SAID for Baryon Spectroscopy

William Briscoe
 The George Washington University

- PWA for Baryon Spectroscopy
- Pion Photoproduction.
- Pion Photoproduction on Neutron.
- Pion-Proton Elastic.
- Nucleon-Nucleon Elastic.
- Strange Hadron Spectroscopy.
- Summary.

PWA for Baryons

- Originally PWA arose as technology to determine amplitude of reaction via fitting scattering data.
That is non-trivial mathematical problem - looking for solution of ill-posed problem following to Hadamard \& Tikhonov.
- Resonances appeared as by-product
[bound states objects with definite quantum numbers, mass, lifetime, \& so on].
- Standard PWA
\Rightarrow Reveals only wide Resonances, but not too wide ($\Gamma<500 \mathrm{MeV}$) \& possessing not too small $B R$ ($B R>4 \%$).
\Rightarrow Tends (by construction) to miss narrow Res with $\Gamma<20 \mathrm{MeV}$.
Most of our current knowledge about bound states of three light quarks
has come mainly from $\pi \mathrm{N} \rightarrow \pi \mathrm{N}$ PWAs:
Karlsruhe-Helsinki,
Carnegie-Mellon-Berkeley,
\& GW.
Main source of EM couplings is GW, BnGa, \& JuBo analyses.

Road Map to Baryon Spectroscopy

PNPDG

SAID Database below 4 GeV

SAID: http://gwdac.phys.gwu.edu/

- We update SAID databases, develop \& study PWAs, \& keep current versions of phenomenological \& theoretical models, both those of CNS/DAC \& other research groups, on continual basis for relevant two- \& three-body reactions of interest.
- In the full database, one will occasionally find experiments which give conflicting results.
- Some data with very large χ^{2} contributions have been excluded from our fits.
- Redundant data are also excluded [these include $\sigma_{\text {tot }}$ based on $d \sigma / d \Omega$ already contained in database]
- Measurements of pol observables (P, for instance) with uncertainties more than 0.2 are not included as they have little influence in our fits.
- However, all available data have been retained in database (excluded data labeled as "flagged") so that comparisons can be made through our on-line facility
- Data Analysis Center Institute for Nuclear Studies THE GEORGE WASHINGTON UNIVERSITY WASHINGTON, OC

INS DAC Home
- INS DAC [SAID]
INS Home
Pi-N Newsletters

Partial-Wave Analyses at GW

[See Instructions]
Pion-Nucleon
Pi-Pi-N
Kaon(+)-Nucleon
Nucleon-Nucleon
Pion Photoproduction
Pion Electroproduction
Kaon Photoproduction
Eta Photoproduction
Eta-Prime Photoproduction
Pion-Deuteron (elastic)
Pion-Deuteron to Proton+Proton

[$\mathrm{W}=1320$ to 1930 MeV]

For $\pi \rightarrow 2 \pi$, we use log-likelihood while for rest -least-squares technologies.

Pron Plillo Pronulion

World Progress in Pion PhotoProduction

Direct Amplitude Reconstruction

in Pion PhotoProduction

$\gamma \mathrm{N} \rightarrow \mathrm{N} \pi$

spin: $1 \quad \frac{1}{2} \rightarrow \frac{1}{2} \quad 0$ helicities: $2 \times 2 \times 2 / 2=$ (4)
parity conservation 个

- In particle physics, helicity is projection of the spin \vec{S} onto direction of momentum, \hat{p} :

$$
\begin{array}{r}
h=\vec{J} \cdot \hat{p}=\vec{L} \cdot \hat{p}+\vec{S} \cdot \hat{p}=\vec{S} \cdot \hat{p} \\
\hat{p}=\frac{\vec{p}}{|\vec{p}|}
\end{array}
$$

Therefore, there are 4 independent invariant amplitudes

- In order to determine pion photoproduction amplitude [4 modules and 3 relative phases], one has to carry ou \mathcal{P} independent measurements at fixed (\mathbf{W}, t) or (E, θ).

8) This extra observable is necessary to eliminate sign ambiguity.

Ambiguities in the partial-wave analysis of pseudoscalar-meson photoproduction

Complete Experiment for Pion PhotoProduction

- There are 16 non-redundant observables.
- They are not completely independent from each other.

1 un-pol measurement: d $\sigma / d \Omega$
3 single pol measurements: Σ, T, \mathbf{P}
12 double pol measurements: $\mathbf{E}, \mathrm{F}, \mathrm{G}, \mathrm{H}$,
$\mathrm{C}_{\mathrm{x}}, \mathrm{C}_{\mathbf{z}}, \mathrm{O}_{\mathrm{x}}, \mathrm{O}_{\mathbf{z}}, \mathrm{L}_{\mathrm{x}}, \mathrm{L}_{\mathbf{z}}, \mathrm{T}_{\mathrm{x}}, \mathrm{T}_{\mathbf{z}}$
18 triple polarization asymmetries
[9 for linear pol beam]
[9 for circular pol beam]
13 of them are non-vanishing
A. Sandorfi et al. AIP Conf. Proc. 1432, 219 (2012)
K. Nakayama, private communication, 2014

Importance of \mathcal{N} eutron Data

- EM interaction do not conserve isospin, so multipole amplitudes contain isoscalar \& isovector contributions of EM current.

