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Most of our current knowledge about bound states of three light quarks  
has come mainly from πN→πN PWAs:   
 Karlsruhe−Helsinki,  
             Carnegie−Mellon−Berkeley,  
             & GW. 
Main source of EM couplings is GW, BnGa, & JuBo analyses. 

• Resonances appeared as by-product 
                 [bound states objects with definite quantum numbers, mass, lifetime,  
                 & so on]. 

PWA for Baryons 
• Originally  PWA arose as technology to determine amplitude of reaction via  
                    fitting scattering data.  
   That is non-trivial mathematical problem – looking for solution  
   of ill-posed problem following to Hadamard & Tikhonov. 
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• Standard PWA  
  ⇒ Reveals only wide Resonances, but not too wide (Γ < 500 MeV)          
                              & possessing not too small BR (BR > 4%). 
  ⇒ Tends (by construction) to miss narrow Res with  Γ < 20 MeV. 
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Road Map to Baryon Spectroscopy  
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Facility Experiment 

Data 

Amplitudes 
Resonances 

PWA 



For π2π, we use log-likelihood while for rest − 
least-squares technologies. 

SAID Database below 4 GeV 
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50,650 

38,414 

107.915 

6,502 
852 

2,736 
4,398 

12,864 

241,214 evts+ 

[W = 1320 to 1930 MeV ] 

• In the full database, one will occasionally  
      find experiments which give conflicting  
      results. 
• Some data with very large χ2 contributions  
      have been excluded from our fits. 
• Redundant data are also excluded   
      [these include σtot based on dσ/dΩ  
   already contained in database] 
• Measurements of pol observables  
      (P, for instance) with uncertainties  
      more than 0.2 are not included as  
      they have little influence in our fits. 
 
• However, all available data have been  
      retained in database (excluded  
      data labeled as “flagged”)  
      so that comparisons can be made  
      through our on-line facility 

5,576 

47,353 

SAID: http://gwdac.phys.gwu.edu/ 
• We update SAID databases, develop &  
   study PWAs, & keep current versions of    
   phenomenological & theoretical models,  
   both those of CNS/DAC & other research  
   groups, on continual basis for relevant  
   two- & three-body reactions of interest. 
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World Progress in Pion PhotoProduction 

1st  SAID results 

A2 π0 dσ/dΩ 

1st FROST π+ E 
CLAS π+/π0 Σ 

 
CLAS π− dσ/dΩ 

  CLAS π+ dσ/dΩ  

• Overall, SAID χ2 has  
    remained stable  
    (χ2/data ~ 2)  
    against growing  
    database,   
    which has increased  
    by factor of 5  
    since 1989.  

PWA10/ATHOS5 2018, Beijing, China, July 2018 

χ
2/data 

Energy limit 
for SAID PWA 
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Direct Amplitude Reconstruction  
in Pion PhotoProduction 

helicities: 2 x 2  x  2 / 2 = 4 
parity conservation 

γ  N → N  π 

8 

spin: 1    ½  →  ½     0 • In particle physics, helicity is        
    projection of the spin      onto  
    direction of momentum,    :  

• In order to determine pion photoproduction amplitude [4 modules and 3 relative phases], 
   one has to carry out  7  independent measurements at  fixed   (W, t) or (E, θ). 

Therefore, there are  4    independent invariant amplitudes 

• This extra observable is necessary to eliminate sign ambiguity. 

PWA10/ATHOS5 2018, Beijing, China, July 2018 

8 
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Complete Experiment for Pion PhotoProduction   

γ  N → N π 

Linear 
Polarized 

Beam 

Circular 
Polarized 

Beam 

Nucleon Recoil 
Polarization 

Longitudinally Polarized Nucleon Target 
Transverse Polarized Nucleon Target 

PWA10/ATHOS5 2018, Beijing, China, July 2018 

   1 un-pol measurement: dσ/dΩ 
   3 single pol measurements: Σ, T, P 
12 double pol measurements: E, F, G, H, 
  Cx, Cz, Ox, Oz, Lx, Lz, Tx, Tz 
18 triple polarization asymmetries 
 [9 for linear pol  beam] 
 [9 for circular pol beam] 
      13 of them are non-vanishing 

• There are 16 non-redundant observables. 
• They are not completely independent from each other. 

