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the amplitude lies on a circle. Im

Re

Y. Wunderlich Unique TPWA solutions and complete experiments



Introduction

Consider spin-less 2 — 2-amplitude: A(W,60) =

2 N
v 4
/ N

’ N

«) One single observable in scattering experiment: diff. cross section
oo(W,0) = [A(W,0)*.
= Complete experiment analysis: |A(W,0)| = \/oo(W,0), i.e.
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Introduction

Consider spin-less 2 — 2-amplitude: A(W,60) =

2 N
v 4
/ N
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«) One single observable in scattering experiment: diff. cross section
oo(W,0) = [A(W,0)*.
= Complete experiment analysis: |A(W,0)| = \/oo(W,0), i.e.
the amplitude lies on a circle. Im
— Result unchanged by multiplication
with W- and 6-dependent phase:
AW, 0) — A(W,0) := e WD AW, 0)

= Implications for partial wave decomp. Re
AW, 0) =>,2,(20 + 1)Ag(W)Py(cos 6),
((:) AdW) =1 [ dcosd A(W, 9)Pg(c059))
and in particular for truncated PWA?
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Continuum- vs. discrete ambiguities

Continuum ambiguities Discrete ambiguities
«) Definition: | A(W,0) = e®W-DA(W,0)| For AW,0)=A(W,0)(cosf —a),
conjugate the zero/root:
[Bowcock & Burkhardt], [A. Gersten], [E. Barrelet], [L. P. Kok],
[L. P. Kok], ... [A. S. Omelaenko], ...
%) Invariance: 0g = |A]> = A*A ’ | (cos® — a*) (cosf — )
— A*A=e""A%®A |A| (cosf — [*]") (cos B — a*)
=@ DAA= A A=g0 v |A| cosf — a*) (cosf — a)
oo V'
) Illustration: X
X
Grey box: space of partial wave amplitudes {Ao, ..., ,Asc }roor {Ao, ..., AL}

Orange: parameter-regions of ambiguity, i.e. with same 0.
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Continuum- vs. discrete ambiguities

Continuum ambiguities Discrete ambiguities

«) Definition: | A(W,0) = e®W-DA(W,0)| For AW,0)=A(W,0)(cosf —a),

conjugate the zero/root: .

[Bowcock & Burkhardt], [A. Gersten], [E. Barrelet], [L. P. Kok],
[L. P. Kok], ... [A. S. Omelaenko], ...
ance: o0 = A = A° 0~ a*) (cosd — a)
) Invariance: o = |A|” = A*A ’ ‘ cosf — a*)(cosf — a

— A*A = e P A% ei® A

|A| (cos® — [*]") (cos O — a*)
== PA A= AA= 0y v/ |A|
0

(cosf — a*) (cosd — )

X

(\ V " § § .

X

) Illustration:

Now: consider only mathematical ambiguities, disregarding physical constraints
(e.g. unitarity!). Are discrete and continuum ambiguities different/related?
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Effects of the full continuum ambiguity

%) Transform A(W,0) — A(W,0) := e ® W) AW, ) & write a
Legendre-series for the rotation-function
/W0 = 3707 o Li(W) Pi(cos B).

How are the partial waves A, of A(W,0) = 327 (2¢ + 1)A,(W)Py(cosb)
expressed in terms of A, from A(W,0) = >",2 (20 + 1)Ay(W)Py(cos 6)?
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Effects of the full continuum ambiguity

%) Transform A(W,0) — A(W,0) := e ® W) AW, ) & write a
Legendre-series for the rotation-function
/W0 = 3707 o Li(W) Pi(cos B).