Proton

$$
A_{\pi^{0} p}=A^{0}+\frac{1}{3} A^{1 / 2}+\frac{2}{3} A^{3 / 2}
$$

$$
A_{\pi^{+} n}=\sqrt{2}\left(A^{0}+\frac{1}{3} A^{1 / 2}-\frac{1}{3} A^{3 / 2}\right)
$$

$$
\begin{aligned}
& A_{\pi^{0} n}=-A^{0}+\frac{1}{3} A^{1 / 2}+\frac{2}{3} A^{3 / 2} \\
& A_{\pi^{-} p}=\sqrt{2}\left(A^{0}-\frac{1}{3} A^{1 / 2}+\frac{1}{3} A^{3 / 2}\right)
\end{aligned}
$$

- Proton data alone/does not allow separation of isoscalar \& isovector components.
- Need data on both proton \& neutron!
- Data Analysis Center Institute for Nuclear Studies THE GEORGE WASHINGTON UNIVERSITY WASHINGTON. DC

SAID for Pion Photo Production
P. Mattione et al, Phys. Rev. C 96, 035204 (2017)

```
- Data driven (model independent) analysis
- Energy dependent MA27
- E = 145-2700 MeV [W = 1080-2460 MeV]
- PWs = 60 [EM multipoles] [J < 6]
- Prms = 210
Constraint: Born [no free parameters to fit] \piN-PWA [no theoretical input]
```


Photo-Decay Amplitudes in BW © Pole Forms

- Pole is main signature of resonance.

 $1 / 2$ and $3 / 2$ photo-decay amplitudes in units of $10^{-3}(\mathrm{GeV})^{-1 / 2}$. Errors on the phases are generally $2-5 \mathrm{~d}$ grees. For isospin $1 / 2$ resonances the values of the proton target are given.

Resonance	Breit-Wigner values				Pole values			
	(Mass, width)	$\Gamma_{x} / 2$	$A_{1 / 2}$	$A_{3 / 2}$	$\left(\operatorname{Re} W_{P},-2 \operatorname{Im} W_{P}\right)$	R_{π}	$A_{1 / 2}$	$A_{3 / 2}$
$\Delta(1232) 3 / 2^{+}$	$(1233,119)$	60	-141 ± 3	-258 ± 5	(1211, 99)	$52\left[-47^{\circ}\right]$	$-136 \pm 5\left[-18^{\circ}\right]$	$-255 \pm 5\left[-6^{\circ}\right]$
$N(1440) 1 / 2^{+}$	(1485, 284)	112	-60 ± 2		$(1359,162)$	38 [-98°]	$-66 \pm 5\left[-38^{\circ}\right]$	
$N(1520) 3 / 2^{-}$	(1515, 104)	33	-19 ± 2	$+153 \pm 3$	(1515, 113)	$38\left[-5^{\circ}\right]$	$-24 \pm 3\left[-7^{\circ}\right]$	$+157 \pm 6\left[+10^{\circ}\right]$
$N(1535) 1 / 2^{-}$	(1547, 188)	34	$+92 \pm 5$		$(1502,95)$	$16\left[-16^{\circ}\right]$	$+77 \pm 5\left[+4^{\circ}\right]$	
$N(1650) 1 / 2^{-}$	$(1635,115)$	58	$+35 \pm 5$		$(1648,80)$	14 [-69°]	$+35 \pm 3\left[-16^{\circ}\right]$	

R.L. Workman et al, Phys Rev C 87, 068201 (2013)
A. Svarc et al, Phys Rev C 89, 065208 (2014)

Measurement of π^{0} photoproduction on the proton at MAMI C

${ }^{6} \mathrm{~A}$. Braghieri 7 W. J. Briscoe, ${ }^{8}$ S. Cherepnya, ${ }^{9}$ F. Cividini, ${ }^{1}$ C. Collicott, ${ }^{10,11}$ S. Costanza, ${ }^{7,12}$ A. Denig, ${ }^{1}$ E. J. Downie, ${ }^{1,8}$ M. Dieterle, ${ }^{13}$ M. I. Ferretti Bondy, ${ }^{1}$ L. V. Fil'kov, ${ }^{9}$ A. Fix, ${ }^{14}$ S. Gardner, ${ }^{4}$ S. Garni, ${ }^{13}$ D. I. Glaziar ${ }^{4}$ ' ${ }^{\text {o }}$ owa ${ }^{15}$ W. Gradl, ${ }^{1}$ G. Gurevich, ${ }^{16}$ D. J. Hamilton, ${ }^{4}$ D. Hornidge, ${ }^{17}$ G. M. Huber, ${ }^{18}$ A. Käser, ${ }^{13}$ V. L. KashM. Korolija, ${ }^{19}$ B. Krusche, ${ }^{13}$ V. V. Kulikov, ${ }^{20}$ A. Larom
D. M. Manley, ${ }^{3}$ P. P. Martel, ${ }^{1,21}$ M. Martan-
A. Mushkarenkov, ${ }^{7,21}$ A. Negan-
P. Pedroni, ${ }^{7}$ A. Polonski, ${ }^{16}$ \qquad
\qquad
\square $1) \begin{gathered}\text { Keshelashvili, }{ }^{13} \text { R. Kondratiev, } \\ \text { ston, }{ }^{4} \text { I. J. D. MacGregor }{ }^{4}\end{gathered}$ ston, ${ }^{4}$ I. J. D. MacGregor, ${ }^{4}$
G. Middleton,, 17 R. Miskimen ${ }^{21}$ A. Sarty, ${ }^{11}$ D. M. Schott, ${ }^{8}$ S. Sch $\quad \mid \quad, \ldots,{ }^{4}$ A. Rajabi, ${ }^{21}$ G. Reicherz, ${ }^{22}$ G. Ron, ${ }^{24}$ T. Rostomyan, ${ }^{13}$ I. Supek, ${ }^{19}$ M. F. Taragin, ${ }^{8}$ t.. a mel, ${ }^{2}$ M. Thiel, ${ }^{1}$ L. Tiator ${ }^{1}$ A ${ }^{1}$ K. Spieker, ${ }^{2}$ O. Steffen, ${ }^{1}$ I. I. Strakovsky, ${ }^{8, \dagger}$ Th. Strub D. P. Watts, ${ }^{15}$ D. Werthmüller, ${ }^{4,13}$ J. Wettig, ${ }^{1}$ L. Witthawe ${ }^{13}{ }^{13}$ M. W, M. Unverzagt, ${ }^{1}$ Yu. A. Usov, ${ }^{6}$ S. Wagner, (A2 Collaboration at MAMI)

