

Study of K_s^0 pair and $\eta_c(1S)$, $\eta_c(2S)$ and non-resonant $\eta'\pi\pi$ production in two-photon collisions at Belle

Qingnian Xu On behalf of the Belle collaboration IHEP & UCAS, Beijing

> PWA10/ATHOS5 2018 16-20 July 2018, IHEP

Motivation of single-tag two-photon process

Reaction:

$$e^+e^- \rightarrow e^{\pm}$$
 (undected e^{\mp}) hadrons

 Study strong interaction in low energy region, where pQCD can't be applied;

- Measure Q²dependence of Transition Form Factor (TFF);
- Provide input for a data-driven estimate of the hadronic light-bylight contribution significant for the problem of muon g-2.

Motivation of no-tag two-photon process

- Lowest heavy-quakonium $\eta_c(1S)$, plus J/psi, $\eta_b(1S)$ and $\Upsilon(1S)$, as benchmarks for the fine tuning of input parameters in QCD calculation.
- Attempt to measure $\Gamma_{\gamma\gamma}$ for $\eta_c(2S)$ and to address the discrepancy between data and QCD predictions.

- Improved precision in both data and QCD predictions at higher W mass would provide more sensitive comparisons.
- pseudo-scalar meson pairs were measured by Belle [1] Charged-meson pairs: $\pi^+\pi^-$, K⁺K⁻. Neutral-meson pairs: K⁰_SK⁰_S, $\pi^0\pi^0$, $\eta\pi^0$, $\eta\eta$.
- > pseudo-scalar tensor pair $\eta' f_2(1270)$ and three-body final state $\eta' \pi \pi$ would provide new information to validate QCD models.

[1] Belle, Euro.Phys.Jour.C (2014) 74:3026

KEKB and Belle Detector

$\gamma^* \gamma \rightarrow K_s^0 K_s^0$

Dataset: 759 fb⁻¹

PRD 97, 052003 (2018)

No-tag results for $K_s^0 K_s^0$ process

PTEP 2013, 123C01 (2013)

Maximum at the $f_2'(1525)$ peak $f_2(1270)/a_2(1320)$ destructive interference Two-photon coupling of $f_0(1710)$

No data near the K⁰_sK⁰_s mass threshold

χ _{cJ} Yield	Interference	$N_{\chi_{c0}}$	$N_{\chi_{c2}}$	$-2\ln\mathcal{L}/ndf$	
	not include	d 248.3 $^{+17.9}_{-17.2}$	$53.0^{+8.1}_{-7.4}$	57.34/73	
	included	266 ± 53	53^{+14}_{-12}	57.22/71	
Two-photon decay width $\times B(K^0_S K^0_S)$	Interference	$\Gamma_{\gamma\gamma}\mathcal{B}(\chi_{c0})$	Γ_{γ}	$_{\gamma}\mathcal{B}(\chi_{c2})$	
		(eV)		(eV)	
	not included	$8.09 \pm 0.58 \pm 0.5$	$83 \ 0.268^{+0}_{-0}$	$^{0.041}_{0.037}\pm0.028$	
	included	$8.7\pm1.7\pm0.9$	$9 0.27^+_{-}$	$^{0.07}_{0.06} \pm 0.03$	
	Belle 2007	$7.00 \pm 0.65 \pm 0.00$	71 $0.31 \pm$	0.05 ± 0.03	
	PDG 2012	7.3 ± 0.5	0.29	7 ± 0.026	

2018/7/20

 $\gamma^* \gamma \rightarrow K^0_s K^0_s$

7

Reconstructed mass, angles and Energy of the Signal candidates

^{••} Reconstructed K⁰_s mass

 $\gamma^* \gamma \rightarrow K^0_s K^0_s$

Background processes

Rejection of non-exclusive background, $K_{S}^{0}K_{S}^{0}X$ using $|\Sigma p_{t}^{*}|$ vs. E_{ratio}

 $\gamma^*\gamma \to K^0_s K^0_s$

Partial decay width of χ_{cI} mesons

Assume that in total 7 events (3 events) peaking near the χ_{c0} (χ_{c2}) mass are purely from the charmonium (backgrounds are estimated <1 event in total)

The first measurement of χ_{cJ} production in high-Q² single-tag two-photon collisions.

