The International Workshop on Partial Wave Analyses and Advanced Tools for Hadron Spectroscopy (PWA10/ATHOS5) Beijing, 07.16.2018 - 07.20.2018

# Chiral study of exotic charmed hadrons



# Zhi-Hui Guo (郭志辉)

Hebei Normal University (河北师范大学)

Zhi-Hui Guo (Hebei Normal Univ.)

# **Outline:**

- 1. Introduction
- 2. Scalar charmed meson resonances:

Ds\*0(2317)、D\*0(2400)

- 3. Possible exotic doubly charmed baryons
- 4. Summary

# Introduction

Zhi-Hui Guo (Hebei Normal Univ.)Chiral study of exotic charmed hadrons @ Beijing, 07.2018

Thriving studies on the EXOTIC hadrons with heavy flavors

- □ Hidden heavy flavor mesons: Zc(3900), Zb(10610)/Zb(10650) ..
- $\Box \text{ <u>Open heavy flavor mesons: } D^*_{s0}(2317), D_{s1}(2460) \dots$ </u>
- ☐ Hidden heavy flavor baryons: Pc(4450), Pc(4380) ...
- **\Box** Singly heavy flavor baryons:  $\Lambda c(2940)$ ,  $\Sigma c(2800)$  ...
- **Doubly heavy flavor baryons:** ???
- □ Triply heavy flavor baryons: ???

Status of ground-state doubly heavy flavored baryons

Only doubly charmed baryons are observed now.

Long standing experimental puzzle:

> SELEX: 
$$\Xi_{cc}^+ \rightarrow \Lambda_c^+ K^- \pi^+$$
, p D<sup>+</sup> K<sup>-</sup>  
mass 3519 ÷ 2 MeV [SELEX Coll., PRL'02, PLB'05]

However the results are NOT confirmed by FOCUS, Belle, BaBar !

[Ratti, NPPS'03, BaBar Coll., PRD'06, Belle Coll., PRL'06]

> New measurements from LHCb:

 $\Xi_{cc}^{++} \rightarrow \Lambda_{c}^{+} \text{ K}^{-} \pi^{+} \pi^{+}$ , mass 3621.40  $\div$  0.78 MeV

[LHCb Coll., PRL'17]

Zhi-Hui Guo (Hebei Normal Univ.) Chiral study of exotic charmed hadrons @ Beijing, 07.2018

Our exploratory work aims at pushing forward the study of the EXCITED doubly charmed baryons.

## Methodology: Scattering of ground-state doubly charmed

baryons ( $\Xi_{cc}^{~++},\,\Xi_{cc}^{~+},\,\Omega_{cc}^{~+}$  ) and light pseudoscalar mesons ( $\pi,\,K,\,\eta$  )

#### > Theoretical framework:

 $(\Xi_{cc}^{++} = ccu, \Xi_{cc}^{+} = ccd, \Omega_{cc}^{+} = ccs)$ : charm quarks behave like static color source. The dynamics is governed by the light flavors.

Then chiral EFT is a perfect tool to study such processes.

Benefits: Our results could provide useful guides for future experimental measurements and lattice QCD simulations !

Zhi-Hui Guo (Hebei Normal Univ.) Chiral study of exotic charmed hadrons @ Beijing, 07.2018

# $D_{s0}^{*}(2317)$ : a hot topic at *B*-Factory

CLEO

#### 1. The BaBar detector

(2145) BaBar Collaboration (Bernard Aubert (Annecy, LAPP) et al.). Apr 2001. 119 pp. Published in Nucl.Instrum.Meth. A479 (2002) 1-116 SLAC-PUB-8569, BABAR-PUB-01-08 DOI: 10.1016/S0168-9002(01)02012-5 e-Print: hep-ex/0105044 | PDF References | BibTeX | LaTeX(US) | LaTeX(EU) | Harvmac | EndNote ADS Abstract Service; BaBar Publications Database; BaBar Password Protected Publications Data Detailed record - Cited by 2145 records 1000+

#### 2. Observation of CP violation in the $B^0$ meson system

(867) BaBar Collaboration (Bernard Aubert (Annecy, LAPTH) et al.). Jul 2001. 8 pp. Published in Phys.Rev.Lett. 87 (2001) 091801 SLAC-PUB-8904, BABAR-PUB-01-18 DOI: 10.1103/PhysRevLett.87.091801 e-Print: hep-ex/0107013 | PDF References | BibTeX | LaTeX(US) | LaTeX(EU) | Harvmac | EndNote ADS Abstract Service: OSTI.gov Server, BaBar Publications Database, BaBar Password Protected Document Server Detailed record - Cited by 867 records 500+

#### $^{3.}$ Observation of a narrow meson decaying to $D_{s}^{+}\pi^{0}$ at a mass of 2.32-GeV/c $^{2}$

(823) BaBar Collaboration (B. Aubert (Annecy, LAPP) et al.). Apr 2003. Published in Phys.Rev.Lett. 90 (2003) 242001 SLAC-PUB-9711, BABAR-PUB-03-011 DOI: 10.1103/PhysRevLett.90.242001 e-Print: hep-ex/0304021 | PDF References | BibTeX | LaTeX(US) | LaTeX(EU) | Harvmac | ! ADS Abstract Service; OSTI.gov Server; BaBar Publication Document Server