$$
\begin{aligned}
& W=1135-1957 \mathrm{MeV} \\
& \theta=15-165^{0} \\
& \pi^{0} \mathrm{p}: 7978 \mathrm{~d} \sigma / \mathrm{d} \Omega
\end{aligned}
$$

W = 1216-1448 MeV
 $\theta=31-158^{0}$
 $\pi^{0} \mathrm{p}: 1403 \Sigma$

THE EUROPEAN PHYSICAL JOURNAL A

Photon asymmetry measurements of $\vec{\gamma} p \rightarrow \pi^{0} \mathbf{p}$ for $\mathrm{E}_{\gamma}=320-650 \mathrm{MeV}$

The A2 Collaboration at MAMI

S. Gardner ${ }^{1, a}$, D. Howdle ${ }^{1}$, M.H. Sikora ${ }^{6}$, Y. Wunderlich ${ }^{4}$, S. Abt 10, P. Achenbach ${ }^{2}$, F. Afzal ${ }^{4}$, P. Aguar-Bartolome ${ }^{2}$, Z. Ahmed ${ }^{14}$, J.R.M. Annand ${ }^{1}$, H.J. Arends ${ }^{2}$, K. Bantawa ${ }^{3}$, M. Bashkanov ${ }^{6}$, R. Beck ${ }^{4}$, M. Biroth ${ }^{2}$, N.S. Borisov ${ }^{15}$, A. Braghieri'5, W.J. Briscoe ${ }^{7}$, S. Cherepnya ${ }^{9}$, F. Cividini ${ }^{2}$, S. Costanza ${ }^{5}$, C. Collicott ${ }^{7}$, B.T. Demissie ${ }^{7}$, A. Denig ${ }^{2}$, M. Dieterle ${ }^{10}$, E.J. Downie ${ }^{7}$, P. Drexler ${ }^{2}$, M.I. Ferretti-Bondy ${ }^{2}$, L.V ${ }^{-}{ }^{-}{ }^{\text {ov }}{ }^{9}$, D.I. Glazier ${ }^{1}$, S. Garni ${ }^{10}$, W. Gradl ${ }^{2}$, M. Günther ${ }^{10}$, G.M. Gurevich ${ }^{\text {i2 }}$, P. Hall Barrientos ${ }^{6}$, D. O. Jahn ${ }^{2}$, T.C. Jude ${ }^{6}$, A. Käser ${ }^{10}$, S. Kay ${ }^{6}$, V.L. ${ }^{\boldsymbol{V}}$, B. Krusche ${ }^{10}$, J.M. Linturi ${ }^{2}$, V. Lisin
D.M. Manley ${ }^{3}$, P.P. Martel ${ }^{2}$, J. D.M. Manley ${ }^{3}$, P.P. Martel ${ }^{2}$, J..
\qquad

 ${ }^{2}$, D. Paudyal ${ }^{14}$, P. P ${ }^{1}$. olonski ${ }^{12}$, S. Prakhov ${ }^{8}$, A. Rajabi ${ }^{17}$, J. Robinson ${ }^{1}$, G. Rosner ${ }^{1}$, ${ }^{1}$, ${ }^{\mathrm{an}^{10}}$, A. Sarty ${ }^{16}$, S. Sc _umann ${ }^{2}$, V. Sokhoyan ${ }^{2}$, K. Spieker ${ }^{4}$, O. Steffen ${ }^{2}$, C. Sfienti ${ }^{2}$, I.I. Strakovsky ${ }^{7}$ erg 1, Th. Strub ${ }^{10}$, I. Supek ${ }^{13}$, C.M. Tarbert ${ }^{6}$, A. Thiel ${ }^{4}$, M. Thiel ${ }^{2}$, A. Thomas ${ }^{2}$, M. Unverzagt ${ }^{2}$ ${ }^{5}$, D.P. Watts ${ }^{6}$, D. Werthmüller ${ }^{1,10}$, J. Wettig ${ }^{2}$, M. Wolfes ${ }^{2}$, L. Witthauer ${ }^{10}$, and L. Zana ${ }^{6}$

PHYSICAL REVIEW C 93, 055209 (2016)

