Prospects of Dalitz Analysis on Charm Physics at Belle II

Longke LI¹ (李龙科) On behalf of the Belle II Collaboration

¹Institute of High Energy Physics, CAS, China (IHEP)

PWA 10/ATHOS 5, July 16th-20th, 2018, Beijing

Belle	experiment	Belle	experiment

Prospects of TDDA on charm at Belle II

Re-discoveries of Phase2 at Belle II Summary

Outline

1 Belle experiment to Belle II experiment

- Accelerator and Nano-beam
- Detector and its highlights
- Data set and Collaboration

Prospects of TDDA on charm at Belle II

- $D^0 \overline{D^0}$ mixing and CP violation
- Time-dependent Dalitz analysis
- Prospect of TDDA in $D^0 o K^0_S \pi^+ \pi^-$
- \bullet Prospect of TDDA in $D^0 \to K^+\pi^-\pi^0$
- A new D^0 -tag method: ROE method
- 3 Re-discoveries of Phase2 at Belle II
- 4 Summary

Belle experiment to Belle II experiment	Prospects of TDDA on charm at Belle II	Re-discoveries of Phase2 at Belle II	Summary
000000			

Outline

1 Belle experiment to Belle II experiment

- Accelerator and Nano-beam
- Detector and its highlights
- Data set and Collaboration
- Prospects of TDDA on charm at Belle II
 - $D^0 \overline{D^0}$ mixing and CP violation
 - Time-dependent Dalitz analysis
 - Prospect of TDDA in $D^0 o K^0_S \pi^+ \pi^-$
 - Prospect of TDDA in $D^0 o K^+ \pi^- \pi^0$
 - A new D^0 -tag method: ROE method
- 3 Re-discoveries of Phase2 at Belle II
- Summary

Belle experiment to Belle II experiment	Prospects of TDDA on charm at Belle II	Re-discoveries of Phase2 at Belle II	Summary
000000			
Accelerator and Nano-beam			
Accelerator: KEKB Vs	. SuperKEKB		

- ► As 1st and 2nd generation B-factory located at Tsukuba in Japan, KEKB and SuperKEKB have many similarities, along with more differences, such as
 - Damping ring: for a high-intensity e^+ beam.
 - beam energy: admit lower asymmetry to mitigate Touschek effects.
 - beam current: \sim 2 improved to contribute to higher luminosity.

Belle experiment to Belle II experiment	Prospects of TDDA on charm at Belle II	Re-discoveries of Phase2 at Belle II	Summary
000000	00000000000	0000000	00
Accelerator and Nano-beam			
Nano-Beam Scheme			
Nano-Beam Scheme			

- The SuperKEKB upgrade is based on 'Nano-beam' scheme (first proposed for SuperB in Italy)
- Its basic idea is to squeeze the vertical beta function at the IP β^{*}_y by minimizing the longitudinal size of the overlap region of the two beams at the IP.

luminosity

		E_{\pm} (GeV)	Cross Angle	/ _± (A)	<mark>β*</mark> (mm)	L
$\mathcal{L} = \frac{\gamma_{\pm}}{1 + \frac{\sigma_y^*}{2}} \frac{I_{\pm} \xi_{y\pm}}{I_{\pm} \xi_{y\pm}} \left(\frac{R_L}{I_{\pm}}\right)$		LER/HER	(mrad)	LER/HER	LER/HER	$(cm^{-2}s^{-1})$
$\sim -2er_e \left(\frac{1}{r} \sigma_x^* \right) \beta_{y+}^* \left(R_{z_y} \right)$	KEKB	3.5/8.0	22	1.64/1.19	5.9/5.9	$2.1 imes10^{34}$
beam size: σ^* , beam-beam par.: \tilde{c}_+ .	SuperKEKB	4.0/7.0	83	3.60/2.60	0.27/0.31	$80 imes 10^{34}$
beam current: I_{\perp} beta function: β^*		$\beta \gamma \sim 2/3$		×2	×20	×40

Belle experiment to Belle II experiment

Prospects of TDDA on charm at Belle II

Re-discoveries of Phase2 at Belle II

Summary

Detector and its highlights

Detector: Belle Vs. Belle II

Longke LI (李龙科), IHEP

4/25

Belle experimer	t to Belle II experiment	Prospects of TDDA on charm at Belle II	Re-discoveries of Phase2 at Belle II	Summary
00000000				
Detector and its	highlights			

Detector highlights at Belle II

- Under higher luminosity(\times 50), Belle II is fighting with
 - (1) higher machine backgrounds (\times 20);
 - (2) higher event rate (×10)
 - (3) reduced energy asymmetry ($\beta\gamma$: 0.45 \rightarrow 0.28)
- ▶ A lot of improved performances, such as
 - improved L1 trigger: 500Hz (Belle) Vs. 30kHz (Belle II).
 - vertex detector(VXD): better spatial resolution (Belle II: \sim 2 better than Belle)
 - VXD: $\sim 30\%$ larger acceptance for ${\cal K}^0_S$ reconstruction
 - higher tracking reconstruction efficiency
 - better particle identification: $K(\pi)$ eff.> 90% with fake rate < 10% for p < 4 GeV/c.