How are the partial waves A, of A(W,0) = 327 (2¢ + 1)A,(W)Py(cosb)
expressed in terms of A, from A(W,0) = >",2 (20 + 1)Ay(W)Py(cos 6)?

oo k+20
< Mixing-formula: | A(W) =Y " L(W) > (k,0;£,0/m,0)* An(W)|

m=|k—£|

(j1, m1; j2, malj, my: Glebsch-Gordan coefficients.
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Effects of the full continuum ambiguity

%) AW, 0) — AW, 0) = e ®W-DAW,0); W0 =S L, (W)Py(cosb).
o) k+0

<+ Mixing-formula: [ A/(W) = ZLk(W) i (k,0;£,0/m,0)% Ap(W) |,
k=0 m=|k—£|

(j1, m1; j2, malj, my: Glebsch-Gordan coefficients.

Explicitly: Ao(W) = Lo(W)Ag(W) + Ly (W)A (W) + Lo(W)Ao(W) + ...,

A(W) = LoW)ALW) + (W) | JAo(W) + 34s()]

+ La(W) [ Ad(W) + 3A3(W)J

Ao(W) = Lo(W)A(W) + La(W) | 2 4(w) + §Aa(vv)}

+ (W) [Ao(w) + 2aa(w) + AW +
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Effects of the full continuum ambiguity

x) AW, 0) — AW, 0) = e ®W-DAW,0); e®W =3, L,(W)Py(cosb).

EXp|iCit|y: Ao = LoAo + L1A; + LAy + ...,

- 1
Ar = LoAr + L4 {3

2 2 3
Ao + A2:| + L, |:5A1+5A3:|+...,

3
- 2 3 1 2 18
Ar = LoAx + L4 {5A1 + 5/43] + L |:5AO + ?Az + 35A4} +

«) For angle-independent phase ¢(W,0) = &(W):
e'®W:0) — o ®(W) = [((W) and A/(W) = Lo(W)A(W) = ®M A, (W).
— Ay(W) do not mix any more & are rotated by the same phase!

%) Non-linearity introduced by the exp-function in the rotation e/ ®(W.0)

generates complicated mixings, even when the phase ®(W,9) itself is
simple, e.g. ®(W,0) = a(W) + b(W) cos 6.
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Effects of the full continuum ambiguity

[arXiv:1706.03211v1]

[llustration using a toy model:

(W) + Tp(W)cos(6),

:TS

AW, 0)

P/2—W’

as.p

Ms)p — irs

)

Ts.p(W

where

0.15,
0.1.

0.5+ 0.4/; Ms =1.535;Ts =

as

1.44; rp =

0.4+ 0.3/;Mp =

ap
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< Multiply this amplitude by a simple phase, e.g. exp [2. 4+ 0.5 cos)].
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Effects of the full continuum ambiguity

AW, 0)

l

ei(2.+0.5cos0)
*A(W, 0)
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ROTATED PW
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Effects of the full continuum ambiguity

S-wave P-wave D-wave
£
AW.6) §
l D-wave
: z
el(24+0.5cos 0) g‘
*A(W,0) §

F-wave G-wave H-wave

Ao=L0A0+L1A1+L2>\§+...,

1 2 2, 3
Ao+ f%} + Lo {fAl + g%] +

AL = LoA; + Ly [3

1 2 18
=LoX + L1 [ Ar + )A(} + Lo {5A0+?>\<+ %N} +
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Discrete ambiguities in scalar TPWAs

%) A general truncated (i.e. polynomial-) amplitude for arbitrary L,
A= le_:o(% + 1)A¢P(cos ), has the linear-factorization:
A= A(cosf — ay)(cosh — ap)...(cosf — ), with A < AL
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Discrete ambiguities in scalar TPWAs

%) A general truncated (i.e. polynomial-) amplitude for arbitrary L,
A= Zle‘:O(ZE + 1)A¢P(cos ), has the linear-factorization:
A= A(cosf — ay)(cosh — ap)...(cosf — ), with A < AL

) roots (A, {a;}) <> partial waves {A/}

) Define 'mappings’ 7t,,, which comprise all o X
possibilities to complex conjugate subsets of the
roots:

X an

o — T, (a,-).
(Example for L = 2 on the right —)
< There exist in total 2L possibilities and thus Oo3
maps 7t ,.
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Discrete ambiguities in scalar TPWAs

%) A general truncated (i.e. polynomial-) amplitude for arbitrary L,
A= Zle‘:O(ZE + 1)A¢P(cos ), has the linear-factorization:
A= A(cosf — ay)(cosh — ap)...(cosf — ), with A < AL

) roots (A, {a;}) <> partial waves {A/}

) Define 'mappings’ 7t,,, which comprise all o X
possibilities to complex conjugate subsets of the
roots:

X an

o — T, (a,-).
(Example for L = 2 on the right —)
< There exist in total 2L possibilities and thus Oo3
maps 7t ,.