Solid curve: SBG [1] with the charmonium-mass scale (much favored). Dashed curve: With the ρ -mass scale (VDM like)

[1] Schuler, Berends, and van Gulik, Nucl. Phys. B523, 423 (1998).

 $\gamma^*\gamma \to K^0_s K^0_s$

W dependence and $\gamma^*\gamma$ cross section at Q² bins

 $\gamma^*\gamma \to K^0_s K^0_s$

11

Partial Wave Analysis for TFF of $f_2'(1525)$

Waves: S, D_0 , D_1 , and D_2 , contribute (W<1.8 GeV)

$$\frac{d\sigma(\gamma^*\gamma \to K_S^0 K_S^0)}{d\Omega} = \sum_{n=0}^2 t_n \cos(n\varphi^*)$$

$$\begin{split} t_0 &= |SY_0^0 + D_0Y_2^0|^2 + |D_2Y_2^2|^2 + 2\varepsilon_0 |D_1Y_2^1|^2 \\ t_1 &= 2\varepsilon_1 \operatorname{Re} \Big((D_2 |Y_2^2| - SY_0^0 - D_0Y_2^0) D_1 * |Y_2^1| \Big) \\ t_2 &= -2\varepsilon_1 \operatorname{Re} \Big(D_1 * |Y_2^1| (SY_0^0 + D_0Y_2^0) \Big) \end{split}$$

 $\varepsilon_0, \varepsilon_1$ are variables that depend on $x = \frac{q_1 \cdot q_2}{p_1 \cdot p_2}$

$$\begin{aligned} Y_0^0 &= \sqrt{\frac{1}{4\pi}} ,\\ Y_2^0 &= \sqrt{\frac{5}{16\pi}} (3\cos^2\theta^* - 1) ,\\ |Y_2^1| &= \sqrt{\frac{15}{8\pi}} \sin\theta^* \cos\theta^* ,\\ |Y_2^2| &= \sqrt{\frac{15}{32\pi}} \sin^2\theta^* . \end{aligned}$$

Spherical Harmonics

PRD 97, 052003 (2018)

Parameterization of amplitudes

S and D_i amplitudes:

$$\begin{split} S &= A_{BW} e^{i\phi_{BW}} + B_S e^{i\phi_{BS}}, \\ D_i &= \sqrt{r_{ifa}(Q^2)} (A_{f_2(1270)} - A_{a_2(1320)}) e^{i\phi_{faDi}} \\ &+ \sqrt{r_{ifp}(Q^2)} A_{f_2'(1525)} e^{i\phi_{fpDi}} \\ &+ B_{Di} e^{i\phi_{BDi}}, \end{split}$$

 $r_{ifa}(Q^2)$ is fraction of f'_2 (1525) contribution in D wave. $r_{0fp} + r_{1fp} + r_{2fp} = 1$

Transition Form Factors $A_{R}^{J}(W) = F_{R}(Q^{2})\sqrt{1 + \frac{Q^{2}}{m_{R}^{2}}}\sqrt{\frac{8\pi(2J+1)m_{R}}{W}}$ $\times \frac{\sqrt{\Gamma_{\text{tot}}(W)\Gamma_{\gamma\gamma}(W)\mathcal{B}(K_{S}^{0}K_{S}^{0})}}{m_{R}^{2} - W^{2} - im_{R}\Gamma_{\text{tot}}(W)},$

2018/7/20

 $\gamma^*\gamma \rightarrow K^0_s K^0_s$

PWA results in W dependence at Q² bins

- Non-zero D_0 and D_1 components in the $f'_2(1525)$.
- No $f_2(1270)/a_2(1320)$ is seen.
- An enhancement near the threshold (0.995 GeV).

 $\gamma^* \gamma \rightarrow \mathrm{K}^0_\mathrm{S} \mathrm{K}^0_\mathrm{S}$

$f_2'(1525)$ TFF results

The obtained helicity-0, -1, and -2 TFF of the $f'_2(1525)$ meson as a function of Q².

Shorter error bars: statistical Longer error bars: statistical and systematic Shaded areas: overall systematic on $\Gamma_{\gamma\gamma}$.

