

Introductory remarks

Kirill Melnikov

TTP KIT

QCD@West Lake School Institute for Modern Physics, Zhejiang University, Hangzhou, China March 25-30, 2018

QCD is multi-facet

This school is about QCD - the theory of strong interactions. Strong interactions are interactions between hadrons; they determine hadron properties, such as masses, magnetic moments, lifetimes, form factors etc.

Since our focus will be the LHC physics, we will mostly talk about QCD in the context of quarks and gluons.

What is the physics beyond the Standard Model?

ATLAS SUSY Searches* - 95% CL Lower Limits May 2017

	Model	e, μ, τ, γ	Jets	$E_{ m T}^{ m miss}$	∫ <i>L dt</i> [fb	⁻¹] Mass limit	$\sqrt{s}=7,8$	3 TeV $\sqrt{s} = 13$ TeV	Reference
Inclusive Searches	$\begin{array}{l} MSUGRA/CMSSM\\ \tilde{q}\tilde{q}, \tilde{q} \rightarrow q \tilde{\chi}_{1}^{0} \\ \tilde{q}\tilde{q}, \tilde{q} \rightarrow q \tilde{\chi}_{1}^{0} (\text{compressed}) \\ \tilde{g}\tilde{g}, \tilde{g} \rightarrow q \tilde{q} \tilde{\chi}_{1}^{0} \\ \tilde{g}\tilde{g}, \tilde{g} \rightarrow q q \tilde{\chi}_{1}^{\pm} \rightarrow q q W^{\pm} \tilde{\chi}_{1}^{0} \\ \tilde{g}\tilde{g}, \tilde{g} \rightarrow q q (\ell \ell / \nu \nu) \tilde{\chi}_{1}^{0} \\ \tilde{g}\tilde{g}, \tilde{g} \rightarrow q q (\ell \ell / \nu \nu) \tilde{\chi}_{1}^{0} \\ \tilde{g}\tilde{g}, \tilde{g} \rightarrow q q (\ell \ell / \nu \nu) \tilde{\chi}_{1}^{0} \\ GMSB (\tilde{\ell} \text{ NLSP}) \\ GGM (\text{bino NLSP}) \\ GGM (\text{higgsino-bino NLSP}) \\ GGM (\text{higgsino-bino NLSP}) \\ GGM (\text{higgsino NLSP}) \\ GGM (\text{higgsino NLSP}) \\ Gravitino LSP \end{array}$	$\begin{array}{cccc} 0-3 \ e, \mu/1-2 \ \tau & 2 \\ 0 \\ mono-jet \\ 0 \\ 0 \\ 3 \ e, \mu \\ 0 \\ 1-2 \ \tau + 0-1 \ \ell \\ 2 \ \gamma \\ \gamma \\ 2 \ e, \mu \ (Z) \\ 0 \end{array}$	2-10 jets/3 2-6 jets 1-3 jets 2-6 jets 2-6 jets 4 jets 7-11 jets 0-2 jets - 1 <i>b</i> 2 jets 2 jets 2 jets mono-jet	 b Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 	20.3 36.1 3.2 36.1 36.1 36.1 3.2 20.3 13.3 20.3 20.3	<i>q̃</i> , <i>g̃ q̃ q̃ q̃ q̃ g̃ g̃</i>	1.85 TeV 1.57 TeV 2.02 TeV 2.01 TeV 1.825 TeV 1.8 TeV 2.0 TeV 1.65 TeV 1.37 TeV 1.8 TeV	$\begin{split} &m(\tilde{q}) \!\!=\!\!m(\tilde{g}) \\ &m(\tilde{\chi}_1^0) \!\!<\!\!200 GeV, m(1^{\mathrm{st}} \mathrm{gen}, \tilde{q}) \!\!=\!\!m(2^{\mathrm{nd}} \mathrm{gen}, \tilde{q}) \\ &m(\tilde{q}) \!\!=\!\!m(\tilde{\chi}_1^0) \!\!<\!\!5 GeV \\ &m(\tilde{\chi}_1^0) \!\!<\!\!200 GeV, m(\tilde{\chi}^+) \!\!=\!\!0.5(m(\tilde{\chi}_1^0) \!\!+\!\!m(\tilde{g})) \\ &m(\tilde{\chi}_1^0) \!\!<\!\!200 GeV, m(\tilde{\chi}^+) \!\!=\!\!0.5(m(\tilde{\chi}_1^0) \!\!+\!\!m(\tilde{g})) \\ &m(\tilde{\chi}_1^0) \!\!<\!\!400 GeV \\ &m(\tilde{\chi}_1^0) \!\!<\!\!400 GeV \\ &crt(NLSP) \!\!<\!\!0.1 mm \\ &m(\tilde{\chi}_1^0) \!\!<\!\!950 GeV, crt(NLSP) \!\!<\!\!0.1 mm, \mu \!\!<\!\!0 \\ &m(\tilde{\chi}_1^0) \!\!>\!\!680 GeV, crt(NLSP) \!\!<\!\!0.1 mm, \mu \!\!>\!\!0 \\ &m(NLSP) \!\!>\!\!430 GeV \\ &m(\tilde{G}) \!\!>\!\!1.8 \times 10^{-4} eV, m(\tilde{g}) \!\!=\!\!m(\tilde{q}) \!\!=\!\!1.5 TeV \end{split}$	1507.05525 ATLAS-CONF-2017-022 1604.07773 ATLAS-CONF-2017-022 ATLAS-CONF-2017-022 ATLAS-CONF-2017-030 ATLAS-CONF-2017-033 1607.05979 1606.09150 1507.05493 ATLAS-CONF-2016-066 1503.03290 1502.01518
3 rd gen. ẽ med.	$\begin{array}{l} \tilde{g}\tilde{g}, \tilde{g} \rightarrow b \bar{b} \tilde{\chi}_{1}^{0} \\ \tilde{g}\tilde{g}, \tilde{g} \rightarrow t \bar{t} \tilde{\chi}_{1}^{0} \\ \tilde{g}\tilde{g}, \tilde{g} \rightarrow b \bar{t} \tilde{\chi}_{1}^{+} \end{array}$	0 0-1 <i>e</i> ,μ 0-1 <i>e</i> ,μ	3 b 3 b 3 b	Yes Yes Yes	36.1 36.1 20.1	ağ ağ	1.92 TeV 1.97 TeV 1.37 TeV	$m(\tilde{x}_{1}^{0}) < 600 \text{GeV}$ $m(\tilde{x}_{1}^{0}) < 200 \text{GeV}$ $m(\tilde{\chi}_{1}^{0}) < 200 \text{GeV}$	ATLAS-CONF-2017-021 ATLAS-CONF-2017-021 1407.0600