Detailed record - Cited by 823 records 500+

5. Measurements of the meson - photon transition form-factors of light pseudosca (610) CLEO Collaboration (J. Gronberg (UC, Santa Barbara) et al.), Jul 1997. 30 pp. Published in Phys.Rev. D57 (1998) 33-54 SLAC-PUB-9838, CLNS-97-1477, CLEO-97-7 DOI: 10.1103/PhysRevD.57.33 e-Print: hep-ex/9707031 | PDF References | BibTeX | LaTeX(US) | LaTeX(EU) | Harvmac | EndNote

KEK scanned document; ADS Abstract Service; Cornell U., LNS Server; SLAC Document Server; SLA Data: INSPIRE | HepData Detailed record - Cited by 610 records 500+

6. Observation of a narrow resonance of mass 2.46-GeV/c\*\*2 decaying to D\*+(s) pil

(575) CLEO Collaboration (D. Besson (Kansas U.) et al.). May 2003. 16 pp. Published in Phys.Rev. D68 (2003) 032002, Erratum: Phys.Rev. D75 (2007) 119908 CLNS-03-1826, CLEO-03-09, CLNS03-1826 DOI: 10.1103/PhysRevD.68.032002, 10.1103/PhysRevD.75.119908 e-Print: hep-ex/0305100 | PDF References | BibTeX | LaTeX(US) | LaTeX(EU) | Harvmac | EndNote **ADS Abstract Service** Detailed record - Cited by 575 records 500+



- upilanou in 1 1198.1101.201.01 (2000) 201002 BELLE-PREPRINT-2006-11 DOI: 10.1103/PhysRevLett.97.251802 e-Print: hep-ex/0604018 | PDF References | BibTeX | LaTeX(US) | LaTeX(EU) | Harvmac | EndNote ADS Abstract Service Detailed record - Cited by 347 records 250+

#### 16. Study of B- ---> D\*\*0 pi- (D\*\*0 ---> D(\*)+ pi-) decays

(338) Belle Collaboration (Kazuo Abe (KEK, Tsukuba) et al.). Jul 2003. 20 pp. Published in Phys.Rev. D69 (2004) 112002 DOI: 10.1103/PhysRevD.69.112002



e-Print: hep-ex/0307021 | PDF References | BibTeX | LaTeX(US) | LaTeX(EU) | Harvmac | EndNo ADS Abstract Service Detailed record - Cited by 338 records 2504

#### 17. Observation of the D(sJ)(2317) and D(sJ)(2457) in B decays

(337) Belle Collaboration (P. Krokovny (Novosibirsk, IYF) et al.). Aug 2003. 6 pp. Published in Phys.Rev.Lett. 91 (2003) 262002 DOI: 10.1103/PhysRevLett.91.262002 e-Print: hep-ex/0308019 | PDF References | BibTeX | LaTeX(US) | LaTeX(EU) | Harvmac | EndNote ADS Abstract Service

Detailed record - Cited by 337 records 2505

#### 18. Observation of double c anti-c production in e+ e- annihilation at

(337) Belle Collaboration (Kazuo Abe (KEK, Tsukuba) et al.), May 2002, 7 pp. Published in Phys.Rev.Lett. 89 (2002) 142001 BELLE-PREPRINT-2002-13, KEK-PREPRINT-2002-27 DOI: 10.1103/PhysRevLett.89.142001 e-Print: hep-ex/0205104 | PDF

> **Continuing efforts from** LHCb, Belle-II, PANDA,...

#### and also Lattice QCD

Chiral study of exotic charmed hadrons @ Beijing, 07.2018

Zhi-Hui Guo (Hebei Normal Univ.)

# **Theoretical interpretations**

recent reviews: H.X.Chen, et al., Rept.Prog.Phys.2017; F.K.Guo, et al., Rev.Mod.Phys.2018

• CS state: Y.B.Dai, et al., PRD2003 ; S.Narison, PLB2005;

E. van Beveren, et al., PRL 2003; .....

•Hadronic molecular state: T.Barnes, et al., PRD'03; F.K.Guo, et al., PLB'06; Altenbuchinger, et al., PRD'14; Du, et al., 1712.07957; Albaladejo, et al. 1805.07104 ... See also F.K.Guo's talk

•Four-quark state: H.Y.Cheng, et al., PRD 2003; K. Terasaki, PRD2003; L.Maiani et.al., PRD2005; M.Bracco, et al., PLB2005;.....

•Mixing of molecular and four-quark states:

T. Browder, et al., PLB2004;.....

•



# Scalar Charmed states from $D_{(s)} + \pi(K,n,n')$ scattering

& their Nc and  $m_{\pi}$  dependences

Zhi-Hui Guo (Hebei Normal Univ.)

# Scalar charmed meson resonances: Ds\*0(2317) and D\*0(2400)

Zhi-Hui Guo (Hebei Normal Univ.)