BELLE

BELLE She had be had be started for start

Belle experi 00000€C	ment to B	elle II exper	riment	Prospects of	TDDA on cha	rm at Belle II	Re-discoveries of Phase2 at Belle II	Summary 00
Data set and	d Collabora	ation						
larger	Data	set a	t Belle	II				
 Each Avail 	$1 \text{ ab}^- \sim 1.1 \times \sim 1.3 \times \sim 0.9 \times \text{wide reg}$	1 datase 10^{9} $B\bar{B}$ 10^{9} $c\bar{c}$ = 10^{9} $\tau^{+}\tau$ gion $E_{c.m}^{eff.}$ harm da	et at B- \Rightarrow a B-fa \Rightarrow a char $= \Rightarrow a \tau$ = [0.5-10] taset at	factory pro actory; m-factory; -factory; GeV via IS some exp	ovides: R process. eriments:	► Belle II	I is back to the game. hase 2 has finished (Apr 26 - Jul hase 3 (physics run) will start new (Belle+BaBar) will be reached in llect $< 5 ab^{-1}$ by mid 2020. llect 50 ab^{-1} before 2025.	17) kt spring. next year.
	CESR (e ⁺ e ⁻) BEPC-II (e ⁺ e ⁻)	C.M √s 3.77 GeV 4.17 GeV 3.77 GeV 4.18 GeV 4.6 GeV	Luminosity 0.8 fb ⁻¹ 0.6 fb ⁻¹ 2.9 fb ⁻¹ 3.0 fb ⁻¹ 0.6 fb ⁻¹	$\begin{array}{c} \mbox{charm sample} \\ \hline 2.9 \times 10^6 (D^0) \\ 2.3 \times 10^6 (D^+) \\ 0.6 \times 10^6 (D_s^+) \\ 10.5 \times 10^6 (D^0) \\ 8.4 \times 10^6 (D^+) \\ 3 \times 10^6 (D_s^+) \\ 1 \times 10^5 (\Lambda_c^+) \\ \end{array}$	• ~10-30%	thregrated luminosity (100 100 100 100 100 100 100 100 100 100	Goal of Belle II/SuperKEK	
	KEKB (e ⁺ e ⁻) PEP-II (e ⁺ e ⁻)	10.58 GeV 10.58 GeV	1 ab ⁻¹ 0.5 ab ⁻¹	$\begin{array}{c} & & \\ 1.3 \times 10^9 (D^0) \\ 7.7 \times 10^8 (D^+) \\ 2.5 \times 10^8 (D_s^+) \\ 1.5 \times 10^8 (\Lambda_c^+) \\ 6.5 \times 10^8 (D^0) \\ 3.8 \times 10^8 (D^+) \\ 1.2 \times 10^8 (D_s^+) \\ 0.7 \times 10^8 (\Lambda_c^+) \end{array}$	~5-10%	10 ×10 ³⁵ 8 (1.5% 4	μ μ μ μ μ μ μ μ μ μ μ μ μ μ	nths/year ays/month

- ** ** Tevatron 1.96 TeV $9.6 \ \mathrm{fb}^{-1}$ $1.3 imes 10^{11}$ Ð (*p*p) <0.5% LHC 7 TeV 1.0 fb⁻¹ 2.0 fb⁻¹ 5.0×10^{12} LHCD (*pp*) 8 TeV *** ★
- Belle II awards us a huge ${\rm B/charm}/\tau$ sample.

We are here

2020 2021

Calendar Year

2018 2019

Belle II

Peat

2817

2022 2023 2024 2025

Belle experiment to Belle II experiment	Prospects of TDDA on charm at Belle II	Re-discoveries of Phase2 at Belle II	Summary
000000			
Data set and Collaboration			

A big family in Belle II Collaboration

- Belle Collaboration : 536 colleagues, 91 institutions, 20 countries/regions
- ▶ Belle II Collaboration: 822 colleagues, 110 institutions, 25 countries/regions
- ▶ Belle II has 7 inst. from China mainland (including two new inst. this Jun):
 - IHEP(14), USTC(6), Peking(3), BUAA(9), Fudan(7) + LNNU + Soochow.

Balla

7/25

Belle	experiment	Belle	experiment

Prospects of TDDA on charm at Belle II

Re-discoveries of Phase2 at Belle II Summary

Outline

Belle experiment to Belle II experiment

- Accelerator and Nano-beam
- Detector and its highlights
- Data set and Collaboration

Prospects of TDDA on charm at Belle II

- $D^0 \overline{D^0}$ mixing and CP violation
- Time-dependent Dalitz analysis
- Prospect of TDDA in $D^0 o K^0_S \pi^+ \pi^-$
- \bullet Prospect of TDDA in $D^0 \to K^+\pi^-\pi^0$
- A new D^0 -tag method: ROE method
- 3 Re-discoveries of Phase2 at Belle II
- Summary

Belle experiment to Belle II experiment 000000 $D^0 - \overline{D}^0$ mixing and *CP* violation Prospects of TDDA on charm at Belle II

Re-discoveries of Phase2 at Belle II St 0000000 0

Summary

Formalism of $D^0 - \overline{D^0}$ mixing and *CP* violation

• Open-flavor neutral meson transforms to anti-meson:

 $K^0 \Leftrightarrow \overline{K^0}, \ B^0_d \Leftrightarrow \overline{B^0_d}, \ B^0_s \Leftrightarrow \overline{B^0_s}, \ D^0 \Leftrightarrow \overline{D^0}$

• Flavor eigenstate $(|D^0\rangle, |\overline{D^0}\rangle) \neq \text{mass eigenstate} |D_{1,2}\rangle$ with $M_{1,2}$ and $\Gamma_{1,2}$

$$|D_{1,2}
angle \equiv p|D^0
angle \pm q|\overline{D^0}
angle$$
 (CPT: p²+q²=1)

