New results on hadron spectroscopy from JPAC

Adam Szczepaniak, Indiana University/Jefferson Lab

In Memory

Mike Pennington (1946-2018)
Joint Physics Analysis Center

• JPAC: theory, phenomenology and analysis tools in support of experimental data from JLab12 and other accelerator laboratories.

• Contribute to education of new generation of practitioners in physics of strong interactions.

• In this talk: JPAC’s role in spectroscopy analysis and some “exotic” physics
Identifying resonances

- Experimental or lattice signatures (real axis data: cross section bumps and dips, energy levels)

 Reaction amplitudes

- Theoretical signatures (complex plane singularities: poles, cusps)

 Microscopic Models

- What is the interpretation (constituent quarks, molecules, …)?
Signatures of new, unusual light resonances

- High precision PWA of 3π diffractive association yields a new $a_1(1420)$ incompatible with the quark model/Regge expectations.

- At low-t exotic wave production compatible with one pion exchange

- In photoproduction exotic mesons be produced via pion exchange

- Large exotic wave seen in $\eta(\prime)\pi$ production: FESR’s to constrain P-wave
Signatures of unusual heavy quark resonances

Virtual OPE

Real OPE

BESIII PRL 112, 022001

Z_c(3900) \rightarrow \bar{D}^0 D^{*+}

LHCb, B \rightarrow K J/\psi \phi

EMARK ON ENERGY PEAKS IN MESON SYSTEMS
M. Nauenberg A. Pais

If the width of particle X is not very large we will stay close to the physical region. This almost singular behavior of A(s) for certain physical s causes the peaking effect to which we refer as an (X, Y, Z) peak.
Spectroscopy from peripheral production

- Need to establish factorization between beam and target fragmentation (Regge factorization)

- Single Regge pole exchange dominate over cut other singularities (cuts, daughters)
Global Regge analysis

- Test Regge pole hypothesis and estimate corrections (daughters, cuts)

- Factorizable Regge pole exchange

\[R(s, t) \equiv \left(\frac{1 - z_s \nu}{2} \right)^{\frac{1}{2}|\mu - \mu'|} \left(\frac{1 + z_s}{2} \right)^{\frac{1}{2}|\mu + \mu'|} \]

\[A_{\mu_4 \mu_3 \mu_2 \mu_1} = R(s, t) \sqrt{-t} |\mu_1 - \mu_3| \sqrt{-t} |\mu_2 - \mu_4| \hat{\beta}_{\mu_1 \mu_3}(t) \hat{\beta}_{\mu_2 \mu_4}(t) F_e(s, t) \]

\[F_e(s, t) = -\frac{\zeta_e \pi \alpha_e^1}{\Gamma(\alpha_e(t) - l_e + 1)} \frac{1 + \zeta_e e^{-i\pi \alpha_e(t)}}{2 \sin \pi \alpha_e(t)} \left(\frac{s}{s_0} \right)^{\alpha_e(t)} \]

- \(N_{\text{Data}} = 1271 \), \(N_{\text{par}} = 9 \)

(6 SU(3) couplings, 1 mixing angle, 2 exp. slopes)
Global Regge pole analysis
Beam asymmetry: measurement of the exchange process

\[\Sigma = \frac{\sigma_{\perp} - \sigma_{\parallel}}{\sigma_{\perp} + \sigma_{\parallel}} = \frac{|\rho + \omega|^2 - |b + h|^2}{|\rho + \omega|^2 + |b + h|^2} \]

H. Al Ghoul et al. [GlueX]
Phys. Rev. C95 (2017) no.4, 042201
+ V. Mathieu, J. Nys [JPAC]

- Possible tension between GlueX and SLAC data?
Finite Energy Sum Rules

- No kinematic singularities
- No kinematic zeros
- Discontinuities:
 - Unitarity cut
 - Nucleon pole

\[
A_{\lambda';\lambda,\gamma}(s,t) = \bar{u}_{\lambda'}(p') \left(\sum_{k=1}^{4} A_k(s,t) M_k \right) u_\lambda(p)
\]

\[
\int_0^\Lambda \text{Im} \ A_i(\nu, t) \nu^k d\nu = \beta_i(t) \frac{\Lambda \alpha(t) + k}{\alpha(t) + k}
\]

\[
\beta_i(t) = \frac{\alpha(t) + k}{\Lambda \alpha(t) + k} \int_0^\Lambda \text{Im} \ A_i(\nu, t) \nu^k d\nu
\]

\[
\gamma p \to \pi^0 p
\]

\[
s_{\text{max}} = (2.4 \text{ GeV})^2
\]
Finite Energy Sum Rules

[V. Mathieu, J.Nys. et al. (JPAC) 1708.07779 (2017)]

