

Bertram Kopf Ruhr-Universität Bochum

Coupled Channel Analysis with PAWIAN

Beijing PWA10/ATHOS5 2018 July 16 – 20, 2018

Outline

- Introduction to the PWA package PAWIAN
- Activities in the past
 - coupled channel analysis with pp data
- Current activities
 - > unitarity and analyticity
 - Chew-Mandelstam functions for unstable particles
 - > coupled channel analysis with e⁺e⁻ and scattering data
- Summary and outlook

PAWIAN

- Development of a PWA software package with the aim
 - > to provide a user-friendly and generic software package
 - > to support various physics cases to be studied at hadron spectroscopy experiments

Software package PAWIAN (**PA**rtial **W**ave Interactive **An**alysis) already in a good shape, and several analyses with p̄p and e⁺e⁻ data have been performed

PAWIAN

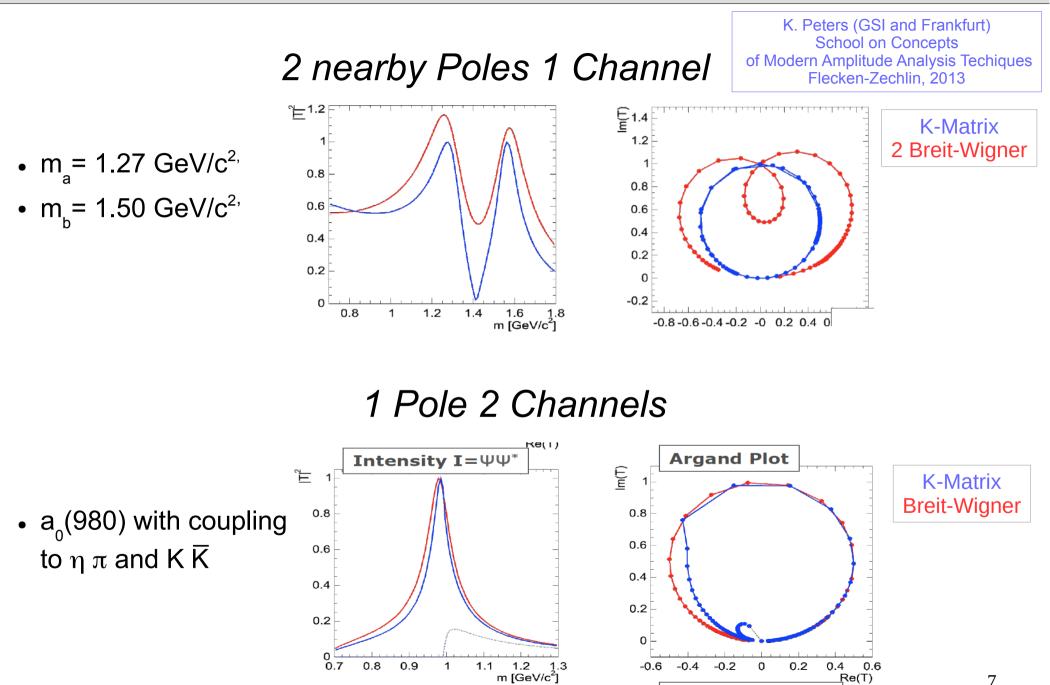
- Full hypothesis and other settings defined via configuration files
 - Formalisms: canonical, helicity and partly Rarita-Schwinger
 - > dynamics: Breit-Wigner, Flatté, K-matrix, . . .
- Event based maximum likelihood fit, minimization by MINUIT2
- Multithreading and network support
- Possible to analyze channels with arbitrary number of final state particles
- Support for various reactions: $\overline{p}p$ and e^+e^- annihilation, $\gamma\gamma$ -fusion, $\pi\pi$ scattering process, decays of isolated resonances
- Analysis tools: extraction of spin density matrices, pole positions, ...
- Event generator, histogramming, ...