• Mixing parameters: $\mathbf{x} \equiv 2 \frac{M_1 - M_2}{\Gamma_1 + \Gamma_2}$, $\mathbf{y} \equiv \frac{\Gamma_1 - \Gamma_2}{\Gamma_1 + \Gamma_2}$

Unique system: only up-type meson for mixing

 Precise measurement of x, y: effectively limit the New Physics(NP) modes; and search for NP, eg: |x| ≫ |y| Three types of Charged-conjugated-Parity combined symmetry Violation (CPV):

$$A_{CP}^{f} = \frac{\Gamma(D \to f) - \Gamma(\bar{D} \to \bar{f})}{\Gamma(D \to f) + \Gamma(\bar{D} \to \bar{f})} = a_{d}^{f} + a_{m}^{f} + a_{i}^{f}$$

•
$$a_d^f$$
: (direct CPV) CPV in decay $|\bar{A}_{\bar{f}}/A_f| \neq 1$
 $\left|\frac{P^0}{\bar{f}}\right|^2 \neq \left|\frac{P^0}{\bar{f}}\right|^2$

•
$$a_m^f$$
: CPV in mixing with $r_m = |q/p| \neq 1$
 $\left| \frac{p^0}{p} \int_{-\infty}^{p^0} \int_{-\infty}^{p^0} f \right|^2 \neq \left| \frac{p^0}{p} \int_{-\infty}^{p^0} f \right|^2$

•
$$a_i^f$$
: CPV in interference with $\arg(q/p) \neq 0$

 $\left| \begin{array}{c} \begin{array}{c} P^{0} \\ + \\ P^{0} \\ P^{0} \end{array} \right|^{2} \neq \left| \begin{array}{c} \begin{array}{c} P^{0} \\ + \\ P^{0} \\ P^{0} \\ P^{0} \end{array} \right|^{2}$

- SM with only a source: the phase in CKM
- \bullet in charm sector, it's predicted at $\sim \mathcal{O}(10^{-3})$
- $\bullet~\sim 1\%$ exp. sensitivity to observe CPV $\!\!\rightarrow \! NP$

Belle experiment to Belle II experiment	Prospects of TDDA on charm at Belle II	Re-discoveries of Phase2 at Belle II	Summary					
	0000000000							
$D^0 - \overline{D}^0$ mixing and <i>CP</i> violation								
Time evolution of D^0 $\overline{D^0}$ system								

• Time evolution of
$$D^0 - \overline{D^0}$$
 system:
 $i \frac{\partial}{\partial t} \begin{pmatrix} D^0(t) \\ \overline{D^0}(t) \end{pmatrix} = (M - \frac{i}{2}\Gamma) \begin{pmatrix} D^0(t) \\ \overline{D^0}(t) \end{pmatrix}$
diagonal: $D \rightarrow D$, non-diagonal: $D \rightarrow D$.
• Measure $D^0 - \overline{D^0}$ mixing (x,y) and CPV (q/p)
 $|D^0(t)\rangle = g_+(t)|D^0\rangle + \frac{q}{p}g_-(t)|\overline{D^0}\rangle$
 $|\overline{D^0}(t)\rangle = \frac{p}{q}g_-(t)|D^0\rangle + g_+(t)|\overline{D^0}\rangle$
 $g_+(t) = \exp(-iMt - \frac{1}{2}\Gamma t) \cosh\left(-\frac{i\mathbf{x} + \mathbf{y}}{2}\Gamma t\right)$
 $g_-(t) = \exp(-iMt - \frac{1}{2}\Gamma t) \sinh\left(-\frac{i\mathbf{x} + \mathbf{y}}{2}\Gamma t\right)$
• Probabilities of changed or unchanged D flavor
at time t for an initial pure flavor state $|D^0\rangle$
 $(a) E^0 - \overline{B^0}$
 $(b) E^0_{d} - \overline{B^0}$
 $(c) E^0_{d} - \overline{B^0}$
 $(c) E^0_{d} - \overline{B^0}$

$$\begin{split} |\langle D^0 | \overline{D^0}(t) \rangle|^2 &= \frac{1}{2} e^{-\Gamma t} \left[\cosh(y \Gamma t) + \cos(x \Gamma t) \right] & y \text{ effects lifetime in amplitude; } x: \text{ brings a sine oscillating.} \\ |\langle D^0 | \overline{D^0}(t) \rangle|^2 &= \frac{1}{2} \left| \frac{q}{p} \right|^2 e^{-\Gamma t} \left[\cosh(y \Gamma t) - \cos(x \Gamma t) \right] & \blacktriangleright D^0 \cdot \overline{D^0} \text{ mixing measurement is most difficult.} \end{split}$$

Γt

Γt

Belle experiment to Belle II experiment	Prospects of TDDA on charm at Belle II	Re-discoveries of Phase2 at Belle II	Summary
	0000000000		
Time-dependent Dalitz analysis			

Time-dependent Dalitz analyses in D^0 three-body decays

- ► Time-dependent Dalitz analysis(TDDA) provides an essential tool in studying $D^{0}-\overline{D^{0}}$ mixing. $\Gamma(D^{0}(t) \rightarrow f) \propto |\mathcal{A}_{f}|^{2}e^{-t}\left(\frac{1+|\lambda_{f}|^{2}}{2}\cosh(yt) - \operatorname{Re}(\lambda_{f})\sinh(yt) + \frac{1-|\lambda_{f}|^{2}}{2}\cos(xt) + \operatorname{Im}(\lambda_{f})\sin(xt)\right)$
- ► An unique method: sensitive to linear order for both mixing parameters.
- ▶ Status of $D^0 \overline{D^0}$ mixing and *CP* violation measurement in D^0 three-body decays:

Decay Туре	Final State		X	<u>LHC</u> p		CLEO	<mark>₿€</mark> SⅢ
DCS decay (WS)	$K^+\pi^-\pi^0$	✓ ^(a)	☆			✓ A _{CP}	°δ
Self-conjugated CF	$K_S^0 \pi^+ \pi^-$	✓	✓	√	✓ A _{CP}	 ✓ 	°δ
decay	$K_{S}^{0}K^{+}K^{-}$	✓ ^(b)	\checkmark	0			°δ
Self-conjugated	$\pi^+\pi^-\pi^0$	✓ A _{CP}	✓ mixing A _{CP}	✓ A _{CP}			°δ
SCS decay	$K^+K^-\pi^0$		✓ A _{CP}				°δ
SCS docay	$K_S^0 K^+ \pi^-$			✓ A _{CP}		Vδ	°δ
SCS decay	$K_S^0 K^- \pi^+$			✓ A _{CP}		Vδ	°δ

★ for observation (> 5 σ); ☆ for evidence (> 3 σ); ✓ for measurement published; \circ for analysis on going. The related publishments are linked under their corresponding signs.

(a) Belle measured WS-to-RS ratio R_{WS} and A_{CP} in $D^0 \rightarrow K^{\mp} \pi^{\pm} \pi^0$ in PRL **95**, 231801 (2005).

(b) Belle measured y_{CP} in $D^0 \rightarrow K_S^0 \phi$ in PRD 80, 052006 (2009), the amplitude analysis for mixing parameters is on going.

A neutral particle exists in the FSPs of all above channels, this possibly makes them more promising at Belle II than LHCb.

 \Rightarrow TDDA will be one of favourites of Belle II Charm WG to measure $D^0 - \overline{D^0}$ mixing and CPV in such D^0 three-body decays.

Belle	experiment	Belle	experiment

Prospects of TDDA on charm at Belle II

Re-discoveries of Phase2 at Belle II Su

Summary

Time-dependent Dalitz analysis

Dalitz analysis with Isobar model

- $P \rightarrow P_a P_b P_c$ decay: d.o.f=2 (i.e. m_{ab}^2 , m_{bc}^2)
- Isobar describes *M*: Phys. Rev. 123, 333 (1961)

 $\mathcal{M}(m_{ab}^2, m_{bc}^2) = a_{NR} e^{i\phi_{NR}} + \sum_r a_r e^{i\phi_r} \mathcal{A}_r(m_{ab}^2, m_{bc}^2)$ here $a_r(\phi_r)$ is magnitude (phase) of resonance r

- T_r: dynamic function
 - 1) using relativistic Breit-Wigner (Γ depends on M)
 - 2) Special resonances description:
 - ✓ Flatté model, for mass threshold
 - i.e. $f_0(980)(KK)/a_0(980)(KK/\eta'\pi)$ [PRD 95, 032002 (2017)]
 - \checkmark K-matrix model, for overlap resonances,
 - i.e. $\pi\pi$ S-wave [EPJ A16 (2003) 229-258]
 - ✓ Gounaris-Sakurai model:
 - i.e. $\pi\pi$ P-wave ρ family [PRL 24,244(1968)]
 - \checkmark LASS model:
 - i.e. $K\pi$ S-wave with $K_0^*(1430)$ [EPJ C74 (2014): 3026]
 - ✓ non-resonance:

```
i.e. const.(D decay) or exponential(B decay)
```

Also see Daniel's report on 16 July

• Matrix element \mathcal{A}_r describes the dynamics of D o (r o ab)c prd 63, 092001 (2001)

 $\mathcal{A}_r(m_{ab}^2, m_{bc}^2) = F_D \times F_r \times T_r \times W_r$

F_r, *F_D* form factor: [PR D 63, 092001 (2001)]
 ▶ using Blatt-Weisskopt Barrier parameterization, depends on angular quantum ℓ(here equals *J*):

$$\begin{split} F_{J=0} &= 1\\ F_{J=1} &= \frac{\sqrt{1+z_{ab}}}{\sqrt{1+z_{ab}}}\\ F_{J=2} &= \frac{\sqrt{(z_{a}-3)^{2}+9z_{ab}}}{\sqrt{(z_{ab}-3)^{2}+9z_{ab}}}\\ F_{J=3} &= \frac{\sqrt{z_{c}(z_{a}-1)^{2}+9(2z_{c}-5)}}{\sqrt{z_{ab}(z_{ab}-15)^{2}+9(2z_{ab}-5)}}\\ \text{here } z &= (R\cdot q)^{2}, \ R \text{ is radius of } D \text{ or resonance } r \end{split}$$

- W_r angular function:
 - (1) Helicity form;
 - (2) Zemach covariant tensor form

Belle experiment to Belle II experiment	Prospects of TDDA on charm at Belle II ○○○○●○○○○○○	Re-discoveries of Phase2 at Belle II	Summary
Time-dependent Dalitz analysis			