— Schuler, Berends, van Glick (SBG) Nucl. Phys. B 523, 423, (1998).

helicity-0 and -2 agree well with SBG. helicity-1 -- slightly smaller, but not inconsistent.

 $\gamma^*\gamma
ightarrow \pi^0\pi^0$

Dataset: 759 fb⁻¹

PRD 93, 032003 (2016)

$$\gamma^*\gamma
ightarrow \pi^0\pi^0$$

Reconstructed Q², Energy and Angle of the Signal candidates

 $\gamma^*\gamma
ightarrow \pi^0\pi^0$

Background processes

$$\gamma^*\gamma
ightarrow \pi^0\pi^0$$

W dependence and $\gamma^*\gamma$ cross section at Q² bins

Peaks corresponding to $f_0(980)$ and $f_2(1270)$.

 $\gamma^*\gamma o \pi^0\pi^0$

TFF results

- hel.-2 TFF of $f_2(1270)$ agrees with the prediction by Ref.[4] and Ref. [5].
- hel.-0 and 1 TFF, a factor of 1.5 2 smaller than the prediction by Ref.[4].
- TFF of $f_0(980)$: agree well with the prediction by Ref.[4] for Q²<10GeV²

Ref: [4] G.A. Schuler, F.A. Berends and R. van Gulik, Nucl. Phys. B 523, 423 (1998). Based on application of heavy quark approximation to light quarks
[5] V. Pascalutsa, V. Pauk and M. Vanderhaeghen, Phys. Rev. D 85, 116001 (2012). Based on sum rules

Dataset: 941 fb⁻¹

arXiv: 1805.03044 Submitted to PRD

Simultaneous Fit for $\eta_c(1s)$ and $\eta_c(2s)$

Discussion on Γ_{yy} of $\eta_c(2S)$

Defining the ratio R = $\frac{\Gamma_{\gamma\gamma}(\eta_c(2S))B(\eta_c(2S))}{\Gamma_{\gamma\gamma}(\eta_c(1S))B(\eta_c(1S))}$, which is directly measured, **BaBar**($KK\pi$)[1] This work CLEO[2] $(10.6 \pm 2.0) \cdot 10^{-2}$ $(18 \pm 5 \pm 2) \cdot 10^{-2}$ $(8.6 \pm 2.6) \cdot 10^{-2}$ R Consistent so, we have $R_B = \frac{B(\eta_c(2S) \to \eta'\pi\pi)}{B(\eta_c(1S) \to \eta'\pi\pi)} \cong \frac{B(\eta_c(2S) \to KK\pi)}{B(\eta_c(1S) \to K\bar{K}\pi)}$ within error. Assuming $R_B \cong 1$ [3] and using the world average value $\Gamma_{\gamma\gamma}(\eta_c(1S)) = 5.1 \pm 0.4$ keV, we obtain $\Gamma_{\gamma\gamma}(\eta_C(2S)) = 0.44 \pm 0.13$ keV for $\eta' \pi \pi$ (this) and **Discrepancy between** 0.54 ± 0.11 keV for BaBar(*KK* π) [1]. data and QCD values Both $\Gamma_{\gamma\gamma}(\eta_C(2S))$ values by Belle and BaBar are lower than 0.92 ± 0.28 keV from CLEO [2]

• QCD predictions for two-photon decay width of $\eta_c(2S)$ are ranged from 1.4 to 5.7.

It is essential to have precise measurement of either B(η_c(2S) → K_sKπ) or B(B→ Kη_c(2S)) [1] del Amo Sanchez. P. et al. (BaBar Collaboration) Phys.Rev. D84 (2011) 012004. [2] D. M. Asner *et al.* CLEO Collaboration, Phys. Rev.Lett. 92 (2004) 142001. [3] T. Barnes, T. E. Browder, and S. F. Tuan, Phys. Lett. B 385, 391 (1996).

[4] J.P. Lansberg, T.N. Pham, AIP Conf. Proc. 1038 (2008) 259.