- Advantages compared to single channel fits
 - > more constraints due to common amplitudes
 - common and unique description of the dynamics (K-matrix)
 - better fulfillment of the conservation of unitarity
 - better description of threshold effects
 - > can solve possible ambiguities and more model independent

- PAWIAN
 - > works generically with any number of channels
 - > easy use of K-matrix with P-vector approach via configuration files

K-Matrix with P-Vector Approach

S.U. Chung, E.Klempt "A Primer on K-matrix Formalism", BNL Preprint (1995)


Aitchison: "The K-Matrix formalism for overlapping resonances", Nucl Phys A189 (1972) 417

- A two body scattering process can be fully described by the S-matrix ${f S}\,=\,{f I}+2i\,\sqrt{
 ho}\,{f T}\,\sqrt{
 ho}$
- ρ diagonal phase space matrix $\rho_i = \sqrt{\left[1 \left(\frac{m_a + m_b}{m}\right)^2\right]\left[1 \left(\frac{m_a m_b}{m}\right)^2\right]}$
- T-matrix can be expressed by K-matrix: $\mathbf{T} = (\mathbf{I} \mathbf{i} \mathbf{K} \rho)^{-1} \mathbf{K}$
- Elements of the K-matrix: $K_{ij} = \sum_{\alpha} \frac{g_{\alpha i} g_{\alpha j}}{m_{\alpha}^2 s} + \sum_{k} c_{kij} s^k$
- Dynamical function for P-vector approach: $\mathbf{F} = (\mathbf{I} \mathbf{i} \mathbf{K} \rho)^{-1} \mathbf{P}$

with:
$$\mathbf{P_i} = \sum_{\alpha} \frac{\beta_{\alpha} \, \mathbf{g}_{\alpha \mathbf{i}}}{\mathbf{m}_{\alpha}^2 - \mathbf{s}} + \sum_{\mathbf{k}} \mathbf{c_{ki}} \, \mathbf{s^k}$$

 Unique pole parameters can be derived from the 1st unphysical Riemann sheet of the T-matrix

K-Matrix vs. Breit Wigner

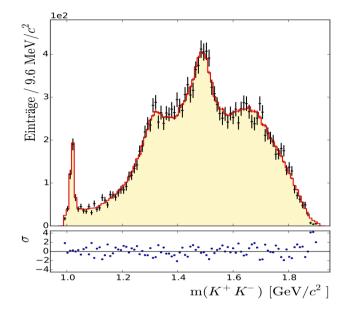
PWA10/ATHOS5, July 16-20, 2018

Bertram Kopf, Ruhr-Universität Bochum

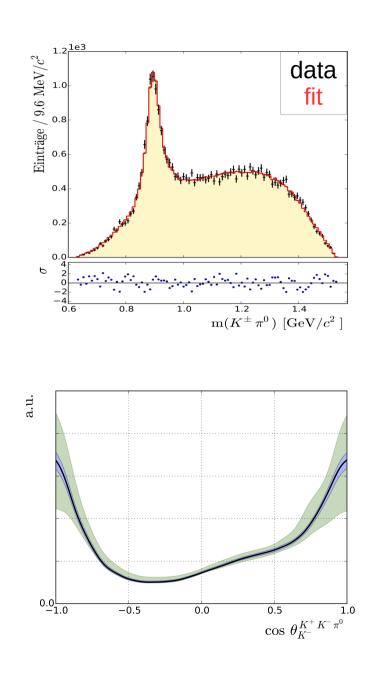
Re(T)