%) One can transform to 2- ambiguous amplitudes:
A = ATTL, (cos8 — 7, [ai]) = S5 (20 + 1A (W) Py(cos ),
which all have the same c.s. oo = |A[? H,I-;l (cos® — af) (cosd — «;).
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Continuum- vs. discrete ambiguities in scalar TPWAs

Are these discrete ambiguities in any way connected to the continuum ambiguities
discussed before?
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Continuum- vs. discrete ambiguities in scalar TPWAs

Are these discrete ambiguities in any way connected to the continuum ambiguities
discussed before?

= Yes: discrete ambiguities are angle-dependent rotations, for a certain discrete
set of 2L phase-rotations ®,(W, 6):

eid),,(W,O) _ A(")(W, 0) _ (COS@ —TCh [al]) c (C059 —TCh [aL])
AW, E) (cosf —ay)...(cos — ay)
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Continuum- vs. discrete ambiguities in scalar TPWAs

Are these discrete ambiguities in any way connected to the continuum ambiguities
discussed before?

= Yes: discrete ambiguities are angle-dependent rotations, for a certain discrete
set of 2" phase-rotations ®,(W, 6):

i®,(W,0) _ AW, 9) _ (cos — 7ty [0n]). .. (cosf — 7 [ou])
A(W,0) (cos@ — ay)...(cost —ay)
) Illustration: discrete ambiguities are a remnant of the continuum ambiguity

AW, 0) AW, 0)
\ — -] e

P )
’

truncation y \
1

\ |

\ ]

\J . ,

— Therefore, discrete ambiguities mix partial waves as well!

< The cross section o alone has no chance to distinguish these solutions!
Y. Wunderlich
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Continuum- vs. discrete ambiguities in scalar TPWAs

= Yes: discrete ambiguities are angle-dependent rotations, for a certain discrete
set of 2L phase-rotations ®,(W, 6):

o, (W,0) _ AW, 0) ~ (cos® —m,[aq]). .. (cosO — T, [ay])
AW, E) (cosf — ) ...(cos — ay)

) llustration: discrete ambiguities are a remnant of the continuum ambiguity

AW, 0) AW, 6)
truncation

\
e \
— ; }
|
v .
® /
N ’
.

— Therefore, discrete ambiguities mix partial waves as well!

— The cross section og alone has no chance to distinguish these solutions!

Now: Look at a reaction involving particles with spin!
Y. Wunderlich
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Photoproduction amplitudes

Photoproduction amplitude in the CMS:

- Tf,-zcxl,,sf[ia-@FlJra-a&- </2><@) Fotic-kG-eFs

+id - 4§ - €F4} Xm.. [Chew, Goldberger, Low
' & Nambu (1957)]

— Process fully described by 4 complex amplitudes F; (W, 0).
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Photoproduction amplitudes

Photoproduction amplitude in the CMS:

- Tf,:cxl,,sf[i&-@FlJra-a&- (ﬁx@) Fotic-kG-eFs

+id - 4§ - €F4} Xm.. [Chew, Goldberger, Low
' & Nambu (1957)]

— Process fully described by 4 complex amplitudes F; (W, 0).

Important concept: expansion of full amplitudes into partial waves:
FL(W,0) = > { [EMey + Eci] Py (cos (9)) + [(€ 4 1) Mo + Ec ] Py_y (cos (0)) }
£=0
Fa(W,0)=...