## **Theoretical framework**

LO ChPT with heavy-light mesons

$$\mathcal{L}_{D\phi}^{(1)} = \mathcal{D}_{\mu} D \mathcal{D}^{\mu} D^{\dagger} - \overline{M}_{D}^{2} D D^{\dagger}$$

NLO ChPT with heavy-light mesons [F.K.Guo, et al., PLB'08]

$$\mathcal{L}_{D\phi}^{(2)} = D \left( -h_0 \langle \chi_+ \rangle - h_1 \chi_+ + h_2 \langle u_\mu u^\mu \rangle - h_3 u_\mu u^\mu \right) D^\dagger \\ + \mathcal{D}_\mu D \left( h_4 \langle u_\mu u^\nu \rangle - h_5 \{ u^\mu, u^\nu \} \right) \mathcal{D}_\nu D^\dagger ,$$
  
with  $u_\mu = i \left( u^\dagger \partial_\mu u - u \, \partial_\mu u^\dagger \right) \ u = \exp\left( \frac{i\phi}{\sqrt{2}F_0} \right) \quad \chi_\pm = u^\dagger \chi u^\dagger \pm u \chi u$ 

It is essential to generalize to U(3) case to study the Nc behaviors:



Possible new operators with singlet  $n_0$  can appear, but they are much less relevant in the present analysis.

Zhi-Hui Guo (Hebei Normal Univ.)

Chiral Lagrangian for pseudo-Goldstone with  $U_A(1)$  anomaly



Zhi-Hui Guo (Hebei Normal Univ.)

## $D_{(s)}$ and light pseudoscalar meson scattering amplitudes

 $V_{D_{1}\phi_{1}\rightarrow D_{2}\phi_{2}}^{(S,I)}(s,t,u) = \frac{1}{F^{2}} \left[ \frac{C_{\text{LO}}}{4}(s-u) - 4C_{0}h_{0} + 2C_{1}h_{1} - 2C_{24}H_{24}(s,t,u) + 2C_{35}H_{35}(s,t,u) \right]$ 

| (S, I)                     | Channels                            | $C_{\rm LO}$                    | $C_0$                                        | $C_1$                                         | C <sub>24</sub> | C <sub>35</sub>                                      |
|----------------------------|-------------------------------------|---------------------------------|----------------------------------------------|-----------------------------------------------|-----------------|------------------------------------------------------|
| (-1, 0)                    | $D\bar{K} \rightarrow D\bar{K}$     | -1                              | $M_K^2$                                      | $M_K^2$                                       | 1               | -1                                                   |
| (-1, 1)                    | $D\bar{K} \rightarrow D\bar{K}$     | 1                               | $M_K^2$                                      | $-M_{K}^{2}$                                  | 1               | 1                                                    |
| $(2,\frac{1}{2})$          | $D_s K \to D_s K$                   | 1                               | $M_K^2$                                      | $-M_K^2$                                      | 1               | 1                                                    |
| $(0, \frac{\tilde{3}}{2})$ | $D\pi \to D\pi$                     | 1                               | $M_{\pi}^2$                                  | $-M_{\pi}^2$                                  | 1               | 1                                                    |
| (1,1)                      | $D_s \pi \to D_s \pi$               | 0                               | $M_{\pi}^2$                                  | 0                                             | 1               | 0                                                    |
|                            | $DK \rightarrow DK$                 | 0                               | $M_K^2$                                      | 0                                             | 1               | 0                                                    |
|                            | $DK \rightarrow D_s \pi$            | 1                               | 0                                            | $-(M_{K}^{2}+M_{\pi}^{2})/2$                  | 0               | 1                                                    |
| (1,0)                      | $DK \rightarrow DK$                 | -2                              | $M_K^2$                                      | $-2M_{K}^{2}$                                 | 1               | 2                                                    |
|                            | $DK \rightarrow D_s \eta$           | $-\sqrt{3}c_{\theta}$           | 0                                            | $C_1^{1,0 \ DK \rightarrow D_s \eta}$         | 0               | $C_{35}^{1,0 DK \rightarrow D_s \eta}$               |
|                            | $D_s\eta \to D_s\eta$               | 0                               | $C_0^{1,0 D_s \eta \rightarrow D_s \eta}$    | $C_1^{1,0 \ D_s \eta \to D_s \eta}$           | 1               | $C_{35}^{\tilde{1},0} D_s \eta \rightarrow D_s \eta$ |
|                            | $DK \to D_s \eta'$                  | $-\sqrt{3}s_{\theta}$           | 0                                            | $C_1^{1,0 DK\eta \to D_s \eta'}$              | 0               | $C_{25}^{1,0 DK\eta \rightarrow D_s \eta'}$          |
|                            | $D_s\eta  ightarrow D_s\eta^\prime$ | 0                               | $C_0^{1,0 \ D_s \eta \rightarrow D_s \eta'}$ | $C_1^{1,0} D_s \eta \rightarrow D_s \eta'$    | 0               | $C_{35}^{1,0 \ D_s\eta \to D_s\eta'}$                |
|                            | $D_s\eta'\to D_s\eta'$              | 0                               | $C_0^{1,0 \ D_s \eta' \to D_s \eta'}$        | $C_1^{1,0 \ D_s \eta' \to D_s \eta'}$         | 1               | $C_{35}^{1,0} D_s \eta' \rightarrow D_s \eta'$       |
| $(0, \frac{1}{2})$         | $D\pi \to D\pi$                     | -2                              | $M_{\pi}^2$                                  | $-M_{\pi}^2$                                  | 1               | 1                                                    |
| -                          | $D\eta \to D\eta$                   | 0                               | $C_0^{0,\frac{1}{2}D\eta \to D\eta}$         | $C_1^{0,\frac{1}{2}D\eta \to D\eta}$          | 1               | $C_{35}^{0,\frac{1}{2}D\eta \rightarrow D\eta}$      |
|                            | $D_s \bar{K} \to D_s \bar{K}$       | -1                              | $M_K^2$                                      | $-M_K^2$                                      | 1               | 1                                                    |
|                            | $D\eta \to D\pi$                    | 0                               | 0                                            | $M_{\pi}^2(\sqrt{2}s_{\theta}-c_{\theta})$    | 0               | $c_{\theta} - \sqrt{2}s_{\theta}$                    |
|                            | $D_s \bar{K} \to D\pi$              | $-\frac{\sqrt{6}}{2}$           | 0                                            | $-\sqrt{6}(M_K^2+M_\pi^2)/4$                  | 0               | $\frac{\sqrt{6}}{2}$                                 |
|                            | $D_s\bar{K}\to D\eta$               | $-\frac{\sqrt{6}}{2}c_{\theta}$ | 0                                            | $C_1^{0,\frac{1}{2}D_sK\to D\eta}$            | 0               | $C_{25}^{0,\frac{1}{2}D_s^{-}K \to D\eta}$           |
|                            | $D\eta'  ightarrow D\pi$            | 0                               | 0                                            | $-M_{\pi}^{2}(\sqrt{2}c_{\theta}+s_{\theta})$ | 0               | $s_{\theta} + \sqrt{2}c_{\theta}$                    |
|                            | $D\eta  ightarrow D\eta^\prime$     | 0                               | $C_0^{0,\frac{1}{2}D\eta \to D\eta'}$        | $C_1^{0,\frac{1}{2}D\eta \to D\eta'}$         | 0               | $C_{35}^{0,\frac{1}{2}D\eta \rightarrow D\eta'}$     |
|                            | $D_s \bar{K}  ightarrow D\eta'$     | $-\frac{\sqrt{6}}{2}s_{\theta}$ | 0                                            | $C_1^{0,\frac{1}{2}D_s\bar{K}\to D\eta'}$     | 0               | $C_{35}^{0,\frac{1}{2}D_s\bar{K}\to D\eta'}$         |
|                            | $D\eta'  ightarrow D\eta'$          | 0                               | $C_0^{0,\frac{1}{2}D\eta'\to D\eta'}$        | $C_1^{0,\frac{1}{2}D\eta' \to D\eta'}$        | 1               | $C_{35}^{0,\frac{1}{2}D\eta'\to D\eta'}$             |