 A. Sandorfi et al. AIP Conf. Proc. 1432, 219 (2012)  
 K. Nakayama, private communication, 2014  
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Importance of Neutron Data 

• EM interaction do not conserve isospin, so multipole amplitudes contain  
   isoscalar & isovector contributions of EM current. 

Proton Neutron 

• Proton data alone does not allow separation of  
   isoscalar & isovector components. 

• Need data on both proton & neutron ! 

Q: Can we avoid ?   A: NO ! 

 D. Drechsel & L. Tiator, J. Phys. G 18, 449 (1992)  
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                SAID for Pion PhotoProduction 
  

 
 

 
   •  Data driven (model independent) analysis 
   •  Energy dependent MA27 
   •  E     = 145 – 2700 MeV               [W = 1080 – 2460 MeV] 
   •  PWs  =  60 [EM multipoles]            [J < 6] 
   •  Prms = 210                                                 
   •  Constraint: 
    

Reaction   Data  (Pol)  χ2 

γp→π0p  25,540 (23 %)  55,529 

γp→π+n   8,959 (38 %)  20,736 

γn→π-p  11,590 (4 %)   16,453 

γn→π0n     364 (59 %)  1,540 

Total   46,453  94,258 

πN-PWA [no theoretical input] Born [no free parameters to fit] 

7/16/2018 

• Pion photoproduction on the neutron 
   much less known, 35%. 

PWA10/ATHOS5 2018, Beijing, China, July 2018 

34,499 data 

11,954 data 

•There is disbalance between π0 & π+ data, 35%. 

 P. Mattione et al, Phys. Rev. C 96,  035204 (2017)  

}  

} 
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 R.L. Workman et al, Phys Rev C 87, 068201 (2013)  

Evaluated at 
Res Energy 

Evaluated at 
Pole 

Photo-Decay Amplitudes in BW &  
Pole Forms 

• Pole is main signature of resonance. 

 A. Svarc  et al, Phys Rev C 89, 065208 (2014)  
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W = 1135−1957 MeV 
θ = 15−1650 

π0p: 7978 dσ/dΩ 

W = 1216−1448 MeV 
θ = 31−1580 

π0p: 1403 Σ 
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SAID MAID BnGa 

W = 1305−1888 MeV 
θ = 30−1520 

π0p: 397 T & 397 F 

W = 1322−1841 MeV 
θ = 75−1400 

π0p: 45 Cx’ 
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SAID-2017  BnGa2014 MAID2007 
Courtesy of Steffen Strauch, 2018 
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W = 1717−2091 MeV 
θ = 32−1480 

π0p: 700 Σ & π+n: 386 Σ  

W = 1250−2230 MeV 
θ = 20−1480 

π+n: 900 E  
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PWA10/ATHOS5 2018, Beijing, China, July 2018 

Courtesy of Lorenzo Zana 2018 

SAID 
MAID 
BnGa 

Cosθ=−0.9 Cosθ=−0.3 

Cosθ=+0.3 

Cosθ=+0.9 
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Courtesy of Mike Dugger, 2018 



7/16/2018 William Briscoe     18 PWA10/ATHOS5 2018, Beijing, China, July 2018 

Courtesy of Mike Dugger, 2018 
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Single Pion PhotoProduction on  
“Neutron” Target 

. 
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• Accurate evaluation of EM couplings N*→γN & ∆*→γN from  
  meson photoproduction data remains paramount task in hadron physics.  
 
 
• Only with good data on both proton & neutron targets, one can hope  
   to disentangle isoscalar & isovector EM couplings of various  N*& ∆*  
   resonances,   
   as well as isospin properties of non-resonant background amplitudes. 
 
 
• The lack of γn→π−p & γn→π0n data does not allow us to be as confident  
   about determination of neutron couplings relative to those of proton. 
 
 
• Radiative decay width of neutral baryons may be extracted from  
   π− & π0 photoproduction off neutron, which involves  
  bound neutron target & needs use of  
  model-dependent nuclear (FSI) corrections. 

PWA10/ATHOS5 2018, Beijing, China, July 2018 

 K.M. Watson, Phys Rev 95, 228 (1954);  R.L. Walker, Phys Rev 182, 1729 (1969)  

 A.B. Migdal, JETP 1, 2 (1955); K.M. Watson, Phys Rev 95, 228 (1954)  
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FSI for γd →πpN     γn →πN  
V. Tarasov, A. Kudryavtsev, W. Briscoe, H. Gao, IS, Phys Rev C 84, 035203 (2011) 

V. Tarasov, A. Kudryavtsev, W. Briscoe, B. Krusche, IS, M. Ostrick, Phys At Nucl 79, 216 (2016) 

 
 

• FSI plays critical role in state-of-the-art analysis of γn→πN data. 
• For γn→πN, effect is 5% − 60%.                                It depends on (E,θ). 