%) J=0+1/2], P=(=)""

%) s-chn. resonance J”; (1)

multipole £, M)
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Photoproduction amplitudes

Photoproduction amplitude in the CMS:

- Tf,-zcxi,,sf[iagFlJra-a&- (ﬁx@) Fotic-kG-eFs

+id - 4§ - €F4} Xm.. [Chew, Goldberger, Low
' & Nambu (1957)]

— Process fully described by 4 complex amplitudes F; (W, 0).

Important concept: expansion of full amplitudes into partial waves:

ol
FL(W,0) = > { [eMes + Eoy] Pyyy (cos (8)) + [(¢ + 1) My + Ee ] Py_y (cos (6)) }
£=0

Fa(W,0)=...

In practice:

Truncate at some finite L

— Try to extract the 4L
complex multipoles in a fit
to the data.

Y. Wunderlich Unique TPWA solutions and complete experiments



Polarization observables

Generic definition of an observable

dQ

dQ

%) In total, 16 non-redundant observables

Q (W, 0) = %WZF,*A?FJ, a=1,...,16
i

e )(51,T17R1) _ (dg)(BLTz,Rz)]

can be defined, involving Beam-, Target- and Recoil Polarization.

Beam Target Recoil Target + Recoil
_ _ x' y/ 2 x' x' 2 2!
- y - - - X z X z
unpolarized (Z—g) =09 T P To Ly Ty Ly
0
linear )X P Oy T Oy
circular Cy C,
Y. Wunderlich
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Observables in the transversity basis

Observable Tranzsve|rS|ty2represe2ntat|0n2 Type *) Transversity amplitudes:
o0 L (Ib1 + 152 + 53] + [ba]?) b= Y, MyF.
Y L e Lo R L e T B .

Ny N ) ) ) x) Different scheme of
U 3 (b1 = b2l = B3] + [54]?) iieioiiod
p 1 (—|b1|2+\bz|2—|b3|2+\b4|2) spin-quantization:

: (ms| T |ms;)
G Im [—b1 b} — bobj]
A ~Re [bub; — bob ] BT (& T |2,
E —Re [b1b] + bab}] £(t) = L
F Im | b1 b5 — bo b} ) ) ) o
5 R { b3b b:j ] spin-projection of initial
x! —he |—=D1 I+ ;: .
3, Im [—byb — bab}] BR (final) baryon on th.e
Co Im [b1b} — bybj] normal of the reaction
o Re [b1b} + bab}] plane.
T —Re [—b1b3 + b3b}] ) Observables simplify:
T, —Im [b1b} — bsb}] TR o 5
L —Im [—b1 b — b3bj] Q=3 Z,-J bi T by.
L, Re [—b1b} — b3b}]

Y. Wunderlich Unique TPWA solutions and complete experiments



Complete experiments

%) Question: How many and which observables 2 have to be measured
in order to uniquely extract the full amplitudes (e.g. transversity
amplitudes b;)?.

Y. Wunderlich Unique TPWA solutions and complete experiments



Complete experiments

*) Mathematical solution: [Chiang&Tabakin Phys. Rev. C 55, 2054 (1997)]
Utilize b.t.p.-form Q% = 3 Zu b*Fab and the completeness of the

[ matrices (I form an orthonormal basis): 23", rba”st 0250 pt

* 1 2o\ Ba * i b*b’
brb; = fz<r,-j) 0 — |bi] = V/bib & €% =
2 « | JH l|
Alm
. by
bs 032
B 013
by
m Re
by ¢ by
¢3 é(WG)
b3
(543 bRe
4

Y. Wunderlich Unique TPWA solutions and complete experiments



Complete experiments

*) Mathematical solution: [Chiang&Tabakin Phys. Rev. C 55, 2054 (1997)]
Utilize b.t.p.-form Q% = 3 Z,J b*Fab and the completeness of the