Zhi-Hui Guo (Hebei Normal Univ.)

#### Partial wave projection

$$\mathcal{V}_{J,D_{1}\phi_{1}\to D_{2}\phi_{2}}^{(S,I)}(s) = \frac{1}{2} \int_{-1}^{+1} \mathrm{d}\cos\varphi P_{J}(\cos\varphi) V_{D_{1}\phi_{1}\to D_{2}\phi_{2}}^{(S,I)}(s,t(s,\cos\varphi)).$$

Unitarization 
$$T(s) = \frac{1}{1 - \mathcal{V}_{\ell}^{(S,I)} \cdot g(s)} \cdot \mathcal{V}_{\ell}^{(S,I)}$$
,

 $g(s) = \operatorname{diag}\{g(s)_{i=D_i\phi_i}\} \qquad \operatorname{Im} g(s) = -\rho(s)$ 

$$g(s) = g(s_0) - \frac{s - s_0}{\pi} \int_{s_{\text{th}}}^{\infty} \frac{\rho(s')}{(s' - s)(s' - s_0)} ds',$$
  
$$16\pi^2 g(s) = a_{SL}(\mu) + \log \frac{m_b^2}{\mu^2} - x_+ \log \frac{x_+ - 1}{x_+} - x_- \log \frac{x_- - 1}{x_-}.$$

Free parameters

 $h_0, h_1, h_2, h_3, h_4, h_5$ : chiral LECs, enter in all channels  $a_{SL, i}$ : subtraction constant, exclusively affects a specific channel Zhi-Hui Guo (Hebei Normal Univ.) Chiral study of exotic charmed hadrons @ Beijing, 07.2018  $D\left(-h_0\langle \chi_+ \rangle - h_1\chi_+\right) D^{\dagger}$  h<sub>0</sub> h<sub>1</sub> determined by masses of D and Ds Six-channel fit (6c): 4 LECs and 1 common a<sub>SL</sub>



Zhi-Hui Guo (Hebei Normal Univ.)

## **Radical Assmuption**

All the channels, regardless of the quantum numbers and the dynamical states, share a common subtraction constant in the unitarized amplitudes !