3 rd gen. squarks direct production	$\begin{split} \tilde{b}_1 \tilde{b}_1, \tilde{b}_1 \rightarrow b \tilde{\chi}_1^0 \\ \tilde{b}_1 \tilde{b}_1, \tilde{b}_1 \rightarrow \tilde{\chi}_1^{\pm} \\ \tilde{t}_1 \tilde{t}_1, \tilde{t}_1 \rightarrow \tilde{\chi}_1^{\pm} \\ \tilde{t}_1 \tilde{t}_1, \tilde{t}_1 \rightarrow W b \tilde{\chi}_1^0 \text{ or } t \tilde{\chi}_1^0 \\ \tilde{t}_1 \tilde{t}_1, \tilde{t}_1 \rightarrow C \tilde{\chi}_1^0 \\ \tilde{t}_1 \tilde{t}_1 \text{ (natural GMSB)} \\ \tilde{t}_2 \tilde{t}_2, \tilde{t}_2 \rightarrow \tilde{t}_1 + Z \\ \tilde{t}_2 \tilde{t}_2, \tilde{t}_2 \rightarrow \tilde{t}_1 + h \end{split}$	$\begin{array}{c} 0 \\ 2 \ e, \mu \ (SS) \\ 0-2 \ e, \mu \\ 0-2 \ e, \mu \end{array} \\ 0 \\ 2 \ e, \mu \ (Z) \\ 3 \ e, \mu \ (Z) \\ 1-2 \ e, \mu \end{array}$	2 b 1 b 1-2 b 0-2 jets/1-2 mono-jet 1 b 1 b 4 b	Yes Yes Yes Yes Yes Yes Yes Yes	36.1 36.1 .7/13.3 0.3/36.1 3.2 20.3 36.1 36.1	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	ne Higg	$ \begin{split} & (\tilde{\chi}_{1}^{0}) < 420 \text{GeV} \\ & (\tilde{\chi}_{1}^{0}) < 200 \text{GeV}, m(\tilde{\chi}_{1}^{+}) = m(\tilde{\chi}_{1}^{0}) + 100 \text{GeV} \\ & m(\tilde{\chi}_{1}^{0}) = 2m(\tilde{\chi}_{1}^{0}), m(\tilde{\chi}_{1}^{0}) = 55 \text{GeV} \\ & m(\tilde{\chi}_{1}^{0}) = 1 \text{GeV} \\ & m(\tilde{\eta}_{1}) - m(\tilde{\chi}_{1}^{0}) = 5 \text{GeV} \\ & m(\tilde{\chi}_{1}^{0}) > 150 \text{GeV} \\ & m(\tilde{\chi}_{1}^{0}) = 0 \text{GeV} \\ & m(\tilde{\chi}_{1}^{0}) = 0 \text{GeV} \end{split} $	ATLAS-CONF-2017-038 ATLAS-CONF-2017-030 1209.2102, ATLAS-CONF-2016-077 1506.08616, ATLAS-CONF-2017-020 1604.07773 1403.5222 ATLAS-CONF-2017-019 ATLAS-CONF-2017-019
EW direct	$ \begin{array}{c} \tilde{\ell}_{\mathrm{L,R}} \tilde{\ell}_{\mathrm{L,R}}, \tilde{\ell} \rightarrow \ell \tilde{\chi}_{1}^{0} \\ \tilde{\chi}_{1}^{+} \tilde{\chi}_{1}^{-}, \tilde{\chi}_{1}^{+} \rightarrow \tilde{\ell} \nu(\ell \tilde{\nu}) \\ \tilde{\chi}_{1}^{+} \tilde{\chi}_{1}^{+} / \tilde{\chi}_{2}^{0}, \tilde{\chi}_{1}^{+} \rightarrow \tilde{\tau} \nu(\tau \tilde{\nu}), \tilde{\chi}_{2}^{0} \rightarrow \tilde{\tau} \tau(\nu \tilde{\nu}) \\ \tilde{\chi}_{1}^{+} \tilde{\chi}_{2}^{0} \rightarrow \tilde{\ell}_{\mathrm{L}} \nu \tilde{\ell}_{\mathrm{L}} \ell(\tilde{\nu}\nu), \ell \tilde{\nu} \tilde{\ell}_{\mathrm{L}} \ell(\tilde{\nu}\nu) \\ \tilde{\chi}_{1}^{+} \tilde{\chi}_{2}^{0} \rightarrow W \tilde{\chi}_{1}^{0} L \tilde{\chi}_{1}^{0}, h \rightarrow b \bar{b} / W W / \tau \tau / \gamma \gamma \\ \tilde{\chi}_{2}^{+} \tilde{\chi}_{3}^{0}, \tilde{\chi}_{2,3}^{0} \rightarrow \tilde{\ell}_{\mathrm{R}} \ell \\ \mathbf{GGM} \text{ (wino NLSP) weak prod., } \tilde{\chi}_{1}^{0} \end{array} $	$\begin{array}{c} 2 \ e, \mu \\ 2 \ e, \mu \\ 2 \ \tau \\ 3 \ e, \mu \\ 2 \ -3 \ e, \mu \\ e, \mu, \gamma \\ 4 \ e, \mu \\ \rightarrow \gamma \tilde{G} \ 1 \ e, \mu + \gamma \\ \rightarrow \gamma \tilde{G} \ 2 \ \gamma \end{array}$	0 0 0-2 jets 0-2 b 0 -	Yes Yes Yes Yes Yes Yes Yes Yes	36.1 36.1 36.1 36.1 20.3 20.3 20.3 20.3 20.3	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	5 TeV m $(\tilde{\chi}_1^{\pm})$ =r m $(\tilde{\chi}_2^{0})$ =r	$\begin{split} &m(\tilde{\chi}_{1}^{0}) {=} 0 \\ &m(\tilde{\chi}_{1}^{0}) {=} 0, m(\tilde{\ell}, \tilde{\nu}) {=} 0.5(m(\tilde{\chi}_{1}^{\pm}) {+} m(\tilde{\chi}_{1}^{0})) \\ &m(\tilde{\chi}_{1}^{0}) {=} 0, m(\tilde{\tau}, \tilde{\nu}) {=} 0.5(m(\tilde{\chi}_{1}^{\pm}) {+} m(\tilde{\chi}_{1}^{0})) \\ &m(\tilde{\chi}_{2}^{0}), m(\tilde{\chi}_{1}^{0}) {=} 0, m(\tilde{\ell}, \tilde{\nu}) {=} 0.5(m(\tilde{\chi}_{1}^{\pm}) {+} \mathfrak{m}(\tilde{\chi}_{1}^{0})) \\ &m(\tilde{\chi}_{1}^{\pm}) {=} m(\tilde{\chi}_{2}^{0}), m(\tilde{\chi}_{1}^{0}) {=} 0, \tilde{\ell} \text{ decoupled} \\ &m(\tilde{\chi}_{1}^{\pm}) {=} m(\tilde{\chi}_{2}^{0}), m(\tilde{\ell}, \tilde{\nu}) {=} 0.5(m(\tilde{\chi}_{2}^{0}) {+} m(\tilde{\chi}_{1}^{0})) \\ &c\tau {<} 1 mm \\ &c\tau {<} 1 mm \end{split}$	ATLAS-CONF-2017-039 ATLAS-CONF-2017-039 ATLAS-CONF-2017-035 ATLAS-CONF-2017-039 ATLAS-CONF-2017-039 1501.07110 1405.5086 1507.05493 1507.05493