[ matrices (I form an orthonormal basis): 23", rba”g; 0250 pt
1 £\ * b7 bj
bibj= =3 (75) @ = bl = /Biby & e =
= 2 ) bl = bib B 15/
) Use “Fierz-identities” Q*Q° = C?UBSVYSKVW alm
. .. ~ b
(with known coefficients C?nﬁ) to prove: B g, 2
- 8 observables can yield |b;| & ¢;;. £, 643 21
- Double-polarization obs. with ! by
recoil-polarization (type BR and TR) Re
Alm
have to be measured.
- No more than two observables from the by ¢ by
same double-polarization class are
allowed. b ¢s ¢ (W,0)
- The phase ¢(W, ) remains } -
. Pas Re
undetermined. ba

Y. Wunderlich
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Complete experiments

*) Mathematical solution: [Chiang&Tabakin Phys. Rev. C 55, 2054 (1997)]
Utilize b.t.p.-form Q¢ = Z,J b*Fab and the completeness of the

[ matrices (I form an orthonormal basis): 23", rba”g; 0250 pt

1 £\ * b7 bj
bibj= =3 (75) @ = bl = /Biby & e =
b= 2 () O Il = VB & =
Alm
“ x s x - b
) Use “Fierz-identities” Q*Q° = C;]BQ‘;Q” bs 4., ’
(with known coefficients Cg“f) to prove: B, 043 & 5
- 8 observables can yield |b;| & ¢;;. b Re
Alm
< Ask a similar question for the TPWA: i.e., by ¢m by
how many and which observables can ‘
) : . 3 o (W,0)
uniquely fix the multipoles {Eyy, My }? by
Pas " Re

b

Y. Wunderlich Unique TPWA solutions and complete experiments



Complete experiments in a TPWA |

x) Consider the group S observables:

1 N
00 =5 (161 + b2 + |bo* + [baf*) . £ = 5 (= [b1f = [Baf* + |bs + [4]7)

NI =N =

v 1 v
T =3 (161 = 6o = [sP +16a?) . B =5 (=11 + |52l = |5 + a7
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Complete experiments in a TPWA |

) Consider the group S observables:
1

1 N
00 =5 (161 + b2 + |bo* + [baf*) . £ = 5 (= [b1f = [Baf* + |bs + [4]7)

NI =N

v 1 v
T =3 (161 = 6o = [sP +16a?) . B =5 (=11 + |52l = |5 + a7

) These 4 observables are invariant under 4-fold continuum ambiguities:

bi(W,0) — W0 b, (W, 0), with different phases ®;, j =1,...,4.
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Complete experiments in a TPWA |

) Consider the group S observables:
1 N
00 = 5 (11 + b2 + |bs + |64, &

1 2 2 2 2
5 (=151 =16l + 53 + | )

v

1 v 1
T =2 (16 = |l = 1bsf* +164?) . B =5 (= b1 + 6ol = [bsf + [4]?)
) These 4 observables are invariant under 4-fold continuum ambiguities:
bi(W,0) — eiq’f(W’a)bj(W,H), with different phases ®;, j=1,...,4

) Linear factorizations in a TPWA truncated at L for the b; (here' t =tan$):

b= o P [T (e 8), 1) = - exp LH<
(T+12)"
—j%) 2 X
b3(9)=C32LMH(t+ak)7 ba (6) = eP H( — )
(1+12)

We have: roots {ax, B} <> multipoles {E,, l\/lgi}.

— Can we mimic the same (root-) conjugation procedure as in the scalar case?

Y. Wunderlich Unique TPWA solutions and complete experiments



Complete experiments in a TPWA I

42L

Yes: We now have 'mappings’ 7, that parametrize all possible conjugations:

o — T, (), B — T, (B)).

Y. Wunderlich Unique TPWA solutions and complete experiments



Complete experiments in a TPWA I

Yes: We now have 425 'mappings’ 7t,, that parametrize all possible conjugations:

ax — 7, (ak), Bj — T, (5;).