T and F asymmetries in π^{0} photoproduction on the proton

J. R. M. Annand, ${ }^{1}$ H. J. Arends, ${ }^{2}$ R. Beck, ${ }^{3}$ N. Borisov, ${ }^{4}$ A. Braghie
J. R. M. Annand, ${ }^{1}$ H. J. Arends, ${ }^{2}$ R. Beck, ${ }^{3}$ N. Borisov, ${ }^{4}$ A. Braghieri, ${ }^{5} \mathrm{~W}$ r
S. Costanza, ${ }^{5}$ E. J. Downie, ${ }^{2,6}$ M. Dieterle, ${ }^{9}$ A. Fix,${ }^{10}$ L. V. Fil'kov ${ }^{7}-$
P. Hall Barrientos, ${ }^{10}$ D. Hamilton, ${ }^{1}$ D. Hornidge, ${ }^{13}$ D v R. Kondratiev, ${ }^{12}$ M. Korolija, ${ }^{15}$ B. Krusche ${ }^{9}$. D. M. Manley, ${ }^{16}$ P. P. Martel, ${ }^{2,17} \mathrm{E} .{ }^{-}$. \quad POT Neganov, ${ }^{4}$ A. Nikolaev ${ }^{3}$ M ${ }^{\circ}$ berle, V. V. Polyanski, ${ }^{7}$ S. Prakhovv, ${ }^{19}$ G. 1 Th. Strub, ${ }^{9}$ I. Supek, ${ }^{15}$ L. Tiator; 4. 1 r. B. Otte, ${ }^{2}$ B. Oussena, ${ }^{2,6}$ P. Pedroni, ${ }^{5}$ A. Polonski, ${ }^{12}$
_.tyan, ${ }^{4}$ A. Sarty, ${ }^{8}$ S. Schumann, ${ }^{2}$ O. Steffen, ${ }^{2}$ I. I. Strakovsky, ${ }^{6}$
,.tas, ${ }^{2}$ M. Unverzagt, ${ }^{2}$ Yu. A. Usov, ${ }^{4}$ D. P. Watts, ${ }^{11}$ D. Werthmüller, ${ }^{1,9}{ }^{1,9}$
L. Witthaynverzagt, ${ }^{2}$ Yu. A. Usov, ${ }^{4}$ D. P. Watts, ${ }^{11}$ D. Werthmüller, ${ }^{1,9}$
L. Witthauer, ${ }^{9}$ and M. Wolfes ${ }^{2}$
(A2 Collaboration at MAMI)

$W=1322-1841 \mathrm{MeV}$
$\theta=75-140^{0}$
$\pi^{0} \mathrm{p}: 45 \mathrm{Cx}^{\prime}$

Measurement of the ${ }^{1} H(\vec{\gamma}, \vec{p}) \boldsymbol{\pi}^{0}$ Reaction Using a Novel Nucleon Spin Polarimeter
M. H. Sikora, ${ }_{4}{ }^{, *}$ D.P. Watts, ${ }^{1}$ D. I. Glazier, ${ }^{1}$ P. Aguar-Bartolomé, ${ }^{2}$ L. K. Akasoy, ${ }^{2}$ J. R. M. Annand, ${ }^{3}$ H. J. Arends, ${ }^{2}$ K. Bantawa, ${ }^{4}$ R. Beck, ${ }^{5}$ V.S. Bekrenev, ${ }^{6}$ H. Berghäuser, ${ }^{7}$ A. Braghieri, ${ }^{8}$ D. Branford ${ }^{1}$, ${ }^{1}$ J. Briscoe, ${ }^{9}$ J. Brudvik, ${ }^{1}$ S. Cherepnya, ${ }^{11}$ R.E. B. Codling, ${ }^{3}$ B.T. Demissie, E. J. Downie, ${ }^{2,39}$ P n-
D. Hamilton, ${ }^{3}$ E. Heid, ${ }^{29}$ D. Homidge, ${ }^{12}$ D. A. How. ${ }^{2}$, ${ }^{11}$ B. Freehart, ${ }^{9}$ R. Gregor,

 B. McKinnon, ${ }^{3}$ E. F. McNicoll, ${ }^{3}$ D. W. Micanovic ${ }^{15}$ D. G. Middleton, ${ }^{12}$ A. Mushkarenkov, B. M. K. Nefkens, ${ }^{10}$ A. Nikolaev,
 Uuy, M. Ostrick, ${ }^{2}$ P. B. Otte, ${ }^{2}$ B. Oussena ${ }^{2,9}$ P. Pedroni, ${ }^{8}$ F. Pheron, ${ }^{13}$
I. Strakovsky, ${ }^{9}$ I. M. Suarez ${ }^{\text {i0 }}$ I Supek ${ }^{15}$ M. Thiel, ${ }^{1}$ A. Thomas, ${ }^{2}$ M. Unverzagt ${ }^{2}$ D. Werthmüller ${ }^{1 / 3}$ R. L. Workman, ${ }^{2}$, I. Zamboni, ${ }^{15}$ and F Zehr ${ }^{13}$ (A2 Collaboration at MAMI)

7/16/2018
PWA10/ATHOS5 2018, Beijing, China, July 2018
William Briscoe 13

Courtesy of Steffen Strauch, 2018

PHYSICAL REVIEW C 88,065203 (2013)
Beam asymmetry Σ for π^{+}and π^{0} photoproduction on the proton for ph
from 1.102 to 1.862 GeV from 1.102 to 1.862 GeV
clos

$$
\left(\frac{d \sigma}{d \Omega}\right)=\left(\frac{d \sigma}{d \Omega}\right)_{0}\left(1-P_{z} P_{\odot} E\right)
$$