IA 

NN-fsi  
vertex 

πN-fsi 
vertex 

7/16/2018 

Fermi motion of  
nucleons included 

Input: SAID: γN→πN, πN→πN, NN→NN              
                           amplitudes for 3 leading terms. 

     DWF: full Bonn NN Potential  
                  (there is no sensitivity to DWF). 

PWA10/ATHOS5 2018, Beijing, China, July 2018 



FSI for γd→π-pp      γn→π−p 
V. Tarasov, A. Kudryavtsev, W. Briscoe, H. Gao, IS, Phys Rev C 84, 035203 (2011) 

. 
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. 

-- -   [IA + NNfsi] / IA 
___  [IA + (NN+πN)fsi] / IA 

Cuts:  
ps  <  200 MeV/c 
pf  < 200 MeV/c  

θ(πp−CM) 

• There is sizeable FSI effect  
    from  S-wave part of pp-FSI  
    at small angles. 
 
•  Region narrows as E increases. 
 

CLAS g10 & g13:  
 E  > 0.5 GeV  
 θ >  30  deg 

• For CLAS data: 
      • FSI correction factor R < 1. 
      • Behavior is smooth vs. θ.     
      • Effect: ∆σ/σ ≤ 10%. 
     

 •  Previous estimation  
      of Glauber FSI 
      gave order of 15−30%. 
 
 
 

 • There is no large sensitivity to cuts.  

PWA10/ATHOS5 2018, Beijing, China, July 2018 

Forward direction is 
Terra incognita 

 W. Chen et al,  
     Phys  Rev Lett 103, 012301 (2009) 
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W = 1311−2355 MeV 
θ = 25−1350 

π−p: 8428 dσ/dΩ 

W = 1500−2300 MeV 
θ = 25−1540 

π−p: 266 E 
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CLAS g13 Impact for Neutron  
S = 0 & I = ½ Couplings 

 P. Mattione et al, Phys. Rev. C 96,  035204 (2017)  

M A I D 

[g10] [g10] 

• Selected photon decay amplitudes N∗→γn at resonance poles  
   are determined for the first time. 

BW neutron photo-decay amplitudes 
Moduli & phases 
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CLAS g14 Impact for Neutron  
S = 0 & I = ½ Couplings 

 D. Ho et al, Phys Rev Lett 118, 242002 (2017)  

• Inclusion of these g14 data in new PWA calculations has resulted in revised  
   γN* couplings  &, in case of N(2190)7/2−, convergence  among different    
    PWA groups.  
 
• Such couplings are sensitive to dynamical process of N* excitation & provide  
    important guides to nucleon structure models. 

• I = 3/2 waves ~ unchanged            determined by proton data. 

BW 
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MAX-lab for γn→π–p at Threshold 

  

• It is difficult task to measureπ–p final state close to  threshold. 
• We measured π0 decay in to 2γ from γn→π–p→π0n. 

syst 

stat 

B. Strandberg et al, in progress 

Courtesy of Bruno Strandberg, 2018 
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No FSI included 

Courtesy of Daria Sokhan, 2018 

G. Mandaglio et al. Phys. Rev. C 82, 045209 (2010) 

SAID 

D. Sokhan et al, in progress 



FSI for γd →π0np         γn →π0n & γp →π0p  
V. Tarasov, A. Kudryavtsev, W. Briscoe, B. Krusche, IS, M. Ostrick, Phys At Nucl 79, 216 (2016) 

. 
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∆(1232)3/2+ 

N(1440)1/2+ 

N(1535)1/2− 

• γn→π0n case is much more  
   complicated vs. γn→π−p  
   because π0 can come from    
   both γn & γp  initial interactions. 

• The corrections for both target  
    nucleons are practically identical  
    for π0 production in energy range  
    of ∆(1232)3/2+  due to    
    isospin structure of γN→πN   
    amplitude. 
 
 

• In general case, 
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• Differential cross sections for γn→π0n. 