(time-integrated) Dalitz analysis method

- probability density function of (time-integrated) Dalitz analysis:
 - (1) efficiency plane $\epsilon(m_{12,i}^2, m_{23,i}^2)$ to correct: obtained by a large signal MC produced at free PHSP.
 - (2) mass resolution Res(m) effect: needed to check if need? how to consider the resolution?
 - (3) normalization: numerical integration on full DP region

$$p_{\rm sig}(m_{12,i}^2, m_{23,i}^2) = \frac{|\mathcal{M}(m_{12,i}^2, m_{23,i}^2)|^2 \otimes_m \operatorname{Res}(m) \cdot \epsilon(m_{12,i}^2, m_{23,i}^2)}{\iint_{DP} dm_{12}^2 dm_{23}^2 |\mathcal{M}(m_{12}^2, m_{23}^2)|^2 \otimes_m \operatorname{Res}(m) \cdot \epsilon(m_{12}^2, m_{23}^2)}$$

Belle experiment to Belle II experiment	Prospects of TDDA on charm at Belle II	Re-discoveries of Phase2 at Belle II	Summary
	0000000000		
Time-dependent Dalitz analysis			
Time-dependent Dalit:	z analysis		

- p.d.f of signal for TDDA:
 - (1) efficiency plane $\epsilon(m_{12,i}^2, m_{23,j}^2)$ and mass resolution Res(m), similar with TIDA.
 - (2) time resolution Res(t) effect: usually based on data.
 - (3) normalization: numerical integration on full t-dept DP region.

$$p_{\text{sig}}(m_{12,i}^2, m_{23,i}^2, t_i) = \frac{1}{N} \int dt' R_{\text{sig}}(t_i - t', k\sigma_t^i) \left| \mathcal{M}(m_{12,i}^2, m_{23,i}^2, t') \right|^2 \otimes_m \operatorname{Res}(m) \cdot \epsilon(m_{12,i}^2, m_{23,i}^2)$$

► Method: Unbinned Maximum Likelihood (UML) and consideration of Punzi bias $2 \ln \mathcal{L} = 2 \sum_{i=1}^{n} \{ \ln(f_{sig}^{i} p_{sig}(m_{12,i}^{2}, m_{23,i}^{2}, t_{i}, k\sigma_{t}^{i}; x, y, q/p) p_{sig}^{cc}(\sigma_{t}^{i}) + \sum_{x=bg} f_{x}^{i} p_{x}(m_{12,i}^{2}, m_{23,i}^{2}, t_{i}) p_{x}^{nc}(\sigma_{t}^{i})) \}$ here $p_{x}^{nc}(\sigma_{t}^{i})$ is a function of global time error function, independed on other variables

Belle experiment to Belle II experiment	Prospects of TDDA on charm at Belle II	Re-discoveries of Phase2 at Belle II	Summary
	000000000000		
Prospect of TDDA in $D^0 o K^0_{\sf S} \pi^+ \pi^-$			
Self-conjugated decay	$D^0 ightarrow K_c^0 \pi^+ \pi^-$		

• TDDA in D⁰ self-conjugated decays:

(1) direct measurement for x and y; (2) search for CPV: $q/p \neq 1$ $|\mathcal{M}(f,t)|^2 = \frac{e^{-\Gamma}t}{2}[(|\mathcal{A}_f|^2 + |\frac{g}{p}|^2|\mathcal{A}_{\bar{f}}|^2)\cosh(y\Gamma t) + (|\mathcal{A}_f|^2 - |\frac{g}{p}|^2|\mathcal{A}_{\bar{f}}|^2)\cos(x\Gamma t) + 2\operatorname{Re}[\frac{g}{p}\mathcal{A}_{\bar{f}}\mathcal{A}_{\bar{f}}^*]\sinh(y\Gamma t) + 2\operatorname{Im}[\frac{g}{p}\mathcal{A}_{\bar{f}}\mathcal{A}_{\bar{f}}^*]\sin(x\Gamma t)]$

- $D^0 \rightarrow K_S^0 \pi^+ \pi^-$ with qusai-two-body decays with difference physics process: Right-Sign: $\mathcal{A}_f = \langle f | \mathcal{H} | D^0 \rangle$; $\frac{g}{\rho} \frac{\mathcal{A}_f}{\mathcal{A}_f} = \left| \frac{\mathcal{A}_f}{1+\epsilon} \right| \frac{1-\epsilon}{1+\epsilon} e^{i(\delta+\phi)}$; eg: $D^0 \rightarrow K^{*-}\pi^+$ etc. Wrong-Sign: $\mathcal{A}_{\tilde{f}} = \langle \tilde{f} | \mathcal{H} | D^0 \rangle$; $\frac{g}{\rho} \frac{\mathcal{A}_f}{\mathcal{A}_f} = \left| \frac{\mathcal{A}_f}{1+\epsilon} \right| \frac{1-\epsilon}{1+\epsilon} e^{-i(\delta-\phi)}$; eg: $D^0 \rightarrow K^{*+}\pi^-$ etc. CP-even: $\mathcal{A}_+ = \langle + | \mathcal{H} | D^0 \rangle$ $\frac{g}{\rho} \frac{\mathcal{A}_+}{\mathcal{A}_+} = \frac{1-\epsilon}{1+\epsilon} e^{-i\phi}$; eg: $D^0 \rightarrow K_S^0 f_0$ etc. CP-odd: $\mathcal{A}_- = \langle - | \mathcal{H} | D^0 \rangle$ $\frac{g}{\rho} \frac{\mathcal{A}_-}{\mathcal{A}_-} = -\frac{1-\epsilon}{1+\epsilon} e^{-i\phi}$; eg: $D^0 \rightarrow K_S^0 \rho / K_S^0 \omega$ etc.
- Review of Belle's result of TDDA in this decay [PRD 89, 091103(R) (2014)]
 - D^0 flavor is tagged via the charge of slow π_s from $D^{*+} o D^0 \pi_s^+$.
 - Dalitz variables $m_-^2 = m_{K_0^0\pi^-}^2$, $m_+^2 = m_{K_0^0\pi^+}^2$ for D^0 , exchange for $\overline{D^0}$.
 - Dalitz Model: 12 RBW+Κ-matrix(ππ S-wave)+LASS(Kπ S-wave).