) These discrete ambiguities are generated by the following phase-rotations:

2L 2L

oy (W,0) _ (t+7a (8] iesw.0) _ (t—m,[B])
: )™ =5
2L 2L
i®3(W,0) _ (t+mnfak]) o, w.e _ (t —7n[ak])
¢ kH:l (t+a) kH:l (t—ap)

These rotations are explicitly of 4-fold type:

bi(W,0) — e WO b (W, 0), j=1,..., 4

Y. Wunderlich Unique TPWA solutions and complete experiments



Complete experiments in a TPWA I

lllustration:

Rar I, an
N

SEA D

H truncation

e ‘\
/ - | /. N
e \ o e
\ I T i

\ . . /

L} L

e
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Complete experiments in a TPWA I

lllustration:

\ Y
\ {

S

H truncation

{

.
o N ~
\ AT e e N
° \ ‘ . { ! )
| | | }' | \(‘ | | I\/
LY L o ° ‘.\\
\‘77/.’ T

< The relative-phases qﬁg of the b; will change under these ambiguities!

x) Double-polarization observables can help with that problem!

Y. Wunderlich Unique TPWA solutions and complete experiments



Complete experiments in a TPWA I

*) The group S observables {00, ¥, T, /5} have discrete ambiguities in a TPWA
that correspond to 4—fold phase-rotations acting on the b;(W,9).

— Analyze additional observables, which are sensitive to the relative phases ¢§-
affected by the ambiguities. Try for instance the BT -observables:

E = —Re[byb} + bob}], H = —Re[bib} — bab}],
G =1Im[—bib; — byb}], F =TIm[bb; — byb}].

Beam Target Recoil Target + Recaoil
_ _ X/ y/ Z/ X/ X/ Z/ Z/
- y - - X z X z
unpolarized oo T P Ty Ly Ty L,
linear > P Oy T Oy
circular Cy C,
Y. Wunderlich
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Complete experiments in a TPWA I

x) The group S observables {00, ¥, T, 15} have discrete ambiguities in a TPWA
that correspond to 4—fold phase-rotations acting on the b;(W,9).

— Analyze additional observables, which are sensitive to the relative phases ¢3
affected by the ambiguities. Try for instance the 37 -observables:

E = —Re[byb} + bob}], H = —Re[bib} — bab}],
G =1Im[—bib; — byb}], F =TIm[bb; — byb}].

Beam Target Recoil Target 4+ Recaoil
_ _ _ x! y' P x! x! P P
- X y - - - X z X z
unpolarized - P TX/ LX/ Tz’ Lz’
linear H PN Oy T Oy
Complete
circular Cy C,

Y. Wunderlich
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Complete experiments in a TPWA I

— Analyze additional observables, which are sensitive to the relative phases ¢3
affected by the ambiguities. Try for instance the 37 -observables:

E = —Re[bb} + bab}], H = —Re[bib} — bab}],
G =1Im[—bib; — byb;], F =Tm|[b b} — byb}].

Beam Target Recoil Target + Recoil
_ _ _ x! y' Py x' x' P 2
- X y z - - - X z X z
unpolarized mr P Te Lo T, Ly
linear H@PE G| Os T Oy
Complete
circular E | Cu C,

(i) '"Complete sets of 5": understood algebraically and checked numerically.

(i) "Complete sets of 4": found numerically, 'by accident’ and not understood
algebraically. [R. Workman, L. Tiator, Y.W., M. Déring, H. Haberzettl (2017)]

Y. Wunderlich
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Resolving phase-ambiguities: analyticity

..... e,
>|<) Consider amplitude A(s, t) with pertinent form of .
analyticity—constraint i.e. dispersion relation in s: 3
Re[A(s) / ds ,Im [A (s’ )] ‘ 57
So s’ —s

Y. Wunderlich Unique TPWA solutions and complete experiments



Resolving phase-ambiguities: analyticity

..... -
) Consider amplitude A(s, t) with pertinent form of .
analyticity—constraint i.e. dispersion relation in s: Y
Im[A(s E
Re[A(s) / d'mE ( )] y
% s'—s

) Assume the original amplitude A(s) fulfills this constraint. Does there exist a
phase-rotation e/®(*) such that A(s) := e’®(5) A(s) respects the same
analyticity-constraint?