#### Prediciton of scattering lengths for (S,I)=(0,1/2) channel



#### Pole trajectories with varying $m_{\pi}$

[ZHG, Meissner, Yao, PRD'15]



Zhi-Hui Guo (Hebei Normal Univ.)

| (S, I)             | RS  | $\sqrt{s_{pole}}$ [MeV]            | $ \text{Residue} ^{1/2}$ [GeV]   | Ratios                                                                     |  |  |
|--------------------|-----|------------------------------------|----------------------------------|----------------------------------------------------------------------------|--|--|
| (-1, 0)            | Π   | $2333\substack{+15\\-36}$          | $7.45^{+3.56}_{-1.38}(D\bar{K})$ | May explain the enhancement of                                             |  |  |
| $(0, \frac{3}{2})$ | Π   | $2033^{+3}_{-3}-i251^{+3}_{-3}$    | $6.64^{+0.04}_{-0.04}(D\pi)$     | the D <sup>0</sup> K <sup>+</sup> channel: 1506.00600                      |  |  |
| (1, 1)             | Π   | $2466^{+32}_{-27}-i271^{+4}_{-5}$  | $6.95^{+0.60}_{-0.37}(D_s\pi)$   | $1.72^{+0.12}_{-0.15}(DK/D_s\pi)$                                          |  |  |
|                    | III | $2225^{+12}_{-9}-i178^{+19}_{-17}$ | $7.35^{+0.19}_{-0.13}(D_s\pi)$   | $0.80^{+0.04}_{-0.04}(DK/D_s\pi)$                                          |  |  |
| (1,0)              | Ι   | $2321^{+6}_{-3}$                   | $9.30^{+0.04}_{-0.12}(DK)$       | $0.77^{+0.02}_{-0.02}(D_s\eta/DK) = 0.43^{+0.15}_{-0.13}(D_s\eta'/DK)$     |  |  |
|                    | II  | $2356^{+1}_{-1}$                   | $2.85^{+0.08}_{-0.13}(DK)$       | $0.69^{+0.01}_{-0.01}(D_s\eta/DK)  0.38^{+0.12}_{-0.11}(D_s\eta'/DK)$      |  |  |
| $(0, \frac{1}{2})$ | II  | $2114^{+3}_{-3}-i111^{+8}_{-7}$    | $9.66^{+0.15}_{-0.13}(D\pi)$     | $0.31^{+0.03}_{-0.03}(D\eta/D\pi) = 0.46^{+0.02}_{-0.02}(D_s\bar{K}/D\pi)$ |  |  |
|                    |     |                                    |                                  | $0.49^{+0.08}_{-0.08}(D\eta'/D\pi)$                                        |  |  |
|                    | III | $2473^{+29}_{-22}-i140^{+8}_{-7}$  | $5.36^{+0.40}_{-0.28}(D\pi)$     | $1.09^{+0.06}_{-0.05}(D\eta/D\pi) = 2.12^{+0.06}_{-0.08}(D_s\bar{K}/D\pi)$ |  |  |
|                    |     |                                    |                                  | $1.12^{+0.18}_{-0.16}(D\eta'/D\pi)$                                        |  |  |

#### Pole positions and their residues with physical masses

Zhi-Hui Guo (Hebei Normal Univ.)

Nc trajectories for D<sup>\*</sup><sub>s0</sub>(2317) [ZHG, Meissner, Yao, PRD'15]



Zhi-Hui Guo (Hebei Normal Univ.)

## Nc trajectories for $D_0^*$ pole in (S,I)=(0,1/2) channel



Zhi-Hui Guo (Hebei Normal Univ.)

#### To further constrain the scattering amplitudes using the recent lattice simulation data of the finite-volume energy levels



[ZHG, et al., in preparation]

Zhi-Hui Guo (Hebei Normal Univ.)



#### Preliminary

[Moir,Peardon,Ryan,Thomas, Wilson, JHEP'16]

[Lang,Leskovec,Mohler,Prelovsek,Woloshyn,PRD'14]

Zhi-Hui Guo (Hebei Normal Univ.)

#### **Reproduction of scattering lengths**

#### [L.Liu,Orginos,F.K.Guo,Meissner, PRD'13] [Lang,Leskovec,Mohler,Prelovsek,Woloshyn,PRD'14]



[ZHG, et al., in preparation]

Zhi-Hui Guo (Hebei Normal Univ.)

# Exploratory study of exotic doubly charmed baryons

Zhi-Hui Guo (Hebei Normal Univ.)

#### Construction of the leading order chiral Lagrangian

Ground-state doubly charmed baryons form a chiral triplet

$$\psi_{cc} = \begin{pmatrix} \Xi_{cc}^{++} \\ \Xi_{cc}^{+} \\ \Omega_{cc}^{+} \end{pmatrix}$$

Light pseudoscalar mesons identified as pseudo Nambu-Goldstone bosons

$$U = u^2 \quad = \quad e^{i\sqrt{2\Phi/F}}$$

$$\Phi = \begin{pmatrix} \frac{1}{\sqrt{2}}\pi^{0} + \frac{1}{\sqrt{6}}\eta & \pi^{+} & K^{+} \\ \pi^{-} & \frac{-1}{\sqrt{2}}\pi^{0} + \frac{1}{\sqrt{6}}\eta & K^{0} \\ K^{-} & \bar{K}^{0} & \frac{-2}{\sqrt{6}}\eta \end{pmatrix}$$

Zhi-Hui Guo (Hebei Normal Univ.)