M. Dugger, ${ }^{2}$ B. G. Ritchie, ${ }^{2}$ P. Collins, ${ }^{2, *}$ E. Pasyuk, ${ }^{2, \dagger}$ W. J. Briscoe, ${ }^{14}$ I. I. Strakovsky, ${ }^{14}$ R. L. Workman, ${ }^{14}$ Y. Azimov, ${ }^{29}$ K. P. Adhikari, ${ }^{28}$ D. Adikaram, ${ }^{28}$ M. Aghasyan, ${ }^{17}$ M. J. Amaryan, ${ }^{28}$ M. D. Anderson, ${ }^{37}$ S. Anefalos Pereira, ${ }^{17}$ H. Avakian, ${ }^{15}$ J. Ball, ${ }^{6}$ N. A. Baltzell, ${ }^{1,34}$ M. Battaglieri, ${ }^{18}$ V. Batourine, ${ }^{23,35}$ I. Bedlinskiy, ${ }^{21}$ A. S. Biselli, ${ }^{4,10}$ S. Boiarinov, ${ }^{35}$ V. D. Burkert, ${ }^{35}$ D. S. Carman, ${ }^{35}$ A. Celentano, ${ }^{18}$ S. Chandavar, ${ }^{27}$ P. L. Cole, ${ }^{15}$ M. Contalbrigo, ${ }^{16}$ O. Cortes, ${ }^{15}$ V. Crede, ${ }^{12}$ A. D'Angelo, ${ }^{19,32}$

 R. A. Montgomery,${ }^{37} \mathrm{H} . \mathrm{M} 2$, . Munevar,,${ }^{35} \mathrm{C}$. Munoz Camacho, ${ }^{20}$ P. Nadel-Turonski, ${ }^{14,35} \mathrm{C}$. S. Nepali, ${ }^{28}$ S. Niccolai, ${ }^{20}$ G. Niculescu, ${ }^{22}$ I. Niculescu, ${ }^{22}$ M. Osipenko, ${ }^{18}$ A. I. Ostrovidov, ${ }^{12}$ L. L. Pappalardo, ${ }^{16}$ R. Paremuzyan, ${ }^{40,8}$ K. Park, ${ }^{23,35}$ S. Park, ${ }^{12}$ E. Phelps, ${ }^{34}$ J. J. Phillips, ${ }^{37}$ S. Pisano, ${ }^{17}$ O. Pogorelko, ${ }^{21}$ S. Pozdniakov, ${ }^{21}$ J. W. Price, ${ }^{3}$ S. Procureur, ${ }^{6}$ Y. Prok, ${ }^{28,35,38}$ D. Protopopescu, ${ }^{37}$ B. A. Raue, ${ }^{11,35}$ D. Rimal, ${ }^{11}$ M. Ripani, ${ }^{18}$ G. Rosner, ${ }^{37}$ P. Rossi, ${ }^{17,35}$ F. Sabatié, ${ }^{6}$ M. S. Saini, ${ }^{12}$
C. Salgado, ${ }^{26}$ D. Schott, ${ }^{14}$ R. A. Schumacher, ${ }^{4}$ E. Seder, ${ }^{8}$ H. Seraydaryan,${ }^{28}$ Y. G. Sharabian, ${ }^{35}$ G. D. Smith, ${ }^{37}$ D. I. Sober, ${ }^{5}$ D. Sokhan, ${ }^{37}$ S. S. Stepanyan, ${ }^{23}$ P. Stoler ${ }^{30}$ S. Strauch, ${ }^{14,34}$ M. Taiuti, ${ }^{13,5}$ W. Tang, ${ }^{27}$ Ye Tian, ${ }^{34}$ S. Tkachenko, ${ }^{28,38}$ B. Torayev ${ }^{28}$ H. Voskanyan, ${ }^{40}$ E. Voutier,,24 N. K. Walford, ${ }^{5}$ D. P. Watts, ${ }^{9}$ D. P. Weygand,,35
N. Zachariou, ${ }^{34}$ L. Zana, ${ }^{25}$ J. Zhang, ${ }^{28,35}$ Z. W. Zhao, ${ }^{38}$ and I. Zonta ${ }^{19, \|}$

7/16/2018
PWA10/ATHOS5 2018, Beijing, China, July 2018

First measurement of the polarization observable E in the $\vec{p}\left(\vec{\gamma}, \pi^{+}\right) n$ reaction up to 2.25 GeV chas collaboration

 KL Givanemi Ex Girod ${ }^{2}$

 x. Wei

1. Zonat ${ }^{\text {m. }}$. Wood

G for $\vec{\gamma} \vec{p} \rightarrow \pi^{+} n$

Courtesy of Lorenzo Zana 2018
PWA10/ATHOS5 2018, Beijing, China, July 2018
$\mathrm{T} \& \mathrm{~F}$ for $\vec{\gamma} \vec{p} \rightarrow \pi^{+} n$

Courtesy of Mike Dugger, 2018

P \& H for $\vec{\gamma} \vec{p} \rightarrow \pi^{+} n$

Courtesy of Mike Dugger, 2018

Pion PRok Prourtion

©

Single Pion PhotoProduction on

"Neutron" Target

- Accurate evaluation of EM couplings $\mathbf{N}^{*} \rightarrow \gamma \mathbf{N} \& \Delta^{*} \rightarrow \gamma \mathbf{N}$ from meson photoproduction data remains paramount task in hadron physics.
- Only with good data on both proton \& neutron targets, one can hope to disentangle isoscalar \& isovector EM couplings of various $N^{*} \& \Delta^{*}$ resonances, K.M. Watson, Phys Rev 95, 228 (1954): R.L. Walker, Phys Rev 182, 1729 (1969) as well as isospin properties of non-resonant background amplitudes.
- The lack of $\mathbf{Y n} \rightarrow \boldsymbol{\pi}^{-} \boldsymbol{p}$ \& $\mathbf{Y n} \rightarrow \boldsymbol{\pi}^{0} \boldsymbol{n}$ data does not allow us to be as confident about determination of neutron couplings relative to those of proton.
- Radiative decay width of neutral baryons may be extracted from $\pi^{-} \& \pi^{0}$ photoproduction off neutron, which involves bound neutron target \& needs use of model-dependent nuclear (FSI) corrections.
A.B. Migdal, JETP 1, 2 (1955); K.M. Watson, Phys Rev 95, 228 (1954)