Long-lived particles	Direct $\tilde{\chi}_{1}^{+}\tilde{\chi}_{1}^{-}$ prod., long-lived $\tilde{\chi}_{1}^{\pm}$ Direct $\tilde{\chi}_{1}^{+}\tilde{\chi}_{1}^{-}$ prod., long-lived $\tilde{\chi}_{1}^{\pm}$ Stable, stopped \tilde{g} R-hadron Stable \tilde{g} R-hadron Metastable \tilde{g} R-hadron GMSB, stable $\tilde{\tau}, \tilde{\chi}_{1}^{0} \rightarrow \tilde{\tau}(\tilde{e}, \tilde{\mu}) + \tau(e, \mu$ GMSB, $\tilde{\chi}_{1}^{0} \rightarrow \gamma \tilde{G}$, long-lived $\tilde{\chi}_{1}^{0}$ $\tilde{g}\tilde{g}, \tilde{\chi}_{1}^{0} \rightarrow eev/e\muv/\mu\muv$ GGM $\tilde{g}\tilde{g}, \tilde{\chi}_{1}^{0} \rightarrow Z\tilde{G}$	Disapp. trk dE/dx trk 0 trk dE/dx trk) $1-2 \mu$ 2γ displ. $ee/e\mu/\mu_{\mu}$ displ. vtx + jet	1 jet - 1-5 jets - - - μ - :s -	Yes Yas - - Yes - Yes -	3(1) 18:4 27.9 3.2 19.1 20.3 20.3 20.3	\tilde{X}_1^{\pm} 430 GeV \tilde{X}_1^{\pm} 495 GeV \tilde{g} 850 GeV \tilde{g} 850 GeV \tilde{g} 537 GeV \tilde{X}_1^0 537 GeV \tilde{X}_1^0 1.0 Te \tilde{X}_1^0 1.0 Te	1.58 TeV 1.57 TeV	$\begin{split} & m(\tilde{\chi}_1^+) \text{-}m(\tilde{\chi}_1^0) \text{-} 160 \ MeV, \ \tau(\tilde{\chi}_1^+) \text{=} 0.2 \ ns \\ & m(\tilde{\chi}_1^+) \text{-}m(\tilde{\chi}_1^0) \text{-} 160 \ MeV, \ \tau(\tilde{\chi}_1^+) \text{<} 15 \ ns \\ & m(\tilde{\chi}_1^0) \text{=} 100 \ GeV, \ 10 \ \mu \text{s} \text{<} \tau(\tilde{g}) \text{<} 1000 \ s \\ & m(\tilde{\chi}_1^0) \text{=} 100 \ GeV, \ \tau \text{>} 10 \ ns \\ & 10 \text{<} tan\beta \text{<} 50 \\ & 10 \text{<} tan\beta \text{<} 50 \\ & 1 \text{<} \tau(\tilde{\chi}_1^0) \text{<} 3 \ ns, \ SPS8 \ model \\ & 7 \text{<} c\tau(\tilde{\chi}_1^0) \text{<} 740 \ mm, \ m(\tilde{g}) \text{=} 1.3 \ TeV \\ & 6 \text{<} c\tau(\tilde{\chi}_1^0) \text{<} 480 \ mm, \ m(\tilde{g}) \text{=} 1.1 \ TeV \end{split}$	ATLAS-CONF-2017-017 1506.05332 1310.6584 1606.05129 1604.04520 1411.6795 1409.5542 1504.05162 1504.05162
RPV	$ \begin{array}{c} LFV \ pp \rightarrow \tilde{v}_{\tau} + X, \tilde{v}_{\tau} \rightarrow e\mu/e\tau/\mu\tau \\ Bilinear \ RPV \ CMSSM \\ \tilde{\chi}_{1}^{+}\tilde{\chi}_{1}^{-}, \tilde{\chi}_{1}^{+} \rightarrow W \tilde{\chi}_{1}^{0}, \tilde{\chi}_{1}^{0} \rightarrow eev, e\mu v, \mu\mu v \\ \tilde{\chi}_{1}^{+}\tilde{\chi}_{1}^{-}, \tilde{\chi}_{1}^{+} \rightarrow W \tilde{\chi}_{1}^{0}, \tilde{\chi}_{1}^{0} \rightarrow \tau\tau v_{e}, e\tau v_{\tau} \\ \tilde{g}\tilde{g}, \tilde{g} \rightarrow qqq \\ \tilde{g}\tilde{g}, \tilde{g} \rightarrow qq\bar{\chi}_{1}^{0}, \tilde{\chi}_{1}^{0} \rightarrow qqq \\ \tilde{g}\tilde{g}, \tilde{g} \rightarrow t \tilde{\chi}_{1}^{0}, \tilde{\chi}_{1}^{0} \rightarrow qqq \\ \tilde{g}\tilde{g}, \tilde{g} \rightarrow t \tilde{\chi}_{1}^{1}, \tilde{\chi}_{1} \rightarrow bs \\ \tilde{t}_{1}\tilde{t}_{1}, \tilde{t}_{1} \rightarrow bk \\ \tilde{t}_{1}\tilde{t}_{1}, \tilde{t}_{1} \rightarrow b\ell \end{array} $	$e\mu, e\tau, \mu\tau$ 2 e, μ (SS) 4 e, μ 3 e, μ + τ 0 4- 1 e, μ 8 1 e, μ 8 0 2 e, μ	- 0-3 <i>b</i> 	- Yes Yes ets - ets - ets - b - b - -	3.2 20.3 13.3 20.3 14.8 14.8 36.1 36.1 15.4 36.1	$ \begin{array}{c c} \tilde{v}_{\tau} \\ \tilde{q}, \tilde{g} \\ \tilde{\chi}_{1}^{\pm} \\ \tilde{\chi}_{1}^{\pm} \\ \tilde{g} \\ \tilde{g} \\ \tilde{g} \\ \tilde{i}_{1} \\ \tilde{i}_{1} \\ \tilde{i}_{1} \\ \tilde{i}_{1} \\ \tilde{i}_{1} \\ \end{array} $	1.9 TeV 1.45 TeV TeV 1.55 TeV 2.1 TeV 1.65 TeV 0.4-1.45 TeV	$\begin{split} & \lambda_{311}'=0.11, \lambda_{132/133/233}=0.07 \\ & m(\tilde{q})=m(\tilde{g}), \ c\tau_{LSP}<1 \ mm \\ & m(\tilde{\chi}_{1}^{0})>400 \mathrm{GeV}, \ \lambda_{12k}\neq 0 \ (k=1,2) \\ & m(\tilde{\chi}_{1}^{0})>0.2\timesm(\tilde{\chi}_{1}^{\pm}), \ \lambda_{133}\neq 0 \\ & BR(t)=BR(b)=BR(c)=0\% \\ & m(\tilde{\chi}_{1}^{0})=800 \ GeV \\ & m(\tilde{\chi}_{1}^{0})=1 \ TeV, \ \lambda_{112}\neq 0 \\ & m(\tilde{\iota}_{1})=1 \ TeV, \ \lambda_{323}\neq 0 \\ & BR(\tilde{\iota}_{1}\rightarrow be/\mu)>20\% \end{split}$	1607.08079 1404.2500 ATLAS-CONF-2016-075 1405.5086 ATLAS-CONF-2016-057 ATLAS-CONF-2016-057 ATLAS-CONF-2017-013 ATLAS-CONF-2017-013 ATLAS-CONF-2017-013
Other	Scalar charm, $\tilde{c} \rightarrow c \tilde{\chi}_1^0$	0	2 <i>c</i>	Yes	20.3	č 510 GeV		$m(\tilde{\chi}_{1}^{0})$ <200 GeV	1501.01325
*Only phen	a selection of the available m nomena is shown. Many of the	ass limits on r e limits are bas	new state sed on	es or	1	D ⁻¹	1	Mass scale [TeV]	