#### The leading order Lagrangian



 $T^{Ai \to Bj} = T_{wt}^{Ai \to Bj} + T_s^{Ai \to Bj} + T_u^{Ai \to Bj},$ 

Zhi-Hui Guo (Hebei Normal Univ.)

| $T^{Ai \to Bj} = T_{wt}^{Ai \to Bj} + T_s^{Ai \to Bj} + T_u^{Ai \to Bj},$ |                                                                                                                                             |                      |                                    |                                           |                           |                                                 |                               |                                             |                                    |
|---------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|----------------------|------------------------------------|-------------------------------------------|---------------------------|-------------------------------------------------|-------------------------------|---------------------------------------------|------------------------------------|
|                                                                           | $T_{wt}^{Ai \to Bj} = -\mathcal{F}_{wt} \frac{1}{F^2} \bar{u}_B(\not q + \not q') u_A ,$                                                    |                      |                                    |                                           |                           |                                                 |                               |                                             |                                    |
|                                                                           | $T_s^{Ai \to Bj} = -\mathcal{F}_s \frac{g_A^2}{F^2} \bar{u}_B \not\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!$ |                      |                                    |                                           |                           |                                                 |                               |                                             |                                    |
|                                                                           | $T_u^{Ai \to}$                                                                                                                              | Bj                   | $= -\mathcal{F}$                   | $\bar{f}_u \frac{g_A^2}{F^2} \bar{u}_B g$ | $4\gamma_5 \frac{1}{p_c}$ | $\frac{1}{\gamma - m_C} \not \! \! q' \gamma_5$ | $u_A$ ,                       |                                             |                                    |
| (S,I)                                                                     | Processes                                                                                                                                   | $\mathcal{F}_{wt}$   | $\mathcal{F}_s(C)$                 | $\mathcal{F}_u(C)$                        | (S, I)                    | Processes                                       | $\mathcal{F}_{wt}$            | $\mathcal{F}_s(C)$                          | $\mathcal{F}_u(C)$                 |
| $(-2,\frac{1}{2})$                                                        | $\Omega_{cc}\bar{K}\to\Omega_{cc}\bar{K}$                                                                                                   | $\frac{1}{4}$        | 0                                  | $\frac{1}{2}(\Xi_{cc})$                   | (1, 0)                    | $\Xi_{cc}K \to \Xi_{cc}K$                       | $-\frac{1}{4}$                | 0                                           | $-\frac{1}{2}(\Omega_{cc})$        |
| $(0, \frac{3}{2})$                                                        | $\Xi_{cc}\pi \to \Xi_{cc}\pi$                                                                                                               | $\frac{1}{4}$        | 0                                  | $\frac{1}{2}$ ( $\Xi_{cc}$ )              | (1, 1)                    | $\Xi_{cc}K\to \Xi_{cc}K$                        | $\frac{1}{4}$                 | 0                                           | $\frac{1}{2} (\Omega_{cc})$        |
| (-1, 1)                                                                   | $\Omega_{cc}\pi\to\Omega_{cc}\pi$                                                                                                           | 0                    | 0                                  | 0                                         | $(0, \frac{1}{2})$        | $\Xi_{cc}\pi\to\Xi_{cc}\pi$                     | $-\frac{1}{2}$                | $\frac{3}{4}$ ( $\Xi_{cc}$ )                | $-\frac{1}{4}(\Xi_{cc})$           |
|                                                                           | $\Xi_{cc}\bar{K}\to \Xi_{cc}\bar{K}$                                                                                                        | 0                    | 0                                  | 0                                         |                           | $\Xi_{cc}\eta  ightarrow \Xi_{cc}\eta$          | 0                             | $\frac{1}{12}$ $(\Xi_{cc})$                 | $\frac{1}{12}$ ( $\Xi_{cc}$ )      |
|                                                                           | $\Omega_{cc}\pi\to \Xi_{cc}\bar{K}$                                                                                                         | $\frac{1}{4}$        | 0                                  | $\frac{1}{2}$ ( $\Xi_{cc}$ )              |                           | $\Omega_{cc}K\to\Omega_{cc}K$                   | $-\frac{1}{4}$                | $\frac{1}{2}$ ( $\Xi_{cc}$ )                | 0                                  |
| (-1, 0)                                                                   | $\Xi_{cc}\bar{K}\to \Xi_{cc}\bar{K}$                                                                                                        | $-\frac{1}{2}$       | $1 (\Omega_{cc})$                  | 0                                         |                           | $\Xi_{cc}\pi \to \Xi_{cc}\eta$                  | 0                             | $\frac{1}{4}$ ( $\Xi_{cc}$ )                | $\frac{1}{4}$ ( $\Xi_{cc}$ )       |
|                                                                           | $\Omega_{cc}\eta 	o \Omega_{cc}\eta$                                                                                                        | 0                    | $\frac{1}{3}$ ( $\Omega_{cc}$ )    | $\frac{1}{3}$ ( $\Omega_{cc}$ )           |                           | $\Xi_{cc}\pi\to\Omega_{cc}K$                    | $-\frac{\sqrt{3}}{4\sqrt{2}}$ | $\frac{\sqrt{3}}{2\sqrt{2}}$ ( $\Xi_{cc}$ ) | 0                                  |
|                                                                           | $\Xi_{cc}\bar{K}\to\Omega_{cc}\eta$                                                                                                         | $\frac{\sqrt{3}}{4}$ | $-\frac{1}{\sqrt{3}}(\Omega_{cc})$ | $\frac{1}{2\sqrt{3}}$ ( $\Xi_{cc}$ )      |                           | $\Xi_{cc}\eta\to\Omega_{cc}K$                   | $-\frac{\sqrt{3}}{4\sqrt{2}}$ | $\frac{1}{2\sqrt{6}}$ ( $\Xi_{cc}$ )        | $-\frac{1}{\sqrt{6}}(\Omega_{cc})$ |

## [ ZHG, PRD2017 ]

Zhi-Hui Guo (Hebei Normal Univ.)