$\overline{p}p \rightarrow K^+ K^- \pi^0, \pi^0 \pi^0 \eta, \pi^0 \eta \eta$

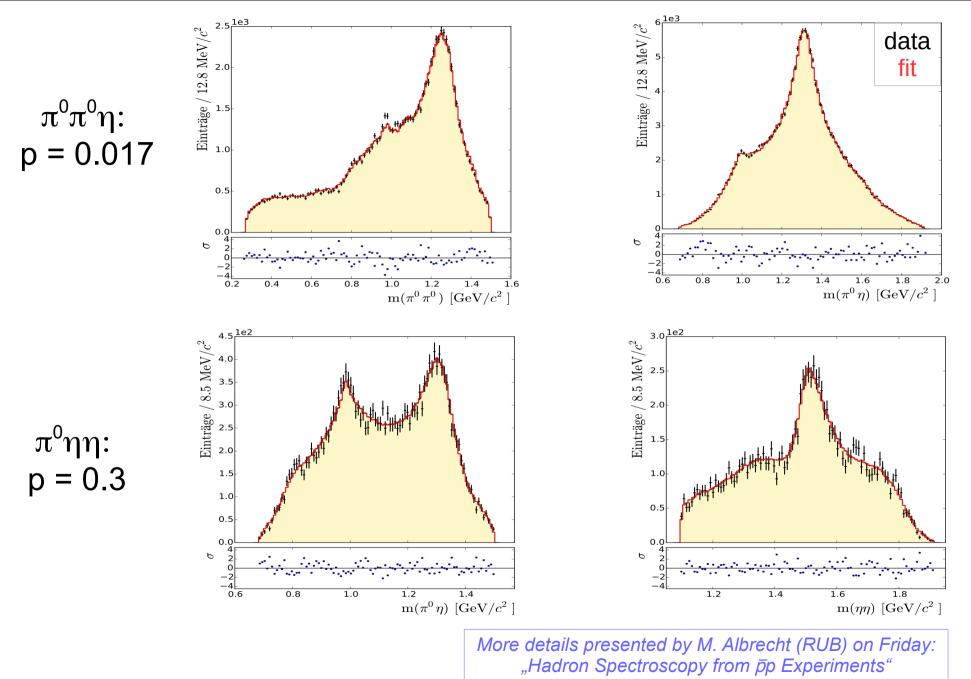
Julian Pychy, PhD thesis 2016 (RUB)


- Crystal Barrel @ LEAR data: p-momentum at 0.9 GeV/c
- Free K-matrix parameters for a_0^{-} , a_2^{-} and f_2^{-} contributions
- Fixed parametrization for
 - \succ ($\pi\pi$)_s -wave by Anisovich and Sarantsev with 5 poles, 5 channels

below 1.9 GeV/c² *Eur. Phys J A16 229(2003)*

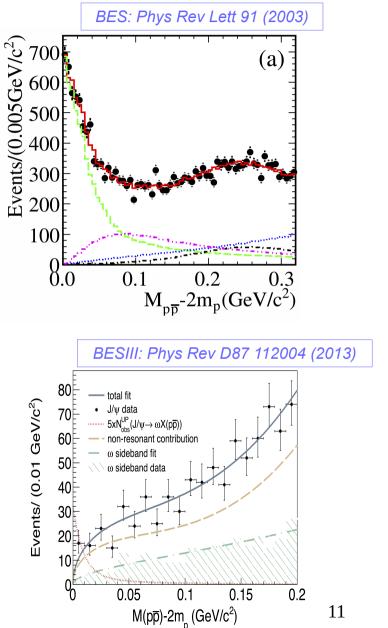

> $(K\pi)_{s}$ (I=1/2)-wave used by FOCUS with 1 pole and 2 channels below 1.5 GeV/c² Phys Lett B653 (2007)

- Breit-Wigner parameterization for isolated resonances
- Outcome: good description of the data with reasonable physics results


Coupled Channel Fit Result for $\overline{p}p \rightarrow K^+ K^- \pi^0$

- Fit probability: p = 0.06
- Also all production and decay angular distributions are in agreement with the data
- Asymmetric distribution of the K*production angle observed

Coupled Channel Fit Result for $\bar{p}p \rightarrow \pi^0 \pi^0 \eta$ and $\pi^0 \eta \eta$



Bertram Kopf, Ruhr-Universität Bochum

Coupled Channel Fit: $J/\psi \rightarrow \omega \overline{p}p$, $\omega \pi^0 \pi^0$ and $\omega K^+ K^-$

Motivation for $J/\psi \rightarrow \omega \bar{p}p$

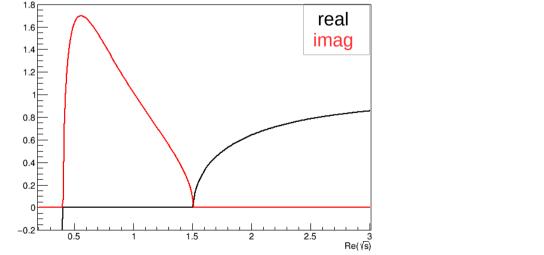
- p
 p spectrum near threshold has been studied but w/o detailed PWA
- Obvious differences to γpp with a dominant 0⁻⁺ contribution
- Better description of the production of f_0 and f_2 resonances by coupling it with the channels $\omega \pi^0 \pi^0$ and $\omega K^+ K^-$
- Search for baryons decaying to ωp

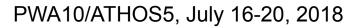
Coupled Channel Fit: $J/\psi \rightarrow \omega \bar{p}p$, $\omega \pi^0 \pi^0$ and $\omega K^+ K^-$