Y. Wunderlich Unique TPWA solutions and complete experiments



Resolving phase-ambiguities: analyticity

..... e
) Consider amplitude A(s, t) with pertinent form of .
analyticity—constraint i.e. dispersion relation in s: 3
Re[A(s) / ds ,Im [A (s’ )] ‘ 57
S0 s’ —s

) Assume the original amplitude A(s) fulfills this constraint. Does there exist a
phase-rotation e/®(), such that A(s) := e/(*) A(s) respects the same
analyticity-constraint? — Integral-equation:

1 N o _ / I A /
Sinqb(s) ImA(S) P/ dl[cos¢(s) COS¢(S)] m (S)
-5

——]P’/ ds' IP’/ d"sm(b /)ImA(S).

(s —s)(§—159)

< Does this equation have solutions for e¢(s) or ¢(s)? If yes, how many?

Y. Wunderlich Unique TPWA solutions and complete experiments



Resolving phase-ambiguities: analyticity

) Consider amplitude A(s, t) with pertinent form of
analyticity—constraint i.e. dispersion relation in s:

oA = 1 [ o mACY

s'—s

%) Assume the original amplitude A(s) fulfills this constraint. Does there exist a
phase-rotation e/®(*), such that A(s) := e’®(5) A(s) respects the same
analyticity—constraint7 — Integral equation:

sin o (s) TmA (s / d,[cos¢ s)—cos¢(s)]ImA( ")
—s

—iﬁ»/ ds’ /d"s'”¢’ s') A (%)

w2 (s —s)(5—¢)

< Does this equation have solutions for e’®(*) or ¢(s)? If yes, how many?
) Formal treatment of amplitude-reconstruction using analyticity in two

variables (s, t):

[I. Sabba Stefanescu, J. Math. Phys. 25 (6), 2052 (1984).] (tough paper!!!)
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Challenge: Stefanescu-paper

On the construction of amplitudes with Mandelstam analyticity from

observable quantities
|. Sabba Stefanescu

Institut fiir Theoretische Kernphysik der Universitit Karlsruhe, 75 Karlsruhe 1, West Germany

(Received 23 September 1982; accepted for publication 14 October 1983)

It is shown that the problem of the construction of scattering amplitudes with Mandelstam
analyticity from knowledge of their modulus in the three physical channels can be reduced, within
a rather large class of functions, to the second Cousin problem of the theory of functions of two
complex variables. As a consequence, it can be solved completely and explicitly. We derive
conditions on the modulus function, under which at least one solution exists, as well as criteria for
the correct resolution of the discrete ambiguity at fixed energy.

PACS numbers: 11.50.Nk, 11.80.Gw, 11.20.Fm, 03.80. + r

1. INTRODUCTION

The problem of the determination of the phase of the
scattering amplitude from observable quantities (i.e., do/df2
for scattering of spinless particles, do/d{2 and polarization
for spin-0-spin-4 scattering, etc.) has an obvious physical in-
terest and has led, in the course of time, to a set of very
elegant studies in mathematical physics.'™ These studies
(see Ref. 9 for a review) have succeeded in establishing with
precision the extent of the ambiguity that is left in the phase
if one takes into account, at a fixed energy, data over the
whole angular region and uses the unitarity property of the
amplitude.'**

It is profitable to recall right now in more detail the
problem of phase shift analysis at fixed energy, for the case of
areaction between spinless particles. The modulus (squared)
of the amplitude 4 (z = cos 0} {# = c.m. scattering angle) is
supposed to be known on the physical region