Combine energy regimes
- Low-energy model ((SAID, MAID, Bonn-Gatchina, Julich-Bonn,…)
- Predict high-energy observables

Two applications
- Understand high-energy dynamics
- Constraining low-energy models
Constraining the resonance spectrum

Ambiguities in the low-energy model (\(\eta\)-MAID)
→ Mismatch with high-energy data

Possibilities
- Low-energy model inconsistent
- Cut-off not high enough
 ○ High mass resonances!

\[\rho + \omega\]
\[b + h\]
\[\rho + \omega\]
\[\gamma p \rightarrow \eta p\]
Based on the FESR for η:
- Same exchanges
- Natural exchanges (ρ, ω) dominant
 - Couplings from radiative decays
 - Mixing angle cancels in ratio
- Unknown behavior of
 - ϕ exchange
 - Unnatural exchanges (b, h)

Prediction: \approx same beam asymmetry

πΔ photoproduction

- **Stringent test of one-pion-exchange production**
- **Possible to make parameter-free predictions**

Comparison to GlueX data

- Confirmation of interference pattern
- High -t: natural, low -t: unnatural
- Mismatch: oddly behaved π exchange
 - Ongoing analysis
 - Experimental or theoretical?

Łukasz Bibrzycki et al. (Cracow, JPAC)

Vector meson production

- Pomeron dominates at high energies
- Isoscalar exchanges dominantly helicity non-flip ($\lambda=\lambda'$)
- Unnatural exchanges: only helicity flip ($|\lambda-\lambda'|=1$)

\[
\mathcal{M}_{\lambda V,\lambda'}(s, t) = \sum_{E=\pi, \eta, \rho_2, \rho_1} \mathcal{M}_{\lambda V,\lambda'}^{E}(s, t).
\]

\[
\mathcal{M}_{\lambda V,\lambda'}^{N}(s, t) = \mathcal{M}_{\lambda,\lambda'}^{N}(s, t).
\]

\[
\mathcal{M}_{\lambda V,\lambda'}^{U}(s, t) = \pm (-1)^{\lambda-\lambda'} \mathcal{M}_{\lambda,\lambda'}^{U}(s, t).
\]

\[
\gamma(k, \lambda) \rightarrow V(q, \lambda V).
\]

\[
\gamma(p, \lambda) \rightarrow B^E \rightarrow N'(p', \lambda').
\]

\[
\rho_0^U = \frac{1}{2} \left(\rho_0^0 \mp \rho_1^0 \right),
\]

\[
\text{Re} \rho_{10}^U = \frac{1}{2} \left(\text{Re} \rho_{10}^0 \mp \text{Re} \rho_{10}^1 \right),
\]

\[
\rho_{1-1}^U = \frac{1}{2} \left(\rho_{1-1}^1 \pm \rho_{11}^1 \right).
\]

\[M = 1370 \pm 16^{+50}_{-30} \text{ MeV} / c^2 \]
\[\Gamma = 385 \pm 40^{+65}_{-105} \text{ MeV} / c^2 \]

No consistent B-W interpretation possible but a weak \(\eta \pi \) interaction exists and can reproduce the exotic wave.

\[M = 1597 \pm 10^{+45}_{-10} \text{ MeV} / c^2 \]
\[\Gamma = 340 \pm 40^{+50}_{-50} \text{ MeV} / c^2 \]

Need to be confirmed
$\Delta_s a_{\ell m_\ell}(s) = 2i \rho_\ell(s) t^*_\ell(s) a_{\ell m_\ell}(s)$

Production(s_m) \times Interactions in $\eta\pi$ (s_m)

Constrained by unitary

$a_{\ell m_\ell} = f_{\ell m_\ell}(s) t_\ell(s)$

$f_{\ell m_\ell}(s) = \sum_{n=0}^{\infty} \alpha_n T_n(\omega(s))$

$t_\ell(s) = N(s)/D(s)$

$D(s) = D_0(s) - \frac{s}{\pi} \int_{s_{th}}^{\infty} ds' \frac{\rho(s') N(s')}{s'(s' - s)}$