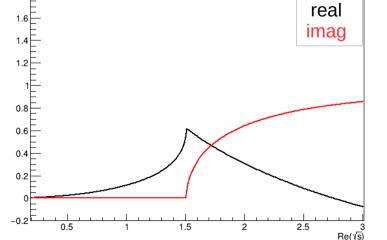
Motivation for adding $J/\psi \rightarrow \omega \pi^0 \pi^0$, $\omega K^+ K^-$ and scattering data

- $J/\psi \rightarrow \omega \pi^0 \pi^0$ and $J/\psi \rightarrow \omega K^+ K^-$
 - \succ investigation of b and ρ resonances coupling to $\omega\pi$
 - \succ investigation of K and K* resonances decaying to ωK
- Scattering data
 - → mass range up to 2.3 GeV/c² → K-matrix parameterization for the $(\pi\pi)_{s}$ -wave utilized for the p̄p data are not useful here
 - \succ processes only characterized by elasticity and phase motion \rightarrow good and easy access to resonance properties
 - > available for I=0 S- and D-wave and I=1 P- and F-wave

Unitarity and Analyticity


• So far: K-matrix description with standard phase space factors


$$\rho = \sqrt{\left[1 - (\frac{\mathbf{m_a} + \mathbf{m_b}}{\mathbf{m}})^2\right] \left[1 - (\frac{\mathbf{m_a} - \mathbf{m_b}}{\mathbf{m}})^2\right]}$$


- violates constraints from analyticity: pole at s=0 and unphysical cuts in case of unequal masses
- Proper description with Chew-Mandelstam function from Basdevant and Berger Phys Rev D19 239(1979)
 > above threshold: ρ(s) = Im(CM(s))
 - > $\mathbf{T} = (\mathbf{I} \mathbf{i} \mathbf{K} \rho)^{-1} \mathbf{K}$ replaced by $\mathbf{T} = (\mathbf{I} \mathbf{K} \mathbf{C} \mathbf{M}(\mathbf{s}))^{-1} \mathbf{K}$

Bertram Kopf, Ruhr-Universität Bochum

CM Function with unstable Particles

- Chew-Mandelstam function only working for decay channels with stable particles \rightarrow channels with unstable particles: $\omega\pi$, ω K, $\rho\pi$ and $\rho\rho$
- Modified CM function for channels with unstable particles like $\rho\pi$, K* π proposed by Basdevant and Berger Phys Rev D19 239(1979)
 - > correct analyticity properties
 - > satisfies quasi-two-body unitarity
 - > calculations are very time-consuming and realized with lookup-tables during the fit procedure

$$\tilde{C}(s; m^*, \mu) = \frac{1}{\pi} \int_{(m_1 + m_2)^2}^{\infty} ds' \frac{f^2 \operatorname{Im}\Sigma(s')}{|d(s')|^2} \times C(s; \sqrt{s'}, \mu).$$

CM Function with unstable Particles

CM for $\rho\pi$ (unstable)

1.2

1.6

1.8

Re(√s)

• Example: $\rho\pi$

real

imag

0.4

0.6

0.9

0.8

0.7

0.6

0.5

0.4

0.2

- Obtained Chew-Mandelstam function on the real axis in full agreement with Basdevant and Berger
- For extracting pole positions an expansion into the complex energy plane is needed

M. Kuhlmann (RUB)

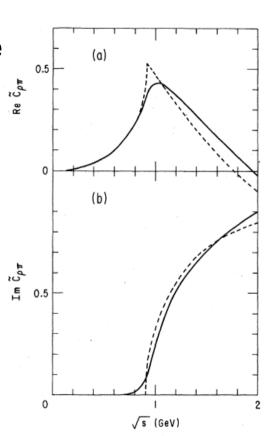
0.9

0.7

0.6

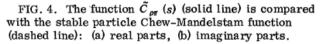
0.5

0.4


real

imag

0.4


0.8

0.6

Basdevant, Berger:

Phys. Rev. D19 (1979) 239

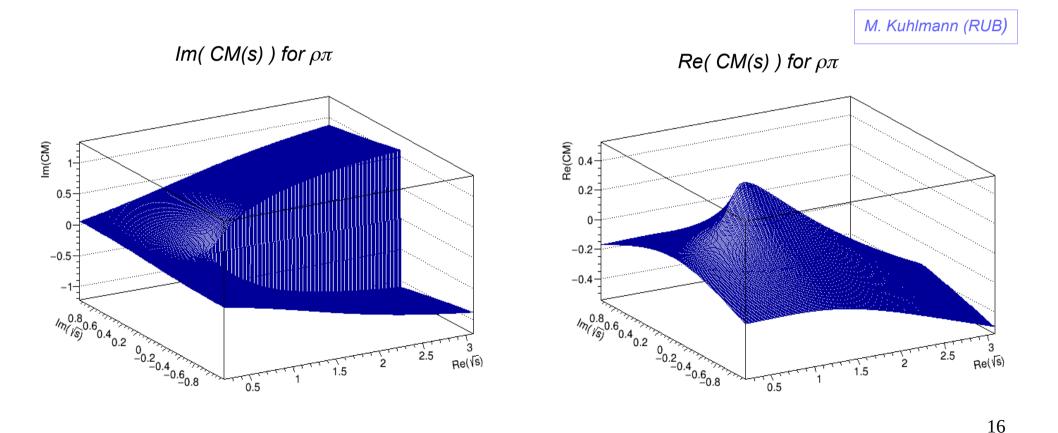
15

0.8

CM for $\rho\pi$ (stable)

1.2

1.4


1.6

1.8

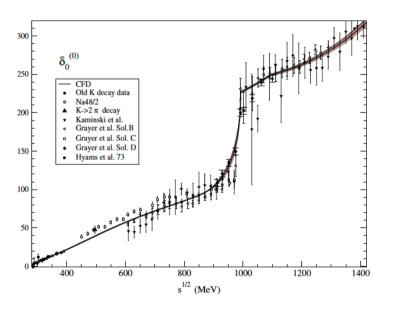
Re(√s)

CM Function with unstable Particles

- Reasonable shapes within the complete complex energy plane
- Fulfillment of the Hermitian analyticity: CM(s)* = CM(s*)

Coupled Channel Fit: $J/\psi \rightarrow \omega \overline{p}p$, $\omega \pi^0 \pi^0$ and ωK^+K^-

Data Samples

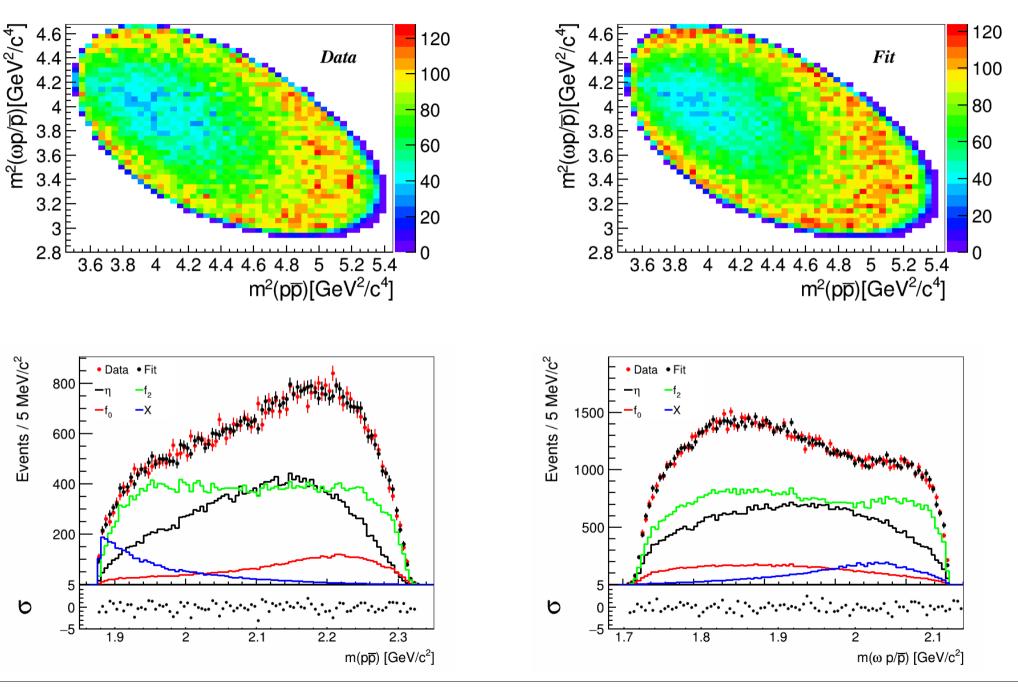

Xiaoshuai Qin (RUB)