Belle experiment to Belle II experiment

Prospects of TDDA on charm at Belle II

Re-discoveries of Phase2 at Belle II Su 0000000 00

Summary

Prospect of TDDA in $D^0 \rightarrow \frac{\kappa_e^0 \pi^+ \pi^-}{\pi^-}$

Dataset size effect on TDDA in $D^0 o K^0_{ extsf{S}} \pi^+ \pi^-$

- Results of TDDA based on 921 fb^{-1} of data at Belle [PRD 89, 091103(R) (2014)]
 - ▶ a consistent determination of $D^0 \overline{D^0}$ mixing with significantly improve sensitivity.
 - the most accurate value of CPV parameters |q/p| and $\arg(q/p)$.

- Prospects at Belle II with larger dataset: $\sigma_{Belle II} = \sqrt{(\sigma_{stat}^2 + \sigma_{sys}^2) \frac{\mathcal{L}_{Belle}}{50 ab^{-1}} + \sigma_{irreducible}^2}$
- a significantly improved σ_{stat} ; Dalitz model uncertainty will dominate the errors. \Rightarrow model-indept. Dalitz analysis will be more promising in this channel.

Fit type Para		Belle Fit result	Belle II prospect		model-indept.	LHCb
The type	I did.	921 fb ⁻¹	5 ab ⁻¹	50 ab ⁻¹	100 M signals	50 fb^{-1}
Ne CDV	×(%)	$0.56 \pm 0.19^{+0.03+0.06}_{-0.09-0.09}$	$\pm 0.08 \pm 0.11$	$\pm 0.03 \pm 0.11$	± 0.017	
NO CFV	y(%)	$0.30 \pm 0.15^{+0.04+0.03}_{-0.05-0.06}$	$\pm 0.06 \pm 0.05$	$\pm 0.02\pm 0.04$	± 0.019	
indirect	×(%)	$0.56 \pm 0.19^{+0.04+0.06}_{-0.08-0.08}$	$\pm 0.08 \pm 0.11$	$\pm 0.03 \pm 0.11$		0.04
mullect	y(%)	$0.30 \pm 0.15^{+0.04+0.03}_{-0.05-0.07}$	$\pm 0.06 \pm 0.05$	$\pm 0.02 \pm 0.04$		0.004
CPV	q/p	$0.90^{+0.16+0.05+0.06}_{-0.15-0.04-0.05}$	$\pm 0.069\pm 0.073$	$\pm 0.022\pm 0.069$		0.04
	$arg(q/p)(^{o})$	$-6\pm11\pm3^{+3}_{-4}$	$\pm 4.7 \pm 4.2$	$\pm 1.5 \pm 3.8$		3

Belle experiment to Belle II experiment	Prospects of TDDA on charm at Belle II	Re-discoveries of Phase2 at Belle II	Summary
0000000	000000000000	0000000	00
Prospect of TDDA in $D^0 o {\cal K}^+ \pi^- \pi^0$			
	D D D D		

Improved D⁰ lifetime resolution at Belle II

- ▶ Time resolution is essential in time-dependent measurements of $D^0 \overline{D_a^0}$ mixing and CPV.
 - such as the time-dependent amplitude of $D^0 \to f$ (here $t[\tau_{D^0}]$ and $\lambda_f = \frac{q}{p} \frac{\lambda_f}{A_f}$): $\Gamma(D^0(t) \to f) \propto |\mathcal{A}_f|^2 e^{-t} \left(\frac{1+|\lambda_f|^2}{2} \cosh(yt) - \operatorname{Re}(\lambda_f) \sinh(yt) + \frac{1-|\lambda_f|^2}{2} \cos(xt) + \operatorname{Im}(\lambda_f) \sin(xt) \right) \otimes_t \operatorname{Res}(t)$

- ▶ Based on MC study, D^0 lifetime resolution Res(t)≈140 fs: half of BaBar's (270 fs)
- Time error σ_t : 1/3 of BaBar's; and RMS(σ_t) reduced by half.
 - resolution function $g(t) = Gauss(\mu, k\sigma_t)$, reduced RMS(σ_t) (higher weight in the fit) results in an increased statistics

- $x'' = (2.61^{+0.57}_{-0.68} \pm 0.39)\%, \ y'' = (-0.06^{+0.55}_{-0.64} \pm 0.34)\%$
- \Rightarrow the first evidence to veto the hypothesis of no $D^0 \overline{D^0}$ mixing in D^0 multi-body decays.

-0.06 -0.04 -0.02

► ToyMC: smear exponential lifetime with Gauss(σ =140 fs) to consider the improved time resolution at Belle II; without considering backgroud effects.