#### Partial-wave projection and the unitarization

S-wave partial-wave projection formula for baryon-meson scattering

$$\mathcal{T}(W) = \frac{1}{8\pi} \sum_{\sigma=1,2} \int d\Omega \, T(W,\Omega;\sigma,\sigma)$$

Unitarization: to take into account the possible strong interactions of the two-body scattering

$${
m Im}\mathbb{T}=-
ho(s)$$
  $ho(s)_i=q(s)_i/8\pi\sqrt{s}$  (  $q(s)$ : CM three-momentum )

$$\mathbb{T}(s) = \left[1 - \mathcal{T}(s) \cdot G(s)\right]^{-1} \cdot \mathcal{T}(s)$$

✓ G(s) takes care of the right-hand/unitarity cuts

$$\begin{split} G(s) &= \frac{1}{i} \int \frac{\mathrm{d}^4 q}{(2\pi)^4} \frac{1}{(q^2 - m_1^2 + i\epsilon)[(P - q)^2 - m_2^2 + i\epsilon]} \\ G^{\Lambda}(s) &= -\int^{|\vec{q}| < \Lambda} \frac{\mathrm{d}^3 \vec{q}}{(2\pi)^3} \frac{w_1 + w_2}{2w_1 w_2 \left[s - (w_1 + w_2)^2\right]}, \qquad (w_i = \sqrt{|\vec{q}|^2 + m_i^2}) \end{split}$$

 $\checkmark T(s)$  contains the remaining contributions except the right-hand cuts

Zhi-Hui Guo (Hebei Normal Univ.)

## Inputs

 $m_{\Xi_{cc}^{++}}=m_{\Xi_{cc}^{+}}=3621.4~{\rm MeV}$  [ LHCb, PRL'17 & Isospin symmetry ]

 $m_{\Omega_{cc}^+} = 3700 \text{ MeV}$  [Chen, et al., PRD'17]

 $F = F_{\pi} = 92.1 \text{ MeV}$  [PDG, CPC'16]

 $|g_A| = 0.2, g_A = 0$  [Sun, Vicente Vacas, PRD'16]

( The final results are barely affected by the  $g_A$  term.)

> The most sensitive parameter: cutoff scale  $\Lambda$ Our conservative estimation:  $\Lambda = 1.0 \div 0.2$  GeV

## Scattering lengths

$$a_{\psi_{cc}\phi\to\psi_{cc}\phi}^{S,I} = \frac{1}{8\pi(m_{\psi_{cc}}+m_{\phi})} \mathbb{T}_{\psi_{cc}\phi\to\psi_{cc}\phi}^{S,I}(s_{\text{thr}})$$

| (S, I)    | Processes                                 | Scattering lengths (fm)                           |
|-----------|-------------------------------------------|---------------------------------------------------|
| (-2, 1/2) | $\Omega_{cc}\bar{K}\to\Omega_{cc}\bar{K}$ | $-0.19\substack{+0.02\\-0.02}$                    |
| (1, 0)    | $\Xi_{cc}K\to \Xi_{cc}K$                  | -1.4,  -3.6,  5.2                                 |
| (1, 1)    | $\Xi_{cc}K\to \Xi_{cc}K$                  | $-0.19\substack{+0.02\\-0.02}$                    |
| (0, 3/2)  | $\Xi_{cc}\pi\to\Xi_{cc}\pi$               | $-0.095\substack{+0.003\\-0.004}$                 |
| (-1, 1)   | $\Omega_{cc}\pi\to\Omega_{cc}\pi$         | $0.03\substack{+0.01\\-0.01}$                     |
|           | $\Xi_{cc}\bar{K}\to \Xi_{cc}\bar{K}$      | $-0.22^{+0.14}_{-0.14} + i0.45^{+0.00}_{-0.09}$   |
| (-1, 0)   | $\Xi_{cc}\bar{K}\to \Xi_{cc}\bar{K}$      | $-0.49\substack{+0.10\\-0.19}$                    |
|           | $\Omega_{cc}\eta\to\Omega_{cc}\eta$       | $-0.26^{+0.03}_{-0.03}+i0.02^{+0.02}_{-0.01}$     |
| (0, 1/2)  | $\Xi_{cc}\pi\to\Xi_{cc}\pi$               | $0.55\substack{+0.16\\-0.10}$                     |
|           | $\Xi_{cc}\eta\to\Xi_{cc}\eta$             | $-0.72^{+0.21}_{-0.17} + i  0.30^{+1.10}_{-0.18}$ |
|           | $\Omega_{cc}K\to\Omega_{cc}K$             | $-0.55^{+0.11}_{-0.16} + i  0.13^{+0.19}_{-0.07}$ |

Zhi-Hui Guo (Hebei Normal Univ.)