phénomena is shown. Many of the limits are based on simplified models, c.f. refs. for the assumptions made.

ATLAS Preliminary $\sqrt{s} = 7.8.13$ TeV

ATLAS SUSY Searches* - 95% CL Lower Limits May 2017

M	ay 2017								$\sqrt{s} = 7, 8, 13 \text{ TeV}$
	Model	e, μ, τ, γ	Jets	E ^{miss} T	∫ <i>L dt</i> [fb	¹] Mass limit	$\sqrt{s} = 7$,	8 TeV \sqrt{s} = 13 TeV	Reference
Inclusive Searches	$\begin{array}{l} MSUGRA/CMSSM \\ \tilde{q}\tilde{q}, \tilde{q} \rightarrow q \tilde{\chi}_{1}^{0} \\ \tilde{q}\tilde{q}, \tilde{q} \rightarrow q \tilde{\chi}_{1}^{0} \text{ (compressed)} \\ \tilde{g}\tilde{g}, \tilde{g} \rightarrow q \tilde{\chi}_{1}^{0} \\ \tilde{g}\tilde{g}, \tilde{g} \rightarrow q q \tilde{\chi}_{1}^{1} \rightarrow q q W^{\pm} \tilde{\chi}_{1}^{0} \\ \tilde{g}\tilde{g}, \tilde{g} \rightarrow q q \tilde{\chi}_{1}^{1} \rightarrow q q W^{\pm} \tilde{\chi}_{1}^{0} \\ \tilde{g}\tilde{g}, \tilde{g} \rightarrow q q (\ell \ell / \nu \nu) \tilde{\chi}_{1}^{0} \\ \tilde{g}\tilde{g}, \tilde{g} \rightarrow q q W Z \tilde{\chi}_{1}^{0} \\ GMSB (\tilde{\ell} \text{ NLSP}) \\ GGM (\text{bino NLSP}) \\ GGM (\text{higgsino-bino NLSP}) \\ GGM (\text{higgsino-bino NLSP}) \\ GGM (\text{higgsino NLSP}) \\ GGM (\text{higgsino NLSP}) \\ Gravitino LSP \end{array}$	$\begin{array}{c} 0 - 3 \ e, \mu / 1 - 2 \ \tau & 2 \\ 0 \\ mono-jet \\ 0 \\ 3 \ e, \mu \\ 0 \\ 1 - 2 \ \tau + 0 - 1 \ \ell \\ 2 \ \gamma \\ \gamma \\ 2 \ e, \mu \ (Z) \\ 0 \end{array}$	2-10 jets/3 <i>b</i> 2-6 jets 1-3 jets 2-6 jets 2-6 jets 4 jets 7-11 jets 0-2 jets - 1 <i>b</i> 2 jets 2 jets mono-jet	Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes	20.3 36.1 3.2 36.1 36.1 36.1 3.2 20.3 13.3 20.3 20.3	\tilde{q} , \tilde{g} \tilde{q} \tilde{q} \tilde{q} \tilde{q} \tilde{q} \tilde{q} \tilde{q} \tilde{g} <t< td=""><td>1.85 TeV 1.57 TeV 2.02 TeV 2.01 TeV 1.825 TeV 1.8 TeV 2.0 TeV 1.65 TeV 1.37 TeV 1.8 TeV</td><td>$\begin{split} &m(\tilde{q})\!\!=\!\!m(\tilde{g}) \\ &m(\tilde{\chi}_1^0)\!\!<\!\!200GeV,m(1^{\mathrm{st}}\mathrm{gen.}\tilde{q})\!\!=\!\!m(2^{\mathrm{nd}}\mathrm{gen.}\tilde{q}) \\ &m(\tilde{q})\!\!=\!\!m(\tilde{\chi}_1^0)\!\!<\!\!5GeV \\ &m(\tilde{\chi}_1^0)\!\!<\!\!200GeV,m(\tilde{\chi}^{\pm})\!\!=\!\!0.5(m(\tilde{\chi}_1^0)\!\!+\!m(\tilde{g})) \\ &m(\tilde{\chi}_1^0)\!\!<\!\!400GeV \\ &m(\tilde{\chi}_1^0)\!\!<\!\!400GeV \\ &cr(NLSP)\!\!<\!\!0.1mm \\ &m(\tilde{\chi}_1^0)\!\!<\!\!950GeV,cr(NLSP)\!\!<\!\!0.1mm,\mu\!\!<\!\!0 \\ &m(\tilde{\chi}_1^0)\!\!>\!\!680GeV,cr(NLSP)\!\!<\!\!0.1mm,\mu\!\!>\!\!0 \\ &m(\tilde{\chi}_1^0)\!\!>\!\!430GeV \\ &m(\tilde{G})\!\!>\!\!1.8\times10^{-1}em(\tilde{g})\!\!=\!\!\mathfrak{m}(\tilde{q})\!\!=\!\!1.5TeV \end{split}$</td><td>1507.05525 ATLAS-CONF-2017-022 1604.07773 ATLAS-CONF-2017-022 ATLAS-CONF-2017-022 ATLAS-CONF-2017-030 ATLAS-CONF-2017-033 1607.05979 1606.09150 1507.05493 ATLAS-CONF-2016-066 1503.03290 1502.01518</td></t<>	1.85 TeV 1.57 TeV 2.02 TeV 2.01 TeV 1.825 TeV 1.8 TeV 2.0 TeV 1.65 TeV 1.37 TeV 1.8 TeV	$\begin{split} &m(\tilde{q})\!\!=\!\!m(\tilde{g}) \\ &m(\tilde{\chi}_1^0)\!\!<\!\!200GeV,m(1^{\mathrm{st}}\mathrm{gen.}\tilde{q})\!\!=\!\!m(2^{\mathrm{nd}}\mathrm{gen.}\tilde{q}) \\ &m(\tilde{q})\!\!=\!\!m(\tilde{\chi}_1^0)\!\!<\!\!5GeV \\ &m(\tilde{\chi}_1^0)\!\!<\!\!200GeV,m(\tilde{\chi}^{\pm})\!\!=\!\!0.5(m(\tilde{\chi}_1^0)\!\!+\!m(\tilde{g})) \\ &m(\tilde{\chi}_1^0)\!\!<\!\!400GeV \\ &m(\tilde{\chi}_1^0)\!\!<\!\!400GeV \\ &cr(NLSP)\!\!<\!\!0.1mm \\ &m(\tilde{\chi}_1^0)\!\!<\!\!950GeV,cr(NLSP)\!\!<\!\!0.1mm,\mu\!\!<\!\!0 \\ &m(\tilde{\chi}_1^0)\!\!>\!\!680GeV,cr(NLSP)\!\!<\!\!0.1mm,\mu\!\!>\!\!0 \\ &m(\tilde{\chi}_1^0)\!\!>\!\!430GeV \\ &m(\tilde{G})\!\!>\!\!1.8\times10^{-1}em(\tilde{g})\!\!=\!\!\mathfrak{m}(\tilde{q})\!\!=\!\!1.5TeV \end{split}$	1507.05525 ATLAS-CONF-2017-022 1604.07773 ATLAS-CONF-2017-022 ATLAS-CONF-2017-022 ATLAS-CONF-2017-030 ATLAS-CONF-2017-033 1607.05979 1606.09150 1507.05493 ATLAS-CONF-2016-066 1503.03290 1502.01518
3 rd gen. ẽ med.	$\begin{array}{l} \tilde{g}\tilde{g}, \tilde{g} \rightarrow b\bar{b}\tilde{\chi}_{1}^{0} \\ \tilde{g}\tilde{g}, \tilde{g} \rightarrow t\bar{t}\tilde{\chi}_{1}^{0} \\ \tilde{g}\tilde{g}, \tilde{g} \rightarrow b\bar{t}\tilde{\chi}_{1}^{+} \end{array}$	0 0-1 <i>e</i> ,μ 0-1 <i>e</i> ,μ	3 b 3 b 3 b	Yes Yes Yes	36.1 36.1 20.1	δ δ δ δ δ	1.92 TeV 1.97 TeV 1.37 TeV	m($ ilde{x}^0$) × 600 € 2.4 m $ ilde{x}_1$ ≤ 00 GeV m $(ilde{x}^1)$ < 300 GeV	ATLAS-CONF-2017-021 ATLAS-CONF-2017-021 1407.0600