Study of $\eta_c(1S) \rightarrow \eta' f_0(2080)$ decay with $f_0(2080) \rightarrow \pi^+ \pi^-$

Study of $\eta_c(1S) \rightarrow \eta' f_0(2080)$ decay with $f_0(2080) \rightarrow \pi^+ \pi^-$

 $M = 2083^{+63}_{-66} \pm 32~{\rm MeV}, ~~\Gamma = 178^{+60}_{-178} \pm 55~{\rm MeV}$

Result of $\sigma(\gamma\gamma \rightarrow \eta' f_2(1270))$

- Green dashed is the leading term QCD predictions for neutral meson pairs $\sim 1/W^{10}$ [1]
- No prediction for for $\gamma\gamma \rightarrow \eta' f_2(1270)$.
- Assuming $\sigma \sim 1/w^n$.
- The red solid line is the fitted value of $n = 5.1 \pm 1.0$ for $|\cos\theta^*| < 1$ and $n = 7.5 \pm 2.0$ for $|\cos\theta^*| < 0.6$.

[1] Ed. A.J. Bevan, B. Golob, Th. Mannel, S. Prell, and B.D. Yabsley, Euro.Phys.Jour.C (2014) 74:3026.

Result of $\sigma(\gamma\gamma \rightarrow \eta'\pi\pi)$

(a).Structure near 1.8 GeV/c² is contributed from X(1835) or $\eta(1760)$ [1].

(b) Enhancement at 2.1GeV/c² is possible contribution from $\gamma\gamma \rightarrow I(2100) \rightarrow \eta' f_0(980)$.

[1]C.C. Zhang et al. Belle Collaboratin, Phys. Rev D86, 052002 (2012).

Cross Section in |cosθ*|

• Black dots with error bar are the $|\cos\theta^*|$ dependent cross sections in data

 $\gamma\gamma \rightarrow \eta' f_2(1270)$

Red lines , normalized to the data, follows a $1/\sin^4\theta$ behavior.

Measured cross section after subtracting the $\gamma\gamma \rightarrow \eta' f_2(1270)$ contribution in W region above 2.26GeV. The distributions in data comparable with a uniform distribution (red lines).

Summary

Single-tag two-photon results

- Cross section for $\gamma^* \gamma \rightarrow K_s^0 K_s^0$ has been measured for $2M(K_s^0) < W < 2.6 \text{ GeV}$, $3 \text{ GeV}^2 < Q^2 < 30 \text{ GeV}^2$
- Q² dependence of $\Gamma_{\gamma^*\gamma}$ of χ_{c0} and χ_{c2} has been measured.
- Q² dependence of $f'_2(1525)$ TFF has been measured.
- First measurement for $\gamma^* \gamma \rightarrow \pi^0 \pi^0$ with Q² up to 30 GeV².
- Q² dependence of f_2 (1270) TFF has been measured

No-tag two-photon results

- First observation of $\eta_C(2S) \rightarrow \eta' \pi \pi$ with a significance 5.5 σ including systematic error.
- First observation of $\eta_c(1S) \rightarrow \eta' f_0(2080)$ decay with $f_0(2080) \rightarrow \pi^+\pi^-$ with a significance 20σ
- Measurements of pseudo-scalar tensor pair $\eta' f_2(1270)$ production, as well as that of $\eta' \pi \pi$, are made for the first time. Thanks for your attention!

Backup

Experimental analysis of Single-tag K⁰_sK⁰_s

Masuda et al. (Belle), PRD 97, 052003 (2018)

 $e^+e^- \rightarrow e$ (e) $K^0_{\ S} K^0_{\ S}$, $K^0_{\ S} \rightarrow \pi^+ \pi^-$

759 fb⁻¹

Topology: 1 electron(or positron) and 4 charged pions

Event Selection Criteria:

- **for tracks** 5 **tracks** satisfy p_t>0.1 GeV/c, >=2 of them satisfy p_t>0.4 GeV/c, 1 of them satisfies e-identification and p>1.0 GeV/c
- for K_s^0 s Charged π/K separation Reconstructed $K_s^0 K_s^0$ masses (two-dimensional cut) : $492.6 < ave[M(K_s^0)s] < 502.6 \text{ MeV/c}^2 \text{ and diff}[M(K_s^0)s] < 10 \text{ MeV/c}^2$ K_s^0 decay vertex: $0.3 < v_r < 8 \text{ cm}$ (a finite decay flight length in the r ϕ plane)