E =   180 – 800 MeV 
π0n: 589 dσ/dΩ 

• New dσ/dΩs by A2  
   contribution is 160%  
   to previous world  
   π0n data. 

Meson Production off Deuteron at CB@MAMI 

 • Data up to E = 1500 MeV are coming.  

FSI included 

Courtesy of Slava  Kulikov, 2018 

V. Kulikov et al, in progress 



7/16/2018 William Briscoe     30 PWA10/ATHOS5 2018, Beijing, China, July 2018 



7/16/2018 William Briscoe     31 PWA10/ATHOS5 2018, Beijing, China, July 2018 

Courtesy of Beatrice Ramstein, 2018 
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Aims of Jlab KLF Project 

                                  • KLF project has to establish secondary KL beam line at               
                                        with flux of three order of magnitude higher than                     had  
                                         

  • for scattering experiments on both proton & neutron (first time !)   
                                        targets in order to determine differential cross sections &  
                                        self-polarization of strange hyperons with                detector to                         
                                        enable precise PWA in order to determine all resonances up to  
                                        3 GeV in spectra of Λ*, Σ*, Ξ*, & Ω*. 
 
 
• In addition, we intend to do strange meson spectroscopy by studies of π-K interaction  
   to locate pole positions in I = 1/2 & 3/2 channels. 
 
 
• KLF  has link to ion-ion high energy facilities as           &                       & will allow understand  
   formation of our world in several microseconds after Big Bang. 



. 
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Hall D Beam Line Set up for K-longs 

• Electrons are hitting W-radiator at CPS. 
• Photons are hitting Be-target at cave. 
• KLs are hitting the LH2/LD2 target within GLueX setting. 

Ie                  = 5 µA 
W-radiator = 0.1 R.L.  
Be-target    = 1.7 R.L.  

Electron 
 
beam 

No need in  
tagging photons 

LH2/LD2 -target 

I 

Flux Monitor 



. 
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• KL rate is 104 KL/s = 2500 x  
• Uncertainties (statistics only) correspond to 100 days of running time for:  

Expected Cross Sections vs Bubble Chamber Data  

• GlueX measurements will span cosθ from −0.95 to 0.95 in CM above W = 1490 MeV. 

BC Data 

Expected  
GlueX Data 

KLp→π+Λ KLp→KSp 



. 
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Why We Have to Measure  
Double-Strange Cascades in JLab 

• Heavy quark symmetry (Isgur−Wise symmetry) suggests that  
   multiplet splittings  in strange, charm, & bottom hyperons  
   should scale as approximately inverses of corresponding quark  
   masses: 

• So far only hyperon resonance multiplet, where this scaling can be ``tested” & seen is lowest  
   negative parity multiplet: 

• If they don’t, that scaling failure implies that structures of corresponding states are anomalous,  
   & very different from one another. 

Λ(1405)1/2−−Λ(1520)3/2−,   Λc(2595)1/2−−Λc(2625)3/2−,  Λb(5912)1/2−−Λb(5920)3/2−  

• It works approximately (30%) well for those Λ-splittings.  
   It would work even better for Ξ, Ξc, Ξb splittings,  
   & should be very good for Ω, Ωc, Ωb splittings. 

•                                 can do double cascade spectrum. 
   As                is doing double charm cascade spectrum. 

R. Aaij et al, Phys Rev Lett 119, 112001 (2017) 

1/ms : 1/mc : 1/mb 

Ξc(2790)1/2−−Ξc(2815)3/2− 

N. Isgur & M.B. Wise, Phys Rev Lett 66 1130 (1991)  
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• KLF proposal will have very significant impact   
   in our knowledge of Kπ scattering amplitudes  
   in scalar I = ½ channel. 
 
• It will reduce by more than factor of two   
   uncertainty in mass determination 
   & by a factor of five uncertainty on its  
   width (and therefore on its coupling) 
   of controversial  or k(800). 
 
• Neutral kaon beam scattering on both proton 
   & neutron targets at low t-Mandelstam will     
   allow to produce & identify  
   all four isospin partners of κ(800). 

Why We Have to Focus  
on Kπ Scattering with Regards to κ Meson in JLab 

Expected KLF result 



. 
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• Full Proposal was submitted for JLab PAC46 . 

Hyperon  & 
Strange Meson 
Spectroscopy 

• 203 researchers from  
      61 institutes  
           are co-authors. 
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