Introductory remarks

João Guimarães da Costa

October 18, 2017

Institute of High Energy Physics Chinese Academy of Sciences

CDR News

- Some preliminary text already available
 - Document is about 182 pages now
 - Still, lots of parts missing and lots of editing work needed
- Share your text using GIT repository:
 - <u>http://cepcgit.ihep.ac.cn/cepcdoc/CDR/</u>
 <u>tree/master/CDR_draft</u>
 - You are free to continue editing the text once you submit it to the repository
 - So, I would encourage you to start adding it now

IHEP-CEPC-DR-2018-XX

IHEP-EP-2018-XX

IHEP-TH-2018-XX

CEPC-SPPC

Conceptual Design Report

Volume I - Physics & Detector

The CEPC-SPPC Study Group

March 2018

中国科学院高能物理研究所

Outline (today)

Acknowledgments		iii 5	The silicon tracker	19
			5.1 Baseline design	20
1	Introduction	1	5.2 Sensor technologies and readout electronics	20
	1.1 The CEPC-SPPC Study Group and the CDR	1	5.2.1 silicon micro-strip sensors	20
	1.2 The Case for the CEPC-SppC in China	1	5.2.2 silicon pixel sensors	20
	1.3 The Science in the CDR	1	5.3 powering, cooling and mechanics	20
	1.4 The Accelerator and the Experiment	1	5.4 tracking performance	20
			5.5 critial R&D	20
2 Overview of the Physics Case for CEPC-SppC 3		Tracking system	21	
	2.1 New Colliders for a New Frontier	4		- 1
			6.1 IPC tracker detector	21
3	Experimental conditions and detector requirements	5	6.1.1 Baseline design and mechanics	22
	3.1 New Colliders for a New Frontier	6	6.1.2 Simulation and estimation for the Key issues	22
		0	6.2 Full silicon tracker detector	22
4	Vertex		6.2 Full silicon tracker layout	23
-		-	6.2.1 Turi sincon tracker layout	25
	4.1 Performance Requirements and Detector Challenges	/	6.2.2 Detector simulation and reconstruction	20
	4.2 Baseline design	8	6.2.4 Tracking performance	28
	4.3 Detector performance studies	8	6.2.5 Conclusion	32
	4.3.1 Performance of the Baseline Configurations	9	6.3 Drift chamber tracker detector	34
	4.3.2 Material Budget	9		
	4.3.3 Dependence on Single-Point Resolution	⁹ 7	Calorimetry	37
	4.3.4 Distance to IP	11	7.1 Introduction to calorimeters	37
	4.4 Beam-induced Background in the vertex Detector	11	7.2 Electromagnetic Calorimeter for Particle Flow Approach	39
	4.5 Sensor Technology Options	11	7.2.1 Silicon-Tungsten Sandwich Electromagnetic Calorimeter	40
	4.6 Mechanics and Integration	15	7.2.2 Scintillator-Tungsten Sandwich Electromagnetic Calorimeter	40
	4.7 Critical R&D	15	7.3 Hadronic Calorimeter for Particle Flow Approach	40
	4.7.1 Current R&D activities $4.7.2$	15	7.3.1 Introduction	40
	4.7.2 Future K&D	15	7.3.2 Semi-Digital Hadronic Calorimeter (SDHCAL)	41
	4.8 Summary	16	7.3.3 Analog Hadronic Calorimeter based on Scintillator and SiPM	49
			7.4 Dual-readout Calorimetry	60
			7.4.1 Introduction	60
			7.4.2 Dual-Readout Calorimetry	61
			7.4.3 Layout and Mechanics	63
			7.4.4 DREAM/RD52 Prototype Studies	64
			7.4.5 Sensors and Readout Electronics	73
			7.4.6 Monte Carlo Simulations	75
Joa	ao Guimaraes da Costa		1.4.1 Final Kemarks	3

中国科学院高能物理研究所

Outline (today)

Detector magnet system

8.1	General Design Considerations	79
8.2	The Magnetic Field Requirements and Design	80
	8.2.1 Main parameters	80
	8.2.2 Magnetic field design	80
	8.2.3 Coil mechanical analysis	81
	8.2.4 Preliminary quench analysis	86
8.3	HTS/LTS Superconductor Options	90
	8.3.1 HTS plan background	90
	8.3.2 The latest development of high temperature superconducting	cable 93
	8.3.3 HTS magnetic design	95
	8.3.4 Future work of HTS plan	97
8.4	Solenoid Coil Design	
	8.4.1 Solenoid Coil Structure	98
	8.4.2 R&D of Superconducting Conductor	99
	8.4.3 Coil fabrication and assembly	100
8.5	Magnet Cryogenics Design	100
	8.5.1 Preliminary Simulation of the Thermosyphon Circuit	100
	8.5.2 Preliminary results for 10:1 scale model	102
	8.5.3 Experiment of a small-sized He thermosiphon	103
	8.5.4 Cryogenic Plant Design	105
8.6	Quench Protection and Power supply	107
	8.6.1 power supply	107
	8.6.2 control and safety systems	107
8.7	Iron Yoke Design	
	8.7.1 The Barrel Yoke	108
	8.7.2 The Endcap Yoke	108
	8.7.3 Yoke assembly	109
8.8	Dual Solenoid Scenario	109
Muo	on system	119
9,1	The μ RWell technology	119
<i>,</i> ,,,	9 1 1 Prototypes performance	121
	9.1.2 Large size <i>µ</i> RWell detectors	121
	9.1.3 <i>µ</i> RWell performances in test beams	122
	914 The double-resistive layer detector	122
	915 Applications for a Muon detection system for a CepC experi-	ment 127
9.2	New Colliders for a New Frontier	127
		120