3 rd gen. squarks direct production	$\begin{split} \tilde{b}_{1}\tilde{b}_{1}, \tilde{b}_{1} \rightarrow b\tilde{\chi}_{1}^{0} \\ \tilde{b}_{1}\tilde{b}_{1}, \tilde{b}_{1} \rightarrow t\tilde{\chi}_{1}^{\pm} \\ \tilde{t}_{1}\tilde{t}_{1}, \tilde{t}_{1} \rightarrow b\tilde{\chi}_{1}^{\pm} \\ \tilde{t}_{1}\tilde{t}_{1}, \tilde{t}_{1} \rightarrow Wb\tilde{\chi}_{1}^{0} \text{ or } t\tilde{\chi}_{1}^{0} \\ \tilde{t}_{1}\tilde{t}_{1}, \tilde{t}_{1} \rightarrow c\tilde{\chi}_{1}^{0} \\ \tilde{t}_{1}\tilde{t}_{2}, \tilde{t}_{2} \rightarrow \tilde{t}_{1} + Z \\ \tilde{t}_{2}\tilde{t}_{2}, \tilde{t}_{2} \rightarrow \tilde{t}_{1} + h \end{split}$	$\begin{array}{c} 0 \\ 2 \ e, \mu \ (SS) \\ 0-2 \ e, \mu \\ 0-2 \ e, \mu \ 0 \\ 2 \ e, \mu \ (Z) \\ 3 \ e, \mu \ (Z) \\ 1-2 \ e, \mu \end{array}$	2 b 1 b 1-2 b D-2 jets/1-2 b mono-jet 1 b 1 b 4 b	Yes Yes Yes Yes Yes Yes Yes Yes	36.1 36.1 I.7/13.3 20.3/36.1 3.2 20.3 36.1 36.1 36.1	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	cisis r	$\begin{split} & m(\tilde{\chi}^0_1){<}420GeV \\ & m(\tilde{\chi}^0_1){<}200GeV, m(\tilde{\chi}^\pm_1){=}m(\tilde{\chi}^0_1){+}100GeV \\ & m(\tilde{\chi}^\pm_1){=}2m(\tilde{\chi}^0_1), m(\tilde{\chi}^0_1){=}55GeV \\ & m(\tilde{\chi}^0_1){=}1GeV \\ & m(\tilde{\chi}^0_1){=}1GeV \\ & m(\tilde{\chi}^0_1){>}150GeV \\ & m(\tilde{\chi}^0_1){=}0GeV \\ & m(\tilde{\chi}^0_1){=}0GeV \\ & m(\tilde{\chi}^0_1){=}0GeV \end{split}$	ATLAS-CONF-2017-038 ATLAS-CONF-2017-030 1209.2102, ATLAS-CONF-2016-077 1506.08616, ATLAS-CONF-2017-020 1604.07773 1403.5222 ATLAS-CONF-2017-019 ATLAS-CONF-2017-019
EW direct	$ \begin{array}{l} \tilde{\ell}_{L,R} \tilde{\ell}_{L,R}, \tilde{\ell} \rightarrow \ell \tilde{\chi}_{1}^{0} \\ \tilde{\chi}_{1}^{+} \tilde{\chi}_{1}^{-}, \tilde{\chi}_{1}^{+} \rightarrow \tilde{\ell} \nu (\ell \tilde{\nu}) \\ \tilde{\chi}_{1}^{+} \tilde{\chi}_{1}^{+}, \tilde{\chi}_{2}^{0}, \tilde{\chi}_{1}^{+} \rightarrow \tilde{\tau} \nu (\tau \tilde{\nu}), \tilde{\chi}_{2}^{0} \rightarrow \tilde{\tau} \tau (\nu \tilde{\nu}) \\ \tilde{\chi}_{1}^{+} \tilde{\chi}_{2}^{0} \rightarrow \tilde{\ell}_{L} \nu \tilde{\ell}_{L} \ell (\nu \nu), \ell \tilde{\nu} \tilde{\ell}_{L} \ell (\tilde{\nu} \nu) \\ \tilde{\chi}_{1}^{+} \tilde{\chi}_{2}^{0} \rightarrow W \tilde{\chi}_{1}^{0} \ell \tilde{\chi}_{1}^{0} \\ \tilde{\chi}_{1}^{+} \tilde{\chi}_{2}^{0} \rightarrow W \tilde{\chi}_{1}^{0} h \tilde{\chi}_{1}^{1}, h \rightarrow b \bar{b} / W W / \tau \tau / \gamma \gamma \\ \tilde{\chi}_{2}^{0} \tilde{\chi}_{3}^{0}, \tilde{\chi}_{2,3}^{0} \rightarrow \tilde{\ell}_{R} \ell \\ \text{GGM (wino NLSP) weak prod., } \tilde{\chi}_{1}^{0} - \\ \text{GGM (bino NLSP) weak prod., } \tilde{\chi}_{1}^{0} - \end{array} $	$\begin{array}{c} 2 \ e, \mu \\ 2 \ e, \mu \\ 2 \ \tau \\ 3 \ e, \mu \\ 2 - 3 \ e, \mu \\ e, \mu, \gamma \\ 4 \ e, \mu \\ \gamma \tilde{G} \ 1 \ e, \mu + \gamma \\ \gamma \tilde{G} \ 2 \ \gamma \end{array}$	0 0 - 0-2 jets 0-2 <i>b</i> 0 -	Yes Yes Yes Yes Yes Yes Yes Yes	36.1 36.1 36.1 36.1 20.3 20.3 20.3 20.3 20.3	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	TeV $m(\tilde{\chi}_1^{\pm})=m(\tilde{\chi}_2^{0})=$	$\begin{split} &m(\tilde{\chi}_{1}^{0}) \!=\! 0 \\ &m(\tilde{\chi}_{1}^{0}) \!=\! 0, m(\tilde{\ell}, \tilde{\nu}) \!=\! 0.5(m(\tilde{\chi}_{1}^{\pm}) \!+\! m(\tilde{\chi}_{1}^{0})) \\ &m(\tilde{\chi}_{1}^{0}) \!=\! 0, m(\bar{\tau}, \tilde{\nu}) \!=\! 0.5(m(\tilde{\chi}_{1}^{\pm}) \!+\! m(\tilde{\chi}_{1}^{0})) \\ &m(\tilde{\chi}_{2}^{0}), m(\tilde{\chi}_{1}^{0}) \!=\! 0, m(\tilde{\ell}, \tilde{\nu}) \!=\! 0.5(m(\tilde{\chi}_{1}^{\pm}) \!+\! m(\tilde{\chi}_{1}^{0})) \\ &m(\tilde{\chi}_{1}^{\pm}) \!=\! m(\tilde{\chi}_{2}^{0}), m(\tilde{\chi}_{1}^{0}) \!=\! 0, \tilde{\ell} \text{ decoupled} \\ &m(\tilde{\chi}_{1}^{\pm}) \!=\! m(\tilde{\chi}_{2}^{0}), m(\tilde{\chi}_{1}^{0}) \!=\! 0, \tilde{\ell} \text{ decoupled} \\ &m(\tilde{\chi}_{3}^{0}), m(\tilde{\chi}_{1}^{0}) \!=\! 0, m(\tilde{\ell}, \tilde{\nu}) \!=\! 0.5(m(\tilde{\chi}_{2}^{0}) \!+\! m(\tilde{\chi}_{1}^{0})) \\ &c\tau \!<\! 1 mm \\ c\tau \!<\! 1 mm \end{split}$	ATLAS-CONF-2017-039 ATLAS-CONF-2017-039 ATLAS-CONF-2017-035 ATLAS-CONF-2017-039 ATLAS-CONF-2017-039 1501.07110 1405.5086 1507.05493 1507.05493