# Resonance poles in the complex energy plane

[ ZHG, PRD'17 ]

| (S, I)             | $\mathbf{RS}$ | Mass                 | Width/2      | $ \text{Residue} _{11}^{1/2}$ | $ \text{Residue} _{22}^{1/2}$ | $ \text{Residue} _{33}^{1/2}$         |
|--------------------|---------------|----------------------|--------------|-------------------------------|-------------------------------|---------------------------------------|
|                    |               | (MeV)                | (MeV)        | (GeV)                         | (GeV)                         | (GeV)                                 |
| (1, 0)             |               |                      |              | $\Xi_{cc}K$                   |                               |                                       |
|                    | Ι             | (, 4112, 4096)       | 0            | (, 10.0, 14.9)                |                               |                                       |
|                    | II            | (4114, 4115, 4113)   | 0            | (6.5,  3.9,  4.1)             |                               |                                       |
| (-1,1)             |               |                      |              | $\Omega_{cc}\pi$              | $\Xi_{cc}\bar{K}$             |                                       |
|                    | II            | (4191,  4134,  4090) | (89, 83, 74) | (15.7, 14.5, 13.2)            | (21.0,18.3,16.4)              |                                       |
| (-1, 0)            |               |                      |              | $\Xi_{cc}\bar{K}$             | $\Omega_{cc}\eta$             |                                       |
|                    | Ι             | (4018, 3957, 3907)   | 0            | (22.4, 21.7, 19.8)            | (13.4, 12.5, 11.1)            | Resembles A(1405                      |
|                    | II            | (4105,  4095,  4083) | 0            | (5.7,  6.6,  7.4)             | (3.0,  3.2,  3.3)             | & D <sup>^</sup> <sub>s0</sub> (2317) |
| $(0, \frac{1}{2})$ |               |                      |              | $\Xi_{cc}\pi$                 | $\Xi_{cc}\eta$                | $\Omega_{cc}K$                        |
|                    | II            | (3830, 3816, 3800)   | (76,50,33)   | (15.7, 14.6, 13.4)            | (1.0,  1.2,  1.2)             | (8.3,  7.6,  6.9)                     |
|                    | II            | (4170, 4146, 4116)   | (8, 18, 22)  | (4.4, 5.7, 6.4)               | (9.9, 12.1, 13.2)             | (12.0,  13.6,  14.1)                  |

See also a pioneer study of the bound state pole in the  $\Xi_{cc}$ Kbar scattering by F.K.Guo & Ulf.-G.Meissner, PRD'11; and a following detailed study by M.J.Yuan, et al., 1805.10972 and J.M.Dias et al., 1805.03286

Zhi-Hui Guo (Hebei Normal Univ.)

## Phase shifts, inelasticities, line shapes

$$\Xi_{cc}K \to \Xi_{cc}K$$
 scattering with  $(S, I) = (1, 0)$ 

| (S, I) | RS | Mass(MeV)          | Width/2(MeV) | $ \text{Residue} _{11}^{1/2}(\text{GeV})$ |
|--------|----|--------------------|--------------|-------------------------------------------|
| (1, 0) | Ι  | (, 4112, 4096)     | 0            | (, 10.0, 14.9)                            |
|        | II | (4114, 4115, 4113) | 0            | (6.5, 3.9, 4.1)                           |



Zhi-Hui Guo (Hebei Normal Univ.)

 $\Omega_{cc}\pi \to \Omega_{cc}\pi$  and  $\Omega_{cc}\pi \to \Xi_{cc}\bar{K}$  scattering with (S,I) = (-1,1)

| (S, I)  | RS | Mass(MeV)          | Width/2(MeV) | $ {\rm Residue} _{11}^{1/2}({\rm GeV})$ | $ \text{Residue} _{22}^{1/2}(\text{GeV})$ |
|---------|----|--------------------|--------------|-----------------------------------------|-------------------------------------------|
| (-1, 1) | II | (4191, 4134, 4090) | (89, 83, 74) | (15.7, 14.5, 13.2)                      | (21.0, 18.3, 16.4)                        |



Zhi-Hui Guo (Hebei Normal Univ.)



Zhi-Hui Guo (Hebei Normal Univ.)

Chiral study of exotic charmed hadrons @ Beijing, 07.2018



 $\Xi_{cc}\pi$ ,  $\Xi_{cc}\eta$  and  $\Omega_{cc}K$  coupled-channel scattering with (S, I) = (0, 1/2)



• Chiral EFT provides a useful tool to study the charmed hadron spectra.

• Pole trajectories with varying  $m_{\pi}$  for the (S,I)=(0,1/2) channel are found to be quite similar as those from f0(500).

• Pole trajectories with varying Nc for  $D_{s0}^{*}(2317)$  and the (S,I)=(0,1/2) channel are given.

• To further constrain the scatteing amplitudes using lattice finite-volume energy levels and scattering lengths is in preparation !

- Two clearly exotic doubly charmed baryons are predicted, due to their exotic quantum numbers of (S,I)=(1,0) and (-1,1).
- > Two resonance poles in the  $\Xi_{cc}\pi, \Xi_{cc}\eta, \Omega_{cc}K$  coupled-channel scattering with (S,I)=(0,1/2) are predicted.
- Similar to the Λ(1405) in KN and D<sup>\*</sup><sub>s0</sub>(2317) in DK scattering, one bound/virtual state pole is found below the Ξ<sub>cc</sub>K threshold with (S,I)=(-1,0).
- These findings can provide useful guides for future experimental and lattice studies.

**Thank you!** 

谢谢各位!

Zhi-Hui Guo (Hebei Normal Univ.)