an n-particle phase space while the
real corrections inhabit an (n + 1)-particle phase space.

The methods of manipulating the real corrections to allow the cancellation of the
poles are called subtraction schemes and will be the topic of the next two lectures.
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