Long-lived particles	Direct $\tilde{\chi}_{1}^{+}\tilde{\chi}_{1}^{-}$ prod., long-lived $\tilde{\chi}_{1}^{\pm}$ Direct $\tilde{\chi}_{1}^{+}\tilde{\chi}_{1}^{-}$ prod., long-lived $\tilde{\chi}_{1}^{\pm}$ Stable, stopped \tilde{g} R-hadron Stable \tilde{g} R-hadron Metastable \tilde{g} R-hadron GMSB, stable $\tilde{\tau}, \tilde{\chi}_{1}^{0} \rightarrow \tilde{\tau}(\tilde{e}, \tilde{\mu}) + \tau(e, \mu)$ GMSB, $\tilde{\chi}_{1}^{0} \rightarrow \gamma \tilde{G}$, long-lived $\tilde{\chi}_{1}^{0}$ $\tilde{g}\tilde{g}, \tilde{\chi}_{1}^{0} \rightarrow eev/e\mu v/\mu\mu v$ GGM $\tilde{g}\tilde{g}, \tilde{\chi}_{1}^{0} \rightarrow Z\tilde{G}$	Disapp. trk dE/dx trk 0 trk dE/dx trk $1-2 \mu$ 2γ displ. $ee/e\mu/\mu_{l}$ displ. vtx + jet	1 jet - 1-5 jets - - - - μ - :s -	Yes Yes - - Yes - Yes -	36.1 18.4 27.9 3.2 3.2 19.1 20.3 20.3 20.3	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1.58 TeV 1.57 TeV	$\begin{split} & m(\tilde{\chi}_{1}^{\pm}) - m(\tilde{\chi}_{1}^{0}) \sim 160 \text{ MeV}, \ \tau(\tilde{\chi}_{1}^{\pm}) = 0.2 \text{ ns} \\ & m(\tilde{\chi}_{1}^{\pm}) - m(\tilde{\chi}_{1}^{0}) \sim 160 \text{ MeV}, \ \tau(\tilde{\chi}_{1}^{\pm}) < 15 \text{ ns} \\ & m(\tilde{\chi}_{1}^{0}) = 100 \text{ GeV}, \ 10 \ \mu \text{s} < \tau(\tilde{g}) < 1000 \text{ s} \\ & m(\tilde{\chi}_{1}^{0}) = 100 \text{ GeV}, \ \tau > 10 \text{ ns} \\ & 10 < tan\beta < 50 \\ & 1 < \tau(\tilde{\chi}_{1}^{0}) < 3 \text{ ns}, \text{ SPS8 model} \\ & 7 < c\tau(\tilde{\chi}_{1}^{0}) < 740 \text{ mm}, \ m(\tilde{g}) = 1.3 \text{ TeV} \\ & 6 < c\tau(\tilde{\chi}_{1}^{0}) < 480 \text{ mm}, \ m(\tilde{g}) = 1.1 \text{ TeV} \end{split}$	ATLAS-CONF-2017-017 1506.05332 1310.6584 1606.05129 1604.04520 1411.6795 1409.5542 1504.05162 1504.05162
RPV	LFV $pp \rightarrow \tilde{v}_{\tau} + X, \tilde{v}_{\tau} \rightarrow e\mu/e\tau/\mu\tau$ Bilinear RPV CMSSM $\tilde{\chi}_{1}^{+}\tilde{\chi}_{1}^{-}, \tilde{\chi}_{1}^{+} \rightarrow W\tilde{\chi}_{1}^{0}, \tilde{\chi}_{1}^{0} \rightarrow eev, e\mu\nu, \mu\mu\nu$ $\tilde{\chi}_{1}^{+}\tilde{\chi}_{1}^{-}, \tilde{\chi}_{1}^{+} \rightarrow W\tilde{\chi}_{1}^{0}, \tilde{\chi}_{1}^{0} \rightarrow \tau\tau\nu_{e}, e\tau\nu_{\tau}$ $\tilde{g}\tilde{g}, \tilde{g} \rightarrow qqq$ $\tilde{g}\tilde{g}, \tilde{g} \rightarrow qqq$ $\tilde{g}\tilde{g}, \tilde{g} \rightarrow t\tilde{\chi}_{1}^{0}, \tilde{\chi}_{1}^{0} \rightarrow qqq$ $\tilde{g}\tilde{g}, \tilde{g} \rightarrow t\tilde{\chi}_{1}^{0}, \tilde{\chi}_{1}^{0} \rightarrow qqq$ $\tilde{g}\tilde{g}, \tilde{g} \rightarrow \tilde{t}_{1}t, \tilde{t}_{1} \rightarrow bs$ $\tilde{t}_{1}\tilde{t}_{1}, \tilde{t}_{1} \rightarrow b\ell$	$e\mu, e\tau, \mu\tau$ 2 e, μ (SS) 4 e, μ 3 e, $\mu + \tau$ 0 4- 0 4- 1 e, μ 8 1 e, μ 8 0 2 e, μ	0-3 <i>b</i> -5 large- <i>R</i> jel -5 large- <i>R</i> jel -10 jets/0-4 -10 jets/0-4 2 jets + 2 <i>b</i> 2 <i>b</i>	Yes Yes Yes ts - ts - b - b -	3.2 20.3 13.3 20.3 14.8 14.8 36.1 36.1 15.4 36.1	\tilde{r}_{τ} \tilde{q}, \tilde{g} $\tilde{\chi}_{1}^{*}$ $\tilde{\chi}_{1}^{*}$ $\tilde{\chi}_{1}^{*}$ $\tilde{\chi}_{1}^{*}$ \tilde{g} \tilde{g} \tilde{g} \tilde{g} \tilde{g} \tilde{i}_{1} 410 GeV $450-510 \text{ GeV}$ \tilde{i}_{1} 0	1.9 TeV 1.45 TeV TeV 1.55 TeV 2.1 Te 1.65 TeV .4-1.45 TeV	$\lambda'_{311}=0.11, \lambda_{132/133/233}=0.07$ $m(\tilde{q})=m(\tilde{g}), c\tau_{LSP}<1 \text{ mm}$ $m(\tilde{\chi}_{1}^{0})>400 \text{ GeV}, \lambda_{12k}\neq0 (k = 1, 2)$ $m(\tilde{\chi}_{1}^{0})>0.2\times m(\tilde{\chi}_{1}^{+}), \lambda_{133}\neq0$ BR(t)=BR(b)=BR(c)=0% $m(\tilde{\chi}_{1}^{0})=800 \text{ GeV}$ $\mathbf{V} m(\tilde{\chi}_{1}^{0})=1 \text{ TeV}, \lambda_{112}\neq0$ $m(\tilde{t}_{1})=1 \text{ TeV}, \lambda_{323}\neq0$ $BR(\tilde{t}_{1}\rightarrow be/\mu)>20\%$	1607.08079 1404.2500 ATLAS-CONF-2016-075 1405.5086 ATLAS-CONF-2016-057 ATLAS-CONF-2016-057 ATLAS-CONF-2017-013 ATLAS-CONF-2017-013 ATLAS-CONF-2016-022, ATLAS-CONF-2016-084 ATLAS-CONF-2017-036
Other	Scalar charm, $\tilde{c} \rightarrow c \tilde{\chi}_1^0$	0	2 c	Yes	20.3	č 510 GeV		$m(\tilde{\chi}_{1}^{0})$ <200 GeV	1501.01325
*Only phen	a selection of the available ma omena is shown. Many of the	ass limits on r limits are bas	new states sed on	s or	1) ⁻¹	1	Mass scale [TeV]	