► Sensitivity estimation: one order of magnitude improvement than BaBar

Longke LI (李龙科), IHEP

Prospects of Dalitz Analysis on Charm Physics at Belle II

0.02 0.04 0.06

17/25

Belle experiment to Belle II experiment	Prospects of TDDA on charm at Belle II	Re-discoveries of Phase2 at Belle II	Summary
A new D^0 -tag method: ROE method			
A new D ⁰ -tag method	at Belle II: ROE method		

- To measure CPV, the flavor of D is needed to be determined efficiently.
- At B-factories, the charge of π_s from $D^{*+} \rightarrow D^0 \pi_s^+$ is used to tag the flavor of D^0 and D^0 mesons from *B* decays are excluded. \Rightarrow only D^0 from $D^{*\pm}$ in $c\bar{c}$ events (25%) were used.
- To utilize another charm meson decay is the essential idea of ROE.
- ROE method: select events with only one K^{\pm} in the Rest Of Event;
- Using the charge of this K^{\pm} in ROE to determine the flavor of D^0 .

$$rac{N_{tag}^0}{N_{tag}^*} = rac{\epsilon_{tag}^0}{\epsilon_{tag}^*} \cdot rac{N_{gen}^0 + (1 - \epsilon_{tag}^*) \cdot N_{gen}^*}{N_{gen}^*} \sim 1$$

here $\varepsilon^*_{tag}(\varepsilon^0_{tag})$: tagging efficieny of $D^*(\mathsf{ROE})$ method with $80\% (\leqslant 20\%)$. $N^*_{gen}(N^0_{gen})$: number of D^0 produced by a D^* (other $c\bar{c}$ event) with $N^*_{gen}:N^0_{gen}\simeq 1:3$

A reduction of \sim 15% of $\sigma(\textit{stat})$ on A_{CP}

an additional D^0 sample via ROE method will be available and optimistic.

18/25

Belle experiment to Belle II experiment	Prospects of TDDA on charm at Belle II	Re-discoveries of Phase2 at Belle II	Summary
		000000	

Outline

Belle experiment to Belle II experiment

- Accelerator and Nano-beam
- Detector and its highlights
- Data set and Collaboration

2 Prospects of TDDA on charm at Belle II

- $D^0 \overline{D^0}$ mixing and CP violation
- Time-dependent Dalitz analysis
- Prospect of TDDA in $D^0 o K^0_S \pi^+ \pi^-$
- Prospect of TDDA in $D^0 o K^+ \pi^- \pi^0$
- A new D^0 -tag method: ROE method

3 Re-discoveries of Phase2 at Belle II

Summary

Belle experiment to Belle II experiment

Prospects of TDDA on charm at Belle II

Re-discoveries of Phase2 at Belle II ○●○○○○○ Summary

Some 'first' events and re-dicoveries with first data

• First collision and 'First' events

• First data (5 pb⁻¹) gave evidences of $\pi^0/K_S^0/charm$. Calibrations at a very early stage.

 \mathcal{B}

Belle experiment to Belle II experiment	Prospects of TDDA on charm at Belle II	Re-discoveries of Phase2 at Belle II ○○●○○○○	Summary 00
$K_{\rm S}^0$ invariant Mass			

- Belle II has already finished Phase 2 on Jul 17 with $\sim xxx$ pb⁻¹(wait official statement).
- Some approval plots on up to 250 pb⁻¹: with requirement of at least tree tracks from the IP region, while rejecting beam included background, Bhabha events and other low multiplicity background sources.
- for example of $K^0_S \rightarrow \pi^+\pi^-$ with partial Phase2 dataset.

- K_5^0 mass resolutions within a few % of what expected by the simulation.
- Tracking efficiency measurements are ongoing.

Belle experiment to Belle II experiment

Prospects of TDDA on charm at Belle II

Re-discoveries of Phase2 at Belle II

Summary

Re-discovery: November revolution in June

• re-discovery of $J/\psi \rightarrow \mu^+\mu^-$ in 250 pb⁻¹ of Phase 2 data w/o and w/ muonID.

 \mathcal{B}

Belle experiment to Belle II experiment	Prospects of TDDA on charm at Belle II	Re-discoveries of Phase2 at Belle II	Summary
		0000000	

Re-discovery: charm sample with definite flavor

- Each $c\bar{c}$ event at B-factories has averaged $\bar{N}(D^0) = 1.119 \pm 0.007$, $\bar{N}(D^+) = 0.595 \pm 0.005$, $\bar{N}(D_s^+) = 0.195 \pm 0.003$.
- D^0 CF decays $K\pi$, $K\pi\pi^0$ and $K\pi\pi\pi$ with flavor tagged, and $D^+_{(s)}$ are observed.

Longke LI (李龙科), IHEP

Prospects of Dalitz Analysis on Charm Physics at Belle II

Belle experiment to Belle II experiment	Prospects of TDDA on charm at Belle II	Re-discoveries of Phase2 at Belle II	Summary
000000	0000000000	0000000	00

Re-discovery: D^0 sample in other channels

• in D^{*+} sample: CP eigenstate decays of $D^0 \to K_S^0 \pi^0$ (CF) and $D^0 \to K^+ K^-$ (SCS) are observed.

• In D^{*0} sample: $D^0 \to K^- \pi^+$ is observed.

Belle experiment to Belle II experiment	Prospects of TDDA on charm at Belle II	Re-discoveries of Phase2 at Belle II ○○○○○○●	Summary

Re-discovery: charm sample

• what is the future with full Belle II dataset (×40,000) for this channel? most precise result on $D^{0}-\overline{D^{0}}$ mixing? observation CPV in charm?

