Issues in Many Body Final States

Issues in amplitude analysis for light and heavy mesons

ATHOS 5/PWA 10 Beijing, China

- Many body final state analysis
 - Dalitzplot analysis for fixed mass initial state (heavy mesons)
 - PWA for continuous mass spectrum with coherent superposition of many J^{PC} states ILight mesons)
- Common analysis philosophy: isobar model
 - assume knowledge of amplitudes for each J^{PC} sector of isobar (fixed shapes)
 - PWA: Separation of final states with different J^{PC} and relative *L* to spectator (wave) full spin density matrix including phase info for all waves many waves included (wave-set design) combining MANY mother J^{PC} and isobar J^{PC} coherent and incoherent parts
 - Dalitzplot analysis: design coherent set of fixed shape amplitudes for ONE mother J^{PC}

S. Paul - TU Munich

Problem:

- shape of isobaric amplitudes modified by FSI
- "several" known resonances with ONE isobaric J^{PC} can not be accomodated

NEW: release fixed isobar shapes (still isobar philosophy)

- Dalitzplot analysis so far:
 - one J^{PC} at the time (wrongly called model independent analysis)
 - obtain phase info
 - issue: amplitudes not anymore linearly independent
- Isobar freed PWA :
 - release shape assumption of many isobars from one mother J^{PC}
 - correct for ambiguities arising (see presentation Krinner)
 - obtain full complex amplitudes for EACH wave (maximum trial was 22 waves) for
 - EACH final state mass bin
 - EACH kinematic production variable (as e.g. four-momentum transfer)
- loose some phase info to be recovered modelling (fitting) isobaric amplitudes

Need realistic "design" of isobaric amplitudes

Comparison: Decay of D mesons and π (1800)

Compare weak and strong decay and PWA from 0⁻⁺ system: Dalitz plots

S. Paul - TU Munich

Comparison: Decay of D, D_s mesons and π (1800)

PWA for *π*(1800)

- Information becoming available: Fully Isobar freed analysis
- extract complex amplitude removing hidden ambiguities

S. Paul - TU Munich

пmi

- Information becoming available: Fully Isobar freed analysis
- extract complex amplitude removing hidden ambiguities

ТΠ

rse 🖉

se 🖉 🚺

erse 🖉 🚺

verse 🖉 🦉

The COMPASS challenge

Huge data sample

- Mother J^{PC}: 0⁻⁺, 1⁻⁺, 1⁺⁺, 2⁻⁺, 2⁺⁺, 3⁻⁺, 3⁺⁺, 4⁻⁺, 4⁺⁺,
- Many different *L* possible
- 40 mass bins
- 4 bins in 4-momentum transfer

about 10,000 Dalitz plots

Aim:

- Disentangle resonant and non-resonant 3π amplitudes
- Understand dynamics of strong decays

What we need:

- models for 2π amplitudes and FSI
- models for non-resonant 3π amplitudes

ΠΠ

Extract "effective" $\pi\pi$ Resonance Parameters

Can we understand isobaric spectral functions and cause of individual effective $\pi\pi$ resonance parameters ?

пm

- Many models and calculations provide amplitudes up to 1.5-1.8 GeV/c²
- For B-decays and light meson spectroscopy:
 - $\pi\pi$, $K\pi$, KK amplitudes up to 3-5 GeV/c²
 - analytic expressions
 - in terms of isobar amplitudes
 - closed form to be subjected to PWA decomposition