- BESIII data samples consist of roughly 30.000 $\omega K^{+}K^{-}$, 160.000 $\omega \overline{p}p$ and 850.000 $\omega \pi^{0}\pi^{0}$ events after applying all selection criteria
- Here toy data with
 - $\sim \omega K^+ K^-$: 20k events with f₀, f₂ and K₁ resonances
 - > $\omega \overline{p}p$: 50k events with f₀, f₂, X(1835) and η (2225) resonances
 - > $\omega \pi^0 \pi^0$: 62k events with f₀, f₂, b₁, ρ and ρ_3 resonances
- Scattering data
 - > I=0 S-wave $\pi\pi \rightarrow \pi\pi$
 - > I=0 S-wave ππ → ηη, ηη'
 - > I=0 D-wave ππ → ππ, ηη
 - > I=1 P-wave $\pi\pi \rightarrow \pi\pi$
 - > I=1 F-wave $\pi\pi \rightarrow \pi\pi$

 Toy data are not consistent with BESIII data but in agreement with the phase shifts and elasticities from the scattering data

- Simple and ready to use parameterization
- Precise and model independent description up to 1.4 GeV/c²
- Fulfills crossing symmetry
- Describes the existing data with rather small errors
- Consistent with dispersion relation within uncertainties

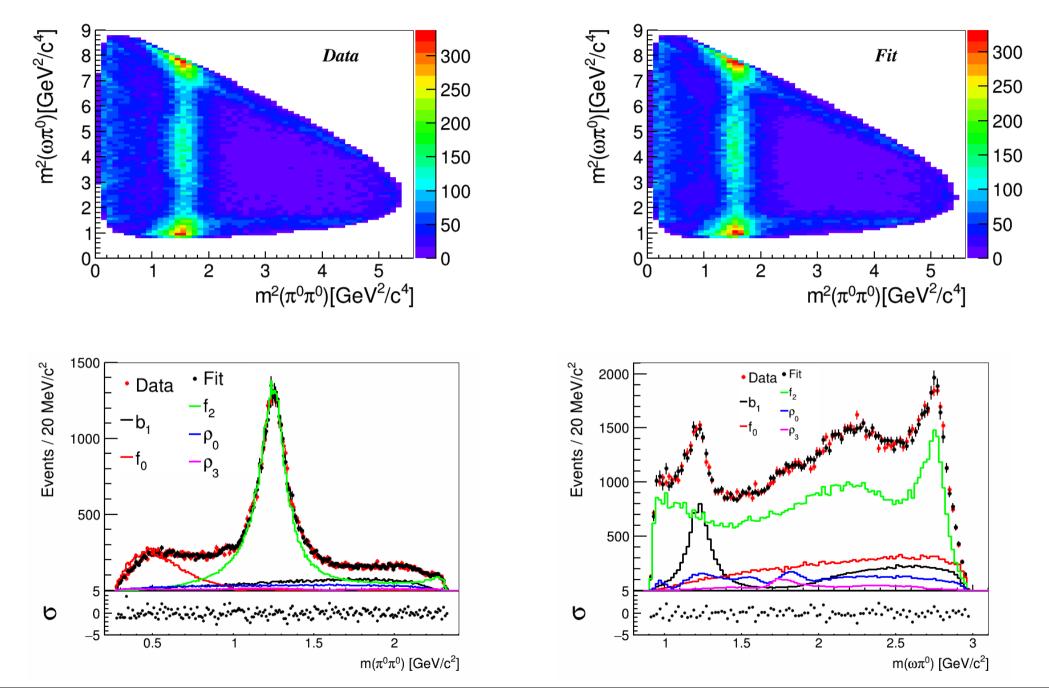
Garcia-Martin, Kaminski, Palaez, Ruiz del Elvira, Yndurain: Phys. Rev. D83(2011) 074004


FIG. 15 (color online). The new CFD for the S0 wave versus the existing phase-shift data from [29,30]. The dark band covers the uncertainties.

Coupled Channel Fit: $J/\psi \rightarrow \omega \overline{p}p$, $\omega \pi^0 \pi^0$ and ωK^+K^-