— l <cos 6< 1, from measurements of the differential cross
section

do/dQz)=A (DA Mz, —1l<z<],

(L1

amplitude 4 {z) will vanish at one of these points, but we can-
not a priori decide at which. There exists thus a twofold am-
biguity concerning the location of the zeros of 4 (z), corre-
sponding to each pair (z;, z¥). It is easy to show that if N pairs
of zeros are present, we can choose at will any one of the
zeros in each pair and construct an amplitude with the cor-
rect modulus along (z__, z , ), analytic in the cut z plane and
vanishing precisely at those zeros. If we define

= — A1) (1.3)
Tz —z)z
then a possible A (z) is given by
Alz)= f[ (z—z, N4 \(2), (1.4)

b

where the product extends over the given choice of N zeros.
There exists thus at least a 2% ambiguity in the reconstruc-
tion of the amplitude, for N distinct pairs of simple zeros.
This is the discrete ambiguity “of the zeros.”

If the amplitude were a polynomial of degree N, this

Y. Wunderlich
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Resolving phase-ambiguities: unitarity

%) Assume a scalar reaction in the energy region

of elastic unitarity. For the full amplitude E - H =i @5

A(s, t), unitarity is an integral-constraint:
k| [ dQ%

Im[A(s, t)] = Brys HA(s,cos 61)A*(s,cos b)),

the integral over d)x remains from the intermediate phase-space integration.
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Resolving phase-ambiguities: unitarity

%) Assume a scalar reaction in the energy region

of elastic unitarity. For the full amplitude @ - H =i %

A(s, t), unitarity is an integral-constraint:

K Q
Im[A(s, t)] = 87’7\‘/5 %A(s,cos 61)A* (s, cos 6),

the integral over d)x remains from the intermediate phase-space integration.

%) As soon as we project to partial waves Ay(s), the elastic unitarity-relations
become simpler [p(s) is a phase-space factor]:
Tm [Ag(s)] = p(s) [Ac(s)|?, or Au(s) = 57z (€24 — 1),
People have studied the effect of this p.w.-constraint, on the discrete
ambiguities in a TPWA, in the past.
— Result: the consensus is that elastic unitarity boils the 2- discrete
ambiguous solutions down to only 2 (1), independently of the order L.

— "Crichton-ambiguities’ [J. H. Crichton (1966)]
[D. Atkinson, PDF-note, U. Groningen (2002)]
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Resolving phase-ambiguities: unitarity

%) Assume a scalar reaction in the energy region

of elastic unitarity. For the full amplitude @ - H =i %

A(s, t), unitarity is an integral-constraint:

K Q
Im[A(s, t)] = 87’7\‘/5 %A(s,cos 61)A* (s, cos 6),

the integral over d)x remains from the intermediate phase-space integration.

%) As soon as we project to partial waves Ay(s), the elastic unitarity-relations
become simpler [p(s) is a phase-space factor]:

Tm [Ag(s)] = p(s) [Ac(s)|?, or Au(s) = 57z (€24 — 1),

— Result: 2F ambiguities — only 2 (!), independently of L.
— "Crichton-ambiguities’ [J. H. Crichton (1966)]

) Further directions to investigate:

(i) (Re-) derive Crichton's ambiguity starting from the integral-constraint?
(i) Integral-constraints vs. phase-rotations for multi-channel problems?
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Summary

) Continuum ambiguities (L — 0o) and discrete ambiguities (TPWA at finite
L) are in the end manifestations of the same thing: phase-rotations.
— Although: Structure is richer (i.e. more complicated) for spin-reactions.

) Spinless case: Only one observable, With spin: Polarization observables
i.e. 0g, cannot resolve all discrete are capable of resolving discrete
ambiguities in a TPWA. ambiguities in a TPWAI

— complete experiments!

) It may be worthwhile to do general mathematical studies concerning the
restrictions on phase-rotations imposed by:

(i)

(i)

analyticity: First attempts on analyticity-constraints in one variable
were quite pedestrian. Formal mathematical study on application of
analyticity in two variables exists: [Stefanescu-paper].

unitarity: Elastic unitarity in the partial wave basis already studied in
quite some detail. Could such results be generalized to more
complicated unitarity-relations?
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Thank You!