$D_0(s) = a - bs - \sum \frac{c_r}{s_r - s}$

--

$M(1320) = 1.308(2)$ GeV, $\Gamma(1320) = 0.113(1)$ GeV

$M(1700) = 1.71(6)$ GeV, $\Gamma(1700) = 0.30(6)$ GeV
\[\pi^- p \rightarrow \eta' \pi^- p \]
Fits to COMPASS : D-wave

\[a_2 \]

\[a'_2 \]
P-D interference

\[a_2, a'_2, \Pi_1 \]
P-wave
Exotic physics: P_c at JLAB

Confirmation possible thorough photoproduction

If P_c is confirmed, need to:

- Study the electromagnetic properties
- Look for the other members of the P_c multiplet

NB: Arbitrary normalization for data

S.J. Brodsky, E. Chudakov, P. Hoyer, J.M. Laget
(Very) exotic physics: constraining Lorentz symmetry violation

- Observer transformations do not affect results.
- Particle transformation, e.g. rotation of the experiment in the background field produces a physical effect.

- There is a well defined SME

\[\mathcal{L}_{\text{SME}} = \mathcal{L}_{\text{Gravity}} + \mathcal{L}_{\text{SM}} + \mathcal{L}_{\text{LV}} \]

(e.g. \(a_\mu \bar{\psi} \gamma^\mu \psi \), \(c_{\mu \nu} \bar{\psi} \gamma^\mu \vec{D} \gamma_\nu \psi \))

- Only a few constraints in the quark sector: use DIS, SDIS, Drell-Yan, ...

- The first estimate on the sidereal time dependent coefficients \(c_i \) were obtained using HERA data: \(O(10^{-5}) \)

(V.A.Kostelecky, E.Lunghi, A.Vieira, PLB729, 272 (2017))

- Sensitivity studies for EIC are under way: N.Sherrill, A.Accardi, E.Lunghi.
Impact

- ~120 Invited Talks and Seminars
- O(10) on going analyses
- Many projects, e.g.,
 - $\pi N \rightarrow \eta \pi N$ A. Jackura et al., arXiv:1707.02848
 - η, η' beam asymmetry V. Mathieu et al., arXiv:1704.07684
 - $Z_c(3900)$ A. Pilloni et al., PLB772 (2017) 200
 - $\gamma p \rightarrow \eta p$ J. Nys et al., PRD95 (2017) 034014
 - $P_c(4450)$ A. Hiller Blin et al., PRD94 (2016) 034002
 - $\eta \rightarrow \pi^+\pi^-\pi^0$ P. Guo et al., PRD92 (2015) 054016, PLB (2017) 497
 - $\Lambda(1405)$ C. Fernández-Ramírez et al., PRD93 (2016) 074015
 - $K N \rightarrow K N$ C. Fernández-Ramírez et al., PRD93 (2016) 034029
 - $\pi N \rightarrow \pi N$ V. Mathieu et al., PRD92 (2015) 074004
 - $\gamma p \rightarrow \pi^0 p$ V. Mathieu et al., PRD92 (2015) 074013
 - $\omega, \phi \rightarrow \pi^+ \pi^- \pi^0$ I. Danilkin et al., PRD91 (2015) 094029
 - $\gamma p \rightarrow K^+K^- p$ M. Shi et al., PRD91 (2015) 034007
 - ...
- Collaboration between JPAC and experimental collaborations: co-authoring papers
 - GlueX, CLAS12, COMPASS, BaBar, Belle, BES
 - KLOE, LHCb in preparation
Jefferson Lab
Michael Döring
Victor Mokeev
Emilie Passemier
Adam Szczepaniak
Adam Szczepaniak
Vladislav Pauk
Alessandro Pilloni

Indiana University
Geoffrey Fox
Tim Londergan
Vincent Mathieu
Andrew Jackura
Nathan Sherrill

George Washington U
Ron Workman

UNAM
César Fernández-Ramírez
Jorge Silva Castro

Universidad de Valencia
Miguel Albaladejo
Astrid Hiller Blin

INFN Genoa
Andrea Celentano

Ghent Universiteit
Jannes Nys

Collaborating with: CLAS12 & GlueX (JLab), COMPASS & LHCb (CERN), MAMI (Mainz), BESIII (Beijing), KLOE (Frascati), BELLE II (KEK), BABAR (SLAC)

Code: Faculty/Staff
Postdoc
PhD student
1JLab/GWU funded
2JLab/IU funded