FSI for $\gamma d \rightarrow \pi p \mathcal{N} \Longrightarrow \gamma n \rightarrow \pi \mathcal{N}$

V. Tarasov, A. Kudryavtsev, W. Briscoe, H. Gao, IS, Phys Rev C 84, 035203 (2011) V. Tarasov, A. Kudryavtsev, W. Briscoe, B. Krusche, IS, M. Ostrick, Phys At Nucl 79, 216 (2016)

- FSI plays critical role in state-of-the-art analysis of $\gamma \mathrm{n} \rightarrow \pi \mathrm{N}$ data.
\bullet For $\gamma \mathrm{n} \rightarrow \pi \mathrm{N}$, effect is $5 \%-60 \%$. It depends on (E, θ).

Input: SAID: $\gamma \mathrm{N} \rightarrow \pi \mathrm{N}, \pi \mathrm{N} \rightarrow \pi \mathrm{N}, \mathrm{NN} \rightarrow \mathrm{NN}$ amplitudes for 3 leading terms.
DWF: full Bonn NN Potential (there is no sensitivity to DWF).

$$
R=\left(d \sigma / d \Omega_{\pi p}\right) /\left(d \sigma^{I A} / d \Omega_{\pi p}\right) \quad \square \quad \frac{d \sigma}{d \Omega}(\gamma n)=R^{-1} \frac{d \sigma}{d \Omega}(\gamma d)
$$

THTF

V. Tarasov, A. Kudryavtsev, W. Briscoe, H. Gao, IS, Phys Rev C 84, 035203 (2011)

CL.AS g13 Impact for \mathcal{N} veutron $S=0 \mathcal{Q} I=1 / 2$ Couplings

P. Mattione et al, Phys. Rev. C 96, 035204 (2017)

- Selected photon decay amplitudes $\mathbf{N}^{*} \rightarrow \mathbf{\gamma n}$ at resonance poles are determined for the first time.

$\overline{\text { GW \&ing }}$

MAID

10PDG
CL.AS g14 Impact for \mathcal{N} eutron $S=0 \mathcal{Z} I=1 / 2$ Couplings
D. Ho et al, Phys Rev Lett 118, 242002 (2017)

BW	$\mathrm{A}^{1 / 2}$	$\left(10^{-3} \mathrm{GeV}^{-1 / 2}\right)$	$\mathrm{A}^{3 / 2}$	$\left(10^{-3} \mathrm{GeV}^{-1 / 2}\right)$
	g14 PRL	previous	g14 PRL	previous
SAID				
$N(1720) 3 / 2^{+}$	-9 ± 2	-21 ± 4	+19 ± 2	-38 ± 7
$N(2190) 7 / 2^{-}$	-6 ± 9	---	-28 ± 10	---
BnGa				
$N(1720) 3 / 2^{+}$	tbd	-80 ± 50	tbd	-140 ± 65
$\mathrm{N}(2190) 7 / 2^{-}$	+30 ± 7	-15 ± 12	-23 ± 8	-33 ± 20

\bullet I $=3 / 2$ waves \sim unchanged \Longleftrightarrow determined by proton data.

- Inclusion of these g14 data in new PWA calculations has resulted in revised $\gamma \mathbf{N}^{*}$ couplings $\&$, in case of $\mathbf{N}(\mathbf{2 1 9 0}) 7 / \mathbf{2}^{-}$, convergence among different PWA groups.
- Such couplings are sensitive to dynamical process of N^{*} excitation \& provide important guides to nucleon structure models.

MAX-lab

- It is difficult task to measure $\pi^{-} p$ final state close to threshold.
- We measured π^{0} decay in to 2γ from $\gamma n \rightarrow \pi^{-} p \rightarrow \pi^{0} n$.

Courtesy of Bruno Strandberg, 2018

Courtesy of Daria Sokhan, 2018

FSI for $\gamma d \rightarrow \pi^{0} n p \Longrightarrow \gamma n \rightarrow \pi^{0} n \mathcal{A} \gamma p \rightarrow \pi^{0} p$

V. Tarasov, A. Kudryavtsev, W. Briscoe, B. Krusche, IS, M. Ostrick, Phys At Nucl 79, 216 (2016)

- $\gamma \mathbf{n} \rightarrow \pi^{0} \mathbf{n}$ case is much more complicated vs. $\gamma \mathbf{n} \rightarrow \pi^{-} \mathbf{p}$ because π^{0} can come from both $\gamma \mathbf{n}$ \& $\gamma \mathbf{p}$ initial interactions.

$$
\begin{aligned}
& A\left(\gamma p \rightarrow \pi^{0} p\right)=A_{v}+A_{s} \\
& A\left(\gamma n \rightarrow \pi^{0} n\right)=A_{v}-A_{s}
\end{aligned}
$$

- The corrections for both target nucleons are practically identical for π^{0} production in energy range of $\Delta(1232) 3 / 2^{+}$due to isospin structure of $\gamma \mathbf{N} \rightarrow \pi \mathbf{N}$ amplitude. $A_{s}=0$ or $A_{v}=0$

$$
R_{n}=R_{p}
$$

- In general case, $R_{n} \neq R_{p}$

Meson Production off(Deuteron at CB@MAMMI

V. Kulikov et al, in progress

- Differential cross sections for $\gamma \mathbf{n} \rightarrow \pi^{0} n$.

Data up to $\mathrm{E}=1500 \mathrm{MeV}$ are coming.

Courtesy of Beatrice Ramstein, 2018

PHYSICAL REVIEW C 93, 062201(R) (2016)

Search for narrow resonances in πp elastic scattering from the EPECUR experiment
A. Gridnev, ${ }^{1, *}$ I. G. Alekseev, ${ }^{2,5}$ V. A. Andreev, ${ }^{1}$ I. G. Bordyuzhin, ${ }^{2}$ W. J. Briscoe, ${ }^{3}$ Ye. A. Filimonov, ${ }^{1}$ V. V. Golubev, ${ }^{2}$
D. V. Kalinkin, ${ }^{2}$ L. I. Koroleva, ${ }^{2}$ N. G. Kozlenko, ${ }^{1}$ V. S. Kozlov, ${ }^{1}$ A. G. Krivshich, ${ }^{1}$ V. A. Kuznetsov, ${ }^{1}$ B. V. Morozov, ${ }^{2}$
V. M. Nesterov, ${ }^{2}$ D. V. Novinsky, ${ }^{1}$ V. V. Ryltsov, ${ }^{2}$ M. Sadler, ${ }^{4}$ I. I. Strakovsky, ${ }^{3}$ A. D. Sulimov, ${ }^{2}$ V. V. Sumachev, ${ }^{1}$
D. N. Svirida, ${ }^{2}$ V. I. Tarakanov, ${ }^{2}$ V. Yu. Trautman, ${ }^{2}$ and R. L. Workman ${ }^{3}$

(a) Curlean (9) Curleon

Evidence for a New Resonance from Polarized Neutron-Proton Scattering
P. Adlarson, ${ }^{1}$ W. Augustyniak, ${ }^{2}$ W. Bardan, ${ }^{3}$ M. Bashkanov, ${ }^{45}$ F.S. Bergmann, ${ }^{6}$ M. Berłowski, ${ }^{7}$ H. Bhatt, ${ }^{8}$ M. Büscher, ${ }^{9}, 10$ H. Calén, ${ }^{1}$ I. Ciepal, ${ }^{3}$ H. Clement, ${ }^{4,5}$ D. Coderre, ${ }^{, 1,1,13,}{ }^{1}$ E. Czerwiński, ${ }^{3}$ K. Demmich, ${ }^{6}$ E. Doroshkevich, ${ }^{4,5}$ R. Engels, ${ }^{11,12}$ A. Erven, ${ }^{14,12}$ W. Erven, ${ }^{14,12}$ W. Eyrich ${ }^{15}$ P. Fedorets, ${ }^{11,12,16}$ K. Föhl, ${ }^{17}$ K. Fransson, ${ }^{1}$ F. Goldenbaum, ${ }^{11,12}$ P. Goslawski, ${ }^{1,1}$ A. Goswami, ${ }^{11,12,18}$ K. Grigoryev, ${ }^{1,19,20}$ C.-O. Gullström, ${ }^{1}$ F. Hauenstein, ${ }^{15}$ L. Heijker iöld, V. Hejny, ${ }^{1,12}$ M. Hodana, ${ }^{3}$

$$
\text { oskal }{ }^{13}
$$ $11 \mathrm{~A} \quad \stackrel{\text { Marciniewski, }}{ }{ }^{3} \mathrm{~B}$. Marianski,

M. Mikirtychiants, ${ }^{11}$
\qquad suhn, ${ }^{11,12}$ A. Pricking, ${ }^{4,5}$,
S. Sawant, ${ }^{8,1112}$, S. Sawant, ${ }^{\text {,11,12 }} \varepsilon$, ikurzok, ${ }^{3}$ J. Smyrsi Ströher ${ }^{11,12}$, ${ }^{12}$. ${ }^{10}$ R. Stassenck, $, 1,12$ J. Stepaniak, ${ }^{7}$ E. Stephan, ${ }^{2,}$ G. Sterzenbach, ${ }^{1,12}$
 Wurm, ${ }^{11,12}$ A. Yamamoto, ${ }^{25}$ L. Yurev, ${ }^{24,8,5}$ J. Zabierowski, ${ }^{26}$ M. J. Zieliński, ${ }^{3}$ A. Zink, ${ }^{\text {is }}$
J. Złomańczuk, ${ }^{1}$ P. Żuprański, ${ }^{2}$ and M. Żurek ${ }^{11,12}$
(WASA-at-COSY Collaboration)

Sensitivity of the COSY dibaryon candidate to $n p$ elastic scattering measurements

R. L. Workman, W. J. Briscoe, and I. I. Strakovsky

Institute for Nuclear Studies, Department of Physics, The George Washington University, Washington, DC 20052, USA (Received 24 January 2016; published 1 April 2016)
$7 / 16 / 2018$
$\left.\operatorname{Re}\left({ }^{3} D_{3}\right)\right)^{0.0}$
PWA10/ATHOS5 2018, Beijing, China, July 2018

(duangre SCadran

©pechoocoppy witk ©econdany,
GN@ Bean ait @lued

Aims of JГab KL.F Project

- KLF project has to establish secondary K_{L} beam line at Jefferson Lab with flux of three order of magnitude higher than SiAC
- for scattering experiments on both proton \& neutron (first time !) targets in order to determine differential cross sections \& self-polarization of strange hyperons with Guble detector to enable precise PWA in order to determine all resonances up to 3 GeV in spectra of $\Lambda^{*}, \Sigma^{*}, \Xi^{*}, \& \Omega^{*}$.
- In addition, we intend to do strange meson spectroscopy by studies of π-K interaction to locate pole positions in $\mathrm{I}=1 / 2 \& 3 / 2$ channels.
- KLF has link to ion-ion high energy facilities as
 formation of our world in several microseconds after Big Bang.

Gule

Hall D Beam Line Set up for K-Congs

$$
\begin{array}{ll}
\mathrm{I}_{\mathrm{e}} & =5 \mu \mathrm{~A} \\
\mathrm{~W} \text {-radiator } & =0.1 \mathrm{R} . \mathrm{L} . \\
\text { Be-target } & =1.7 \mathrm{R} . \mathrm{L} .
\end{array}
$$

- Electrons are hitting W-radiator at CPS.
- Photons are hitting Be-target at cave.
$-\mathrm{K}_{\mathrm{L}} \mathrm{s}$ are hitting the $\mathrm{LH}_{2} / \mathrm{LD}_{2}$ target within GLueX setting.

Expected Cross Sections vs Buб6โe Chamber Data

\bullet GlueX measurements will span $\cos \theta$ from $\mathbf{- 0 . 9 5}$ to $\mathbf{0 . 9 5}$ in CM above $\mathbf{W}=\mathbf{1 4 9 0} \mathrm{MeV}$.

- K_{L} rate is $10^{4} \mathrm{~K}_{\mathrm{l}} / \mathrm{s}=2500 \mathrm{x}$ SLAC
- Uncertainties (statistics only) correspond to 100 days of running time for:
$K_{L} p \rightarrow K_{s} p$
5 Geant4

Expected GlueX Data

$$
\mathrm{K}_{\mathrm{L}} \mathrm{p} \rightarrow \pi^{+} \Lambda
$$

Why We Have to Measure

Double-Strange Cascades in JLab

- Heavy quark symmetry (Isgur-Wise symmetry) suggests that multiplet splittings in strange, charm, \& bottom hyperons should scale as approximately inverses of corresponding quark masses:

$$
1 / m_{s}: 1 / m_{c}: 1 / m_{b}
$$

N. Isgur \& M.B. Wise, Phys Rev Lett 661130 (1991)

- If they don't, that scaling failure implies that structures of corresponding states are anomalous, \& very different from one another.
- So far only hyperon resonance multiplet, where this scaling can be "tested" \& seen is lowest negative parity multiplet:

$\Lambda(1405) 1 / 2^{-}-\Lambda(1520) 3 / 2^{-}, \Lambda_{c}(2595) 1 / 2^{-}-\Lambda_{c}(2625) 3 / 2^{-}, \Lambda_{b}(5912) 1 / 2^{-}-\Lambda_{b}(5920) 3 / 2^{-}$

- It works approximately (30\%) well for those Λ-splittings. It would work even better for Ξ, Ξ_{c}, Ξ_{b} splittings, \& should be very good for $\Omega, \Omega_{c}, \Omega_{\mathrm{b}}$ splittings.
- Jefferson Lab
As $L H C b$
HCGP
 is doing double charm cascade spectrum. $\Xi_{\mathrm{c}}(2790) 1 / 2^{-}-\Xi_{\mathrm{c}}(2815) 3 / 2^{-}$

R. Aaij et al, Phys Rev Lett 119, 112001 (2017)

on $K \pi$ Scattering with Regards to κ Meson in JLab

- KLF proposal will have very significant impact in our knowledge of $K \pi$ scattering amplitudes in scalar I = ½ channel.
- It will reduce by more than factor of two uncertainty in mass determination \& by a factor of five uncertainty on its width (and therefore on its coupling) of controversial or $k(800)$.
- Neutral kaon beam scattering on both proton \& neutron targets at low t-Mandelstam will allow to produce \& identify all four isospin partners of $\kappa(800)$.

- 203 researchers from 61 institutes
are co-authors.

Strange Hadron Spectroscopy with Secondary K_{L} Beam at GlueX

[^0]
[^0]:

 T. Black ${ }^{12}$, W. Boceglin ${ }^{12}$, M. Bocer ${ }^{1}$, W. J. Briscoc ${ }^{44}$, T. Britton ${ }^{32}$, W. K. Arooks ${ }^{\text {² }}$, B. E Cannon ${ }^{13}$,

 V. S. Garyachev ${ }^{17}$, K. Gobtern ${ }^{18}$, A. Goncalves ${ }^{13}$, L Guo ${ }^{12}$, H Habcrext ${ }^{14}$,

 M. Mai ${ }^{14}$, D. M. Mankey ${ }^{11}$, M. Mazouz ${ }^{17}$, H. Maruly n^{61}, V. Mathiecu ${ }^{75}$, M. Matneev ${ }^{48}$,

 E Poosr ${ }^{\text {² }}$, J. W. Price ${ }^{6}$, N. Qin ${ }^{\text {a }}$, J. Reinhold ${ }^{12}$, D. Richards ${ }^{\text {² }}$, D. O. Riska ${ }^{11}$, B. Ritchic ${ }^{1}$,

 R.A. Schumacher ${ }^{7}$, C. Schwarz ${ }^{18}$, J. Schwiening ${ }^{18}$, A. Yu. Semenow ${ }^{2 \pi}$, LA. Secnencva² .

 D. Watt ${ }^{10}$, D. Werthmillkr ${ }^{17}$, T Whitlatch ${ }^{10}$, N. Wickramaractchi4 ${ }^{4}$, M. Willianns ${ }^{36}$.

 ## Full Proposal was submitted for JLab PAC46