10	Readout electronics and data acquisition		
	10.1	New Colliders for a New Frontier	132
11	CEPC interaction region and detector integration		133
	11.1	New Colliders for a New Frontier	134
12	Physics performance		135
	12.1	Introduction	135
		12.1.1 Higgs discovery and Physics at Post-Higgs era	135
		12.1.2 The physics requirement and detector design at the CEPC	137
	12.2	Simulation Geometry & Samples	138
	12.3	Arbor Algorithm & Strategy to the object reconstruction	139
	12.4	Leptons	142
	12.5	Kaon Identification	143
	12.6	Photons	144
	12.7	Taus	145
	12.8 Jet-clustering		148
	12.9	Jet flavor tagging	152
		12.9.1 Base line	152
		12.9.2 Deep learning	152
		12.9.3 Gluon identification	152
		12.9.4 Geometry scan & recommendations	152
13	Futrue plans and R&D prospects		155
	13.1 New Colliders for a New Frontier		156

Outline (Sept. 27)

CONTENTS

中国科学院高能物理研究所

Acknowledgments			iii	••	00
1	Introduct	ion	1		8.
	1.1 Th	e CEPC-SPPC Study Group and the CDR	1	9	Re
	1.2 Th	e Case for the CEPC-SppC in China	1		9.
	1.3 Th	e Science in the CDR	1		
	1.4 Th	e Accelerator and the Experiment	1	10	C
2	Overview	of the Physics Case for CEPC-SppC	3		10
	2.1 Ne	w Colliders for a New Frontier	4	11	P
			_		11
3	Experime	ental conditions and detector requirements	5		11
	3.1 Ne	w Colliders for a New Frontier	6		11
	Mantan		-		11
4	vertex		1		11
	4.1 Ne	w Colliders for a New Frontier	8		11
5	Tracking	system	9		11
	5.1 Ne	w Colliders for a New Frontier	10		11
6	6 Calorimetry		11		
	6.1 Ne	w Colliders for a New Frontier	12		
7	Detector	magnet system	13	12	Fi
	7.1 Ne	w Colliders for a New Frontier	13		12
8	Muon sy	stem	17		

vi CONTENTS

	8.1	New Colliders for a New Frontier	18
9	Readout electronics and data acquisition		19
	9.1	New Colliders for a New Frontier	20
10	CEPC interaction region and detector integration		21
	10.1	New Colliders for a New Frontier	22
11	11 Physics performance		23
	11.1	Introduction	23
	11.2	Simulation Geometry & Samples	26
	11.3	Arbor Algorithm & Strategy to the object reconstruction	27
	11.4	Leptons	28
	11.5	Kaon Identification	29
	11.6	Photons	30
	11.7	Taus	30
	11.8	Jet-clustering	32
	11.9	Flavor Tagging	34
		11.9.1 Base line	34
		11.9.2 Deep learning	34
		11.9.3 Gluon identification	34
		11.9.4 Geometry scan & recommendations	34
12 Futrue		ue plans and R&D prospects	37
	12.1	New Colliders for a New Frontier	38

中国科学院高能物理研究所

November Workshop

• <u>http://indico.ihep.ac.cn/event/6618/overview</u>

- 6-8 November 2017 at IHEP
- Number of attendees registered: ~190
 - ~40% from international institutions
 - Still missing many registrations from Chinese institutions
 - Make sure to encourage colleagues, students and postdocs to attend
 - Make sure to register yourself!
- Preliminary program is almost finalized

November Workshop

- Physics and Detector Sessions almost finalized
 - Session I: Silicon Vertex and Tracker (missing I confirmation)
 - Session 2: Gaseous detectors (missing 4 confirmations)
 - Session 3: Calorimeters (missing I talk)
 - Session 4: Detector concepts and system aspects (missing I confirmation)
 - Session 5: Physics and Simulation (missing I confirmation)
 - Session 6: Physics and Simulation (common with theory) (DONE)
- Parallel talks:
 - Status reports from each subgroup will be presented
 - Talks will need to be prepared ahead of time
 - There will be a rehearsal organized before the meeting
- Poster Session:
 - As agreed, we will have a poster session to highlight the on-going CEPC work
 - Need to know how approximately many posters we have per group