phenomena is shown. Many of the limits are based on simplified models, c.f. refs. for the assumptions made.

ATLAS Preliminary

These results suggest a paradigm change:

indirect searches for new particles and interactions at hadron colliders will feature more and more prominently in the exploration of physics beyond the Standard Model.

CMS Experiment at the LHC, CERN

Data recorded: 2010-Jul-09 02:25:58.839811 GMT(04:25:58 CEST) Run / Event: 139779 / 4994190

The LHC was not envisaged as a precision machine, but it can be turned into one, provided that theory (QCD) can keep up.

(c) Copyright CERN, 2010. For the benefit of the CMS Collaboration

The new paradigm of discovery

BARD: Interpreting New Frontier Energy Collider Physics

Bruce Knuteson* *MIT*

Stephen Mrenna[†] *FNAL*

In contemporary high energy physics experiments, it is not uncommon to observe discrepancies between data and Standard Model predictions. Most of these discrepancies have been explained away over time. To convincingly demonstrate that an observed effect is evidence of physics beyond the Standard Model, it is necessary to prove it is (1) not a likely statistical fluctuation, (2) not introduced by an imperfect understanding of the experimental apparatus, (3) not due to an inadequacy of the implementation of the Standard Model prediction, and (4) interpretable in terms of a sensible underlying theory. Those who object to (4) as being necessary fail to appreciate that most hypothesis development in science occurs before, rather than after, publication. This last criterion is essential, and will likely point the way to other discrepancies that must exist if the interpretation is correct.

Main idea behind this paper was to search systematically for a correlated set of deviations from the SM predictions and a possibility to explain them with a single NP hypothesis. With null search results from the LHC, this idea becomes extremely timely...

The original wishlist

Knuteson then came up with the ``next-to-leading order (NLO) wishlist'' (circa 2004), i.e. the list of processes whose reliable description he thought was instrumental for making his idea a reality. The appearance of the wishlist started a concerted effort by theorists to improve ways and means to perform NLO computations -- the beginning of the NLO revolution.

Note that we have ticked off one cross section from the first list

An experimenter's wishlist

Run II Monte Carlo Workshop

Single Boson	Diboson	Triboson	Heavy Flavour
$W+\leq 5j$	$WW+ \leq 5j$	$WWW+ \leq 3j$	$t\bar{t}+\leq 3j$
$W + b\bar{b} \leq 3j$	$W+bar{b}+\leq 3j$	$WWW + b\bar{b} + \leq 3j$	$t\bar{t} + \gamma + \leq 2j$
$W + c\bar{c} \leq 3j$	$W + c\bar{c} + \leq 3j$	$WWW + \gamma\gamma + \leq 3j$	$t\bar{t} + W + \le 2j$
$Z+\leq 5j$	$ZZ+\leq 5j$	$Z\gamma\gamma+\leq 3j$	$t\bar{t} + Z + \leq 2j$
$Z + b\bar{b} + \leq 3j$	$Z + b\bar{b} + \leq 3j$	$ZZZ+\leq 3j$	$t\bar{t}+H+\leq 2j$
$Z + c\bar{c} + \leq 3j$	$ZZ + c\bar{c} + \leq 3j$	$WZZ+\leq 3j$	$tar{b}\leq 2j$
$\gamma+\leq 5j$	$\gamma\gamma+\leq 5j$	$ZZZ+\leq 3j$	$bar{b}+\leq 3j$
$\gamma + bar{b} \leq 3j$	$\gamma\gamma+bar{b}\leq 3j$		(0) (0) (0)
$\gamma + car{c} \leq 3j$	$\gamma\gamma+car{c}\leq 3j$		
	$WZ+\leq 5j$		
	$WZ + b\bar{b} \leq 3j$		
	$WZ + c\bar{c} \leq 3j$		
	$W\gamma + \leq 3j$		
	$Z\gamma + < 3j$		

Precision physics at the LHC?

Systematic precision studies at hadron colliders, aimed at discovering New Physics through indirect effects, have never been attempted before.

Indeed, hadrons are composite particles kept together by a poorly understood strong force. If we can't understand (compute) properties of one proton, can we confidently describe what happens when two protons collide?

We believe that, to some extent, this can be done and that outcomes of certain (hard) hadron collisions can be understood starting directly from the SM Lagrangian.

Sufficiently inclusive hard hadron processes can be described by the collinear factorization formula.

Collins, Soper, Sterman

$$\mathrm{d}\sigma = \int \mathrm{d}x_1 \mathrm{d}x_2 f_i(x_1) f_j(x_2) \mathrm{d}\sigma_{ij}(x_1,x_2) F_J(1+\mathcal{O}(\Lambda_{\mathrm{QCD}}^n/Q^n))$$

 $n \ge 1$

LHC: the world of quarks and gluons

Hard scattering processes at the LHC can be understood in terms of quarks and gluons; very limited knowledge about protons is needed. Physics of quarks and gluons is governed by a non-abelian SU(3) gauge-field theory -- the QCD.

1) The Lagrangian

$$\mathcal{L}_{\text{QCD}} = \sum \bar{q}_j \left(i\hat{D} - m_j \right) q_j - \frac{1}{4} G^a_{\mu\nu} G^{a,\mu\nu}$$

$$D_{\mu} = \partial_{\mu} - ig_s T^a A^a_{\mu}, \quad G^a_{\mu\nu} = \partial_{\mu} A^a_{\nu} - \partial_{\nu} A^a_{\mu} + ig_s f^{abc} A^b_{\mu} A^c_{\nu}. \qquad [T^a, T^b] = if_{abc} T^c$$

2) Degrees of freedom: quarks (up, down, strange, charm, bottom, top) and gluons (also ghosts, see later).

3) SU(3) group --> interaction charges (color) --> each quark can appear in one of the three color states and a gluon in one of eight.

QCD Feynman rules

The running coupling constant

The effective coupling constant in QCD changes in such a way that it decreases at large momenta transfers (short distances). This phenomenon, known as the asymptotic freedom, enables us to describe perturbatively hard scattering processes at the LHC.

Perturbation theory for cross sections

Starting from the QCD Feynman rules -- and fixing initial and final states for which we would like to know the scattering amplitudes and the order in perturbation theory, we can put together Feynman diagrams and calculate them using standard rules of perturbative QFTs.

Sounds simple but not quite:

need to deal with (very) large number of diagrams and integrals (algebraic complexity);

need to be able to compute complicated loop integrals (analytic complexity);
 Tancredi

- need to understand complex interplay between final states with different multiplicities, to arrive at predictions that are insensitive to long-distance (non-perturbative) effects.

Cross sections and observables

In addition, quite often we have to go beyond fixed order perturbation theory:

- phase-space regions where fixed order perturbation theory fails but long-distance effects are still suppressed;

$$\frac{\mathrm{d}\sigma}{\mathrm{d}p_{\perp}} = \sum_{k}^{\infty} \alpha_{s}^{k} \ln^{2k} \frac{p_{\perp}}{m} c_{k} \tag{Monni}$$

- hadrons, not quarks and gluons hit LHC detectors; need to model the transition to connect theoretical computations with experimental measurements.

Vector boson production in association with jets (up to seven !). Need to describe kinematic properties of jets; sufficient statistics to be sensitive to O(1-10) percent accuracy.

Physics: PDFs; backgrounds to BSM searches with complex signatures.

Gigantic number of tree-level and one-loop diagrams needed to compute cross-sections and kinematic distributions. Very hard if traditional methods are used -- modern unitary-based methods for one-loop computations.

Top quark pair production cross section is currently measured to about 3 percent -- need NNLO QCD accuracy.

Physics: backgrounds to top-like BSM physics, gluon PDF, top quark mass.

• fully-differential NNLO-QCD predictions for $t\bar{t}$ production

Very complex loop diagrams with massive particles inside -- we still do not know how to compute them analytically. Complicated subtraction scheme to put together final states with different multiplicities.

nown in **event** 2 **energy atoms**, to correlate kinematics of complex final states with the value of ixed by P = 1, where P is a some analytic with more "physical" normalisations. The Higgs quartifications of the value of λ_{λ} (left) and of β_{λ} (right) varying M_{t_1} , $\alpha_3(M_Z)$, M_h by $M_$

(Worlday, March 36, stem at ically ass $M_{\rm Pl} \approx 1.2 \times 10^{19} \,{\rm GeV}$, and above the reduced Planck mass $\bar{M}_{\rm Pl} = M_{\rm Pl}/\sqrt{8\pi}$.

Where do we go from here ?

The strong coupling constant

Measurement of the strong coupling constant at the shortest distances. Statistically unlimited. Need NNLO QCD corrections to three jet production at the LHC.

Very complicated loop integrals; enormous amount of algebra. Will the current attempts to compute the 3-jet rate lead to new groundbreaking methods for multi-loop computations?

Light quark Yukawa couplings

Higgs transverse momentum distribution can be used to study Yukawa couplings of light quarks (b,c). Unconventional logarithms that depend on the light quark masses. Re-summation of these logarithms is not understood. Impacts precision of the transverse momentum distribution.

Higgs gauge coupling

Weak boson fusion gives access to Higgs coupling to vector boson -- same coupling that breaks the electroweak symmetry? Very precise predictions are available -- in the factorization approximation. Time to go beyond it. Computing H+2jets at NNLO for weak boson fusion kinematics will help further to improve the precision of the coupling extraction.

What will we need from pQCD

For this research program to succeed, it will be important:

- to understand better the role of non-perturbative effects in collider QCD and their impact on observables;

- to make parton showers a systematically-improvable approximation;

- to understand re-summations for more exclusive quantities;

- to learn how to get around the exponential growth in algebraic complexity in multiloop multi-parton computations ;

- to find robust ways to compute Feynman integrals that do not rely on simplifications allowed by special cases (multi-mass cases etc.);

- to design physically-transparent and efficient subtraction schemes at NNLO. Connect them to resummations and parton showers.

Conclusions

Quantum Chromodynamics is both a very broad and very deep subject; during this week we will talk about just a few topics that are relevant for how QCD is used to describe hard hadron collisions.

We will cover just a small fraction of what is out there to be learned -- just a tip of an iceberg. Nevertheless, we all hope that these lectures will help you in your scientific endeavors. Enjoy !