XYZ at BESIII

Zhentian Sun IHEP On behalf of BESIII collaboration

PWA10/ATHOS5, IHEP, BeiJing, July 16, 2018

Outline

Introduction

BEPCII and BESIII

BESIII data samples

□ Y(1⁻⁻) states

 $\succ Y \rightarrow \pi^{+}\pi^{-}J/\psi (\psi'), Y \rightarrow \pi^{+}\pi^{-}h_{c_{i}} Y \rightarrow \omega\chi_{cJ_{i}} Y \rightarrow \pi^{+}D^{0}D^{*-}$

Simultaneous fit of all the above channels

□ A quick view of the Zc states in BESIII

 \diamond Evidence of Zc(3900) \rightarrow ρη_c

♦ Determination of J^p of Zc(3900)

 \diamond Structures in e⁺e⁻ $\rightarrow \pi^+\pi^- \psi'$

□ Observation of $e^+e^- \rightarrow \gamma X(3872)$, $X(3872) \rightarrow \pi^+\pi^- J/\psi$

G Summary

Beijing Electron and Positron Collider(BEPCII)

Beam energy: 1~2.3GeV

Beijing Spectrometer (BESIII)

- Inner to Outside:
- ✓ Main Drift chamber(MDC),
- ✓ Time of flight System(TOF),
- ✓ Electromagnetic Calorimeter(EMC),
- ✓ Solenoid super-conducting magnet(SSM),
- ✓ Muon chamber(MUC)
- Acceptance: 93% of 4π

4

BESIII data sets for XYZ study

XYZ data

5 fb⁻¹ e⁺e⁻ collision data event in open charm region from 3.8-4.6GeV.
Massive events on several special energy points: Such as 4.26GeV, 828pb⁻¹ 4.36GeV, 544pb⁻¹ 4.23GeV, 1100pb⁻¹

R-scan data

□Dozens of energy points with luminosity < 20 pb⁻¹

□Initially taken for R study, can also help the XYZ study

Part I: $e^+e^- \rightarrow \psi(1^{--})$ (well estabilished) $\rightarrow \dots$ or $e^+e^- \rightarrow Y(1^{--})$ (not so well estabilished) $\rightarrow \dots$

Y(4260) & Y(4360): some history

The exotics with Y(1⁻⁻) states

□Y(4260), Y(4360) are not predicted by the Potential model:

"Y" are observed in the ISR process, they should be 1⁻⁻ states.

All the predicted 1⁻⁻ charmonium are already discovered (ψ(4040), ψ(4160), ψ(4415) and showing as peaks in R value.
→No place for Y(4260), Y(4360). Some of them might not be charmonium.

Simultaneous fit to XYZ data (left) and R-scan data (right)

Coherent sum of two Breit-Wigner like structure plus one incoherent ψ **(3770)**

> M = (4222.0±3.1±1.4) MeV, Γ = (44.1±4.3±2.0) MeV,

Lower and narrower than previous Y(4260) PDG value

> M = (4320.0±10.4±7) MeV, Γ = (101.4±25±10) MeV,

a little bit lower than Y(4360) PDG

□Compare with one Breit-Wigner fit, the significance of the second Breit-wigner is 7.6 σ □Is this Y(4260) + Y(4360) ? The first observation of Y(4360)→ $\pi^+\pi^-J/\psi$? □Y(4008) is not confirmed

□Cross section of $e^+e^- \rightarrow \pi^+\pi^+\psi(3686)$ has been measured at 16 energy points from 4.008 to 4.600 GeV. □Y(4220) is needed(5.8 σ)

 $e^+e^- \rightarrow \pi^+\pi^-h_c$

Fitted with coherent sum of two Breit-Wigner like structue

 \succ M₁=4218.4^{+5.5}_{-4.5}±0.9 MeV/c², Γ₁= 66.0^{+12.3}_{-8.3}±0.4 MeV → Y(4220)

 \succ M₂=4391.5^{+6.3}_{-6.8}±1.0 MeV/c², Γ₂=139.5^{+16.2}_{-20.6}±0.6 MeV → Y(4390)

The Y(4220) here is consistent with the states observed in $\pi^+\pi J/\psi$ around 4222MeV

 $M(Y(4220)) = (4224.8 \pm 5.6 \pm 4.0) \text{ MeV/c}^2, \Gamma(Y(4220)) = (72.3 \pm 9.1 \pm 0.9) \text{ MeV}.$ $M(Y(4390)) = (4400.1 \pm 9.3 \pm 2.1) \text{ MeV/c}^2, \Gamma(Y(4220)) = (181.7 \pm 16.9 \pm 7.4) \text{ MeV}.$

Only ωχ_{c0} has significant signal
 The cross section is fitted with coherent sum of a Breit-Wigner and a phase space term

 $M = 4230 \pm 8 \pm 6 \text{ MeV}$, $\Gamma = 38 \pm 12 \pm 2 \text{ MeV}$

The mass and width here is compatible with the Y observed in $\pi^+\pi J/\psi$ and $e^+e^- \rightarrow \pi^+\pi h_c$

Coupled channels fit

• The Y states in these channels

	Y(4220)		Y(4320)/Y(4360)/Y(4390)	
	$M \; ({ m MeV}/c^2)$	$\Gamma (MeV)$	$M ({ m MeV}/c^2)$	$\Gamma (MeV)$
$\omega \chi_{c0}$ [13]	$4226\pm8\pm6$	$39 \pm 12 \pm 2$		
$\pi^{+}\pi^{-}h_{c}$ [14]	$4218.4^{+5.5}_{-4.5}\pm0.9$	$66.0^{+12.3}_{-8.3} \pm 0.4$	$4391.5^{+6.3}_{-6.8} \pm 1.0$	$139.5^{+16.2}_{-20.6} \pm 0.6$
$\pi^{+}\pi^{-}J/\psi$ [7]	$4222.0 \pm 3.1 \pm 1.4$	$44.1\pm4.3\pm2.0$	$4320.0 \pm 10.4 \pm 7.0$	$101.4^{+25.3}_{-19.7} \pm 10.2$
$\pi^+\pi^-\psi(3686)$ [11]	$4209.1 \pm 6.8 \pm 7.0$	$76.6 \pm 14.2 \pm 2.4$	$4383.7 \pm 2.9 \pm 6.2$	$94.2 \pm 7.3 \pm 2.0$
$\pi^+ D^0 D^{*-} + c.c.$ [15]	$4224.8 \pm 5.6 \pm 4.0$	$72.3\pm9.1\pm0.9$	$4400.1 \pm 9.3 \pm 2.1$	$181.7 \pm 16.9 \pm 7.4$

- Assume these two peaks structure are from same two states.
- Fit theses cross sections simultaneously with the interference between the Y states considered
- The result from CLEO, BaBar, Belle are also used
- The fit result gives:

Parameter	Y(4220)	Y(4390)	Y(4660)
$M \; ({ m MeV}/c^2)$	$4216.5 \pm 1.4 \pm 3.2$	$4383.5 \pm 1.9 \pm 6.0$	$4623.4 \pm 10.5 \pm 16.1$
Γ (MeV)	$61.1\pm2.3\pm3.1$	$114.5 \pm 5.4 \pm 9.9$	$106.1 \pm 16.2 \pm 17.5$

Coupled channels fit

Part II: Zc states $e+e- \rightarrow \pi Zc$ $Zc \rightarrow \pi (J/\psi, \psi', hc) \text{ or } D^*D^{(*)}$ (qqcc)?

Zc(3900)^{±,0} in π⁺π⁻ J/ψ, π⁰π⁰ J/ψ

•e+e-→	$\pi^+\pi^-$	J/ψ
--------	--------------	-----

- •Measured with 525pb⁻¹ data at E_{cms} =4.26GeV
- •The peak is not a kinematic reflection of $\pi^+\pi^-$ system
- •Zc(3900) parameters, S-wave BW
- M=(3899.0±3.6±4.9) MeV, Γ=(46±10±20)MeV
- •Significance > 8σ

091.7 pb¹
•e⁺e⁻→
$$\pi^{0}\pi^{0}$$
 J/ψ
•M=3894.8±2.3±2.7 MeV,
Γ=29.6±8.2±8.2 MeV
•IsoSpin triplet.
•Zc(3900)⁰→ π^{0} J/ψ, C parity of Zc⁰=-1

$Z_c(4020)^{\pm,0}$ in $e^+e^- \rightarrow \pi^+\pi^- h_c^-$, $\pi^0\pi^0 h_c^-$

 $□e^+e^- \rightarrow \pi^+\pi^-h_c$ $□M=4022.9\pm0.8\pm2.7 \text{ MeV},$ $□\Gamma = 7.9\pm2.7\pm2.6 \text{ MeV}$ $□significance of Zc(4020) > 8.9\sigma,$ $□significance of Zc(3900) = 2.1\sigma$

□e⁺e⁻→π⁰π⁰ h_c
 □Mass=4023.9±2.2±3.8 MeV,
 □Width is fixed to Charged mode
 □significance of Zc(4020) >5σ
 □Another Isospin-triplet.
 □Zc(4020) is near the mass threshold of (D*D*)

 $\mathbf{Zc}(4025)^{\pm,0} \rightarrow (D^* \overline{D}^*)^{\mp,0}$

4.02

4.04

4.06

RM(π⁰)(GeV/c²)

4.08

4.1

$$e^+e^- \to \pi^{\pm}Z_c (4025)^{\mp} \to \pi^{\pm} (D^* \overline{D^*})^{\mp}$$

•Zc(4025)[±] parameters, S-wave BW
M=(4026.3±2.6±3.7) MeV,
 Γ =(24.8±5.6±7.7)MeV
•Significance > 10 σ

$$e^{+}e^{-} \rightarrow \pi^{0}Z_{c}(4025)^{0} \rightarrow \pi^{0}(D^{*}D^{*})^{0}$$

$$M = 4025.5^{+2.0}_{-4.7} \pm 3.1 \quad MeV$$

$$\Gamma = 23.0 \pm 6.0 \pm 1.0 \quad MeV$$

The BESIII result for Zc family

For reference: the mass threshold of m(DD*)~3875MeV, M(D*D*)~4014MeV Is Zc(3900) and Zc(3885) same sates? Zc(4020) and Zc(4025)?

	C/N	channel	Mass (MeV)	Width (MeV)	σ(ee→πZc, Zc→) @4.26GeV pb
Zc(3900)	charged	π [±] J/ψ	3899.0±3.6±4.9	46±10±20	13.5±5.2
	Neutral	π ⁰ J/ψ	3894.8±2.3±2.7	29.6±8.2±8.2	4.0±0.9
Zc(3885)	charged	(DD*)±	3881.7±1.6±1.6	26.6±2.0±2.1	108.4±6.9±8.8
	Neutral	(DD*) ⁰	$3885.7_{-5.7}^{+4.3} \pm 8.4$	$35_{-12}^{+11} \pm 15$	47±9±10
Zc(4020)	Charged	$\pi^{\pm}h_{c}$	4022.9±0.8±2.7	7.9±2.7±2.6	7.4±1.7±2.1±1.2
	Neutral	$\pi^0 h_c$	4023.9±2.2±3.8	Fixed	8.5±2.9±1.1±1.3
Zc(4025)	charged	(D*D*)±	4026.3±2.6±3.7	24.8±5.6±7.7	89.0±18.7
	Neutral	(D*D*) ⁰	$4025.5_{-4.7}^{+2.0} \pm 3.1$	23.0±6.0±1.0	43.4±8.0±5.4

□This channel is important for the discrimination between different multi-quark schemes.

 \Box The green band and yellow band show the 1 σ and 2 σ confidence range of the corresponding theoretical model.

 $e^+e^- \rightarrow \pi Z_c$, $Z_c \rightarrow \rho \eta_c @ 4.23$ GeV

DNine η_c channels are used to reconstruct η_c .

 \Box After the η_c and ρ mass window, a hint of $Z_c(3900)$ peak can be seen on the recoiled mass of the bachelor π .

The green histogram is η_c sideband. Z_c parameter are fixed to latest measurement.

□Strong evidence of Zc(3900) $\rightarrow \rho \eta_c$ is observed at Vs=4.23GeV, with statistical significance 4.3 σ (3.9 σ including systematic uncertainty) □No significant Zc'(4020) $\rightarrow \rho \eta_c$ observed.

Comparison between measurement and prediction

•The cross section measured at $\sqrt{s} = 4.23$ GeV $\sigma^{B}(e^{+}e^{-} \rightarrow \pi^{+}\pi^{-}\pi^{0}\eta_{c}) = (46 \pm 12 \pm 10)$ pb $\sigma^{B}(e^{+}e^{-} \rightarrow \pi Z_{c}, Z_{c} \rightarrow \rho \eta_{c}) = (47 \pm 11 \pm 11)$ pb $R_{z} = 2.1 \pm 0.8$

•Our measurement doesn't agree with both molecular Zc and tetraquark Zc Type-1 assumptions

Amplitude analysis for $e^+e^- \rightarrow \pi^+\pi^- J/\psi$

Determination of J^p of Zc(3900)

PRL 119, 072001 (2017)

Amplitude analysis with helicity formalism formalism taking $\pi^+\pi^-J/\psi$ as final states **Simultaneous** fit to data samples at 4.23GeV and 4.26GeV $\pi^+\pi^-$ spectrum is parameterized with σ , f₀(980), f₂(1270) and f₀(1370)

Determination of J^p of Zc(3900)

• Zc is parameterized with Flatte formula

$$BW(s, M, g'_1, g'_2) = \frac{1}{s - M^2 + i[g'_1\rho_1(s) + g'_2\rho_2(s)]}$$

• $M = (3901.5 \pm 2.7 \pm 38.0) \text{ MeV}, g_1' = (0.075 \pm 0.006 \pm 0.025) \text{ GeV}^2,$ $g_2'/g_1' = 27.1 \pm 2.0 \pm 1.9$

Which corresponding to pole Mass= (3881.2±4.2±52.7) MeV, pole width=(51.8±4.6±36.0)MeV

- J^p of Zc favor to be 1⁺ with statistical significance larger than7σ over other quantum numbers
- The significance of Zc(4020) process is found to be 3σ

Structure in $\pi^+\pi^-\psi'$

□A narrow peak around 4.03GeV is observed on $M(\pi^{\pm}\psi')$, □a 2D fit is performed on dalitz plot. Where x, y represent $M^{2}(\pi^{\pm}\psi')$, $M^{2}(\pi^{-}\psi')$

$$\frac{p \cdot q/c^2}{(M_R^2 - x)^2 + M_R^2 \cdot \Gamma^2/c^4} + \frac{p \cdot q/c^2}{(M_R^2 - y)^2 + M_R^2 \cdot \Gamma^2/c^4},$$

 \Box M=4032.1±2.4 MeV, Γ =26.1±5.3 MeV The fit quality is bad.

Structure in $\pi^+\pi^-\psi'$

Where is the Zc(4020) peak if 4.416GeV and 4.358GeV are both dominant from Y(4360)?

Structure in $\pi^+\pi^-\psi'$

□At a certain Ecms, it might has overlap between different Y states.

Different Zc states have different couple strength with Y states

One Zc decay to different channels

□ To clarify their relation, we need PWA at different Ecms.

Coupled channels analysis?

 $\pi^{\pm}J/\psi$

Part III: X states

$e^+e^- \rightarrow \gamma X(3872), X(3872) \rightarrow \pi^+\pi^- J/\psi.$

 $\Box X(3872)$ is sitting at the threshold of DD*.

□J^{PC}=1⁺⁺ (*CDF, LHCb*)

 $\Box X(3872)$ is candidate of exotic states for long time: molecular states, tetraquark states, Mixture of excited χ_{c1} and D^0D^{*0} bound state.

□BESIII observed $e^+e^- \rightarrow \gamma X(3872)$, $X(3872) \rightarrow \pi^+\pi J/\psi$. □ $e^+e^- \rightarrow \gamma X(3872)$ → Charge parity of X(3872)=+1. □It seems that X(3872) is from the radiative transition of Y(4260)

Summary

With more BESIII data, we have observed some hyperfine structures of Y states

- ✓ mass of Y(4230)→Y(4220)
- ✓ Y(4360) peak on Y(4220) shoulder in e^+e^- → $\pi^+\pi^-J/\psi$
- ✓ Y(4220) peak on Y(4360) shoulder in e^+e^- → $\pi^+\pi^-\psi'$
- Two triplets of Zc(3900) and Zc(4020) has been established
- We have tried many new ideas to understand these states' relation and properties
 - $\checkmark\,$ A couple channel fit of cross sections of Y's decay
 - ✓ PWA to get the J^p of Zc(3900)
 - ✓ Searching new decay channels under the theorist's guidance
- □ The entanglement between XYZ states require PWA which is challenging.

What's inside the XYZ states?

The ball for world cup since 1930

2018 A four quark states?