Kinematical cuts (Energy/momentum conservation and transverse-momentum balance)

$$E_{\text{ratio}} = \frac{E_{K^0 _{s} K^0 _{s}}^{*\text{measured}}}{E_{K^0 _{s} K^0 _{s}}^{*\text{expected}}} \text{ and } |\Sigma \text{ } p_t^*| \text{ satisfy} \sqrt{\left(\frac{E_{\text{ratio}} - 1}{0.04}\right)^2 + \left(\frac{|\Sigma \text{ } p_t^*|}{0.1 \text{ GeV/c}}\right)^2} \le 1$$

Partial Wave Analysis for TFF of $f'_2(1525)$

Applied for W<1.8 GeV. We take into account partial waves up to J=2. J=1 does not couple with $K_{S}^{0}K_{S}^{0} (\rightarrow J^{P} = 0^{+} \text{ and } 2^{+})$ PRD 97, 052003 (2018)

S,
$$D_0$$
, etc. --- Partial-wave amplitudes
 ε_0 , ε_1 --- Spin-dependent flux factor ratios for the virtual photon
 Y_j^m --- Spherical harmonics

From Uehara-san's DIS 2018 report Formalism of PWA and parametrizations

Problems: Low statistics

Only 3 out of S, D_0 , D_1 and D_2 are independent

Non-unique solution (multiple solutions for resonances)

 \rightarrow Parametrization of the amplitudes with modelled W and Q² dependences

$$S = A_{BW}e^{i\phi_{BW}} + B_{S}e^{i\phi_{BS}},$$

$$D_{i} = \sqrt{r_{ifa}(Q^{2})}(A_{f_{2}(1270)} - A_{a_{2}(1320)})e^{i\phi_{faDi}} + \sqrt{r_{ifp}(Q^{2})}A_{f_{2}'(1525)}e^{i\phi_{fpDi}} + B_{Di}e^{i\phi_{BDi}},$$

$$A_{BW}(W) = \sqrt{\frac{8\pi m_S}{W}} \frac{f_S}{m_S^2 - W^2 - im_S g_S}$$

× $\frac{1}{(Q^2/m_0^2 + 1)^{p_S}}$, Nominal fit
Bs = 0

$$B_{S} = \frac{\beta a_{S} (W_{0}/W)^{b_{S}}}{(Q^{2}/m_{0}^{2}+1)^{c_{S}}},$$

$$B_{D0} = \frac{\beta^{5} a_{D0} (W_{0}/W)^{b_{D0}}}{(Q^{2}/m_{0}^{2}+1)^{c_{D0}}},$$

$$B_{D1} = \frac{\beta^{5} Q^{2} a_{D1} (W_{0}/W)^{b_{D1}}}{(Q^{2}/m_{0}^{2}+1)^{c_{D1}}},$$

$$B_{D2} = \frac{\beta^{5} a_{D2} (W_{0}/W)^{b_{D2}}}{(Q^{2}/m_{0}^{2}+1)^{c_{D2}}},$$

$$\beta = \sqrt{1 - 4m_{K_{S}^{0}}^{2}/W^{2}} \text{ is the } K_{S}^{0} \text{ velocity}$$

$$r_{0fp}: r_{1fp}: r_{2fp} = k_0 Q^2: k_1 \sqrt{Q^2}: 1$$

-Destructive interference between $f_2(1270)$ and $a_2(1320)$ - $r_i(Q^2)$ and TFF for $f_2(1270)$ and $a_2(1320)$ are the same; use the values obtained in single-tag $\pi^0\pi^0$

Determine each component and the relative phase by a fit

Angular dependence and the PWA fit

Due to a lack of statistics, we use Q²-integrated angular differential cross section derived with the following convention (MC generated isotropically)

The fit is applied to the two-dimensional angular-dependence data. Forward enhancement is from the helicity-0 component.

From PDG 2017

	Branching fraction
$\eta_c(1S) \rightarrow K \overline{K} \pi$	$(7.3 \pm 0.5)\%$
$\eta_c(2S) \rightarrow K \overline{K} \pi$	$(1.9 \pm 1.2)\%$
$B \to K(\eta_c(1S) \twoheadrightarrow K_s K\pi)$	$(2.7 \pm 0.6) \times 10^{-5}$
$B \to K(\eta_c(2S) \to K_s K \pi)$	$(3.4^{+2.3}_{-16}) \times 10^{-6}$