Belle	experiment	Belle	experiment

Prospects of TDDA on charm at Belle II

Re-discoveries of Phase2 at Belle II Summary

Outline

Belle experiment to Belle II experiment

- Accelerator and Nano-beam
- Detector and its highlights
- Data set and Collaboration

Prospects of TDDA on charm at Belle II

- $D^0 \overline{D^0}$ mixing and CP violation
- Time-dependent Dalitz analysis
- Prospect of TDDA in $D^0 o K^0_S \pi^+ \pi^-$
- Prospect of TDDA in $D^0 o K^+ \pi^- \pi^0$
- A new D^0 -tag method: ROE method
- 3 Re-discoveries of Phase2 at Belle II
- 4 Summary

Belle experiment to Belle II experiment	Prospects of TDDA on charm at Belle II	Re-discoveries of Phase2 at Belle II	Summary ⊙●
C			

- Summary
 - Belle II is back to the game after eight year passed since Belle shut down.
 - Belle II will have a rich charm physics program ahead. TDDA will become one of favourites
 of Belle II charm WG to study D⁰-D⁰ mixing and CP violation in many multi-body decays.
 - Considering 50 times dataset and half of D^0 lifetime resolution at Belle II, two sensitivity estimations in TDDA are presented:
 - Prospect in $D^0 \to K_S^0 \pi^+ \pi^-$: factor 3 improved, and Dalitz model will dominate the errors.
 - Prospect in $D^0 \to \vec{K^+} \pi^- \pi^0$: one order of magnitude improved w/o considering the bkg effects.
 - more decay channels will contribute $D^{0}-\overline{D^{0}}$ mixing and CPV via TDDA benefiting from improved performances and a large date set.
 - ROE D^0 tagging method is presented: provides an additional tagged D^0 sample.
 - Phase2 has finished, some re-discoveries with 250 pb⁻¹ are shown, especially charm sample in many channels.
 - Phase3 operation (physics run) with full Belle II detector will start next spring.
 - Looking forward to charming news on charm physics via TDDA.

Thank you for your attention.

谢谢!

Longke LI (李龙科) Room B413, Main Building Institute of High Energy Physics, CAS (IHEP) 19B, Yuquan Road, Shijingshan District Beijing City, 100049, P. R. China (③ (+86)-159-5693-4447 (④ lilongke_ustc (肇 lilongke@ihep.ac.cn

backup ○●○○○○

Status of $D^0 - \overline{D^0}$ mixing and *CP* violation [mainly ref. charm physics at HFLAV]

• $\gg 11.5\sigma$ to exclude no mixing (x,y)=(0,0) with CPV-allowed

- No hints for indirect CPV \leftarrow no direct CPV ($|q/p|, \phi$)=(1,0) at C.L=40%
- No clear evidence of direct CPV \leftarrow no CPV at C.L=9.3%

 D^0 - D^0 mixing observation in more channels, and CPV searches are two of most important physical goals for Charm WG at our Belle II experiment.

27/25

description of angular function W_r

(1) Helicity form: [Phys. Rev. D 78, 052001 (2008)] easily understood, but need many Lorantz transform, take much time on calculation

(2) Zemach covariant tensor form: [Phys. Rev. 133, B1201 (1964), Phys. Rev. 140, B109 (1965)] difficult to understand, usually only used in spin-0 final state particles, but take less time in calculation

 \mathcal{P}

Square Dalitz Plot Method

- In Dalitz analyses od *B* meson decays, the cared interference region is usually concentrate on the marginal area (left figure).
- To avoid the variation of efficiency plane in one bin, a better Dalitz plot region with better resolution is needed.
- It can also efficiently describe efficiency plane or background distribution on Dalitz plot, such as misidentified background in $B \rightarrow K \pi \pi^0$ (right figure).
- Expanded Dalitz plot plane $[0, 1] \times [0, 1]$: square Dalitz Plot (SDP) [PRD 72, 052002 (2005)]

•
$$m' = \frac{1}{\pi} \arccos\left(2\frac{m_{ab} - m_{ab}^{min}}{m_{ab}^{max} - m_{ab}^{min}} - 1\right) \in [0, 1]$$
 $\theta' = \frac{1}{\pi}\theta_{ab} \in [0, 1]$

• where $m_{ab}^{max} = M_B - m_c$, $m_{ab}^{min} = m_a + m_b$, Jacobian determinant |J| meets: $dm_{12}^2 dm_{23}^2 = |J| dm' d\theta'$

Mass resolution problem in Dalitz analysis

- Strictly speaking, a convolution is needed on whole region of DP to consider the resolution effects: a time-consuming challenge for CPU.
- A discretization of convolution via a grid weight method: decide grid size by resolution, and use averaged value of around grid points with weight $W_{li} = e^{-(l^2+j^2)/2}$, the normalized form is as follows:

$$pdf_{resol}(x, y) = \sum_{l=-3, j=-3}^{3,3} pdf(x + l\sigma_x, y + j\sigma_y) \cdot W_{lj} / \sum_{l=-3, j=-3}^{3,3} W_{lj}$$

Efficiency difference between data and MC

- To consider the difference of particle identification(PID) efficiency between data and MC, a data-driven efficiency plane is applied.
- Obtain a 2D table of the ratio of each charged particles' PID efficiency between data and MC, dependent on various particles' momentum and PID requirement.
- re-weight each event in reconstructed DP according its momentum, PID requirement and above ratio value, then obtain the data-driven efficiency plane by the ratio of corrected rec. DP plane to gen. DP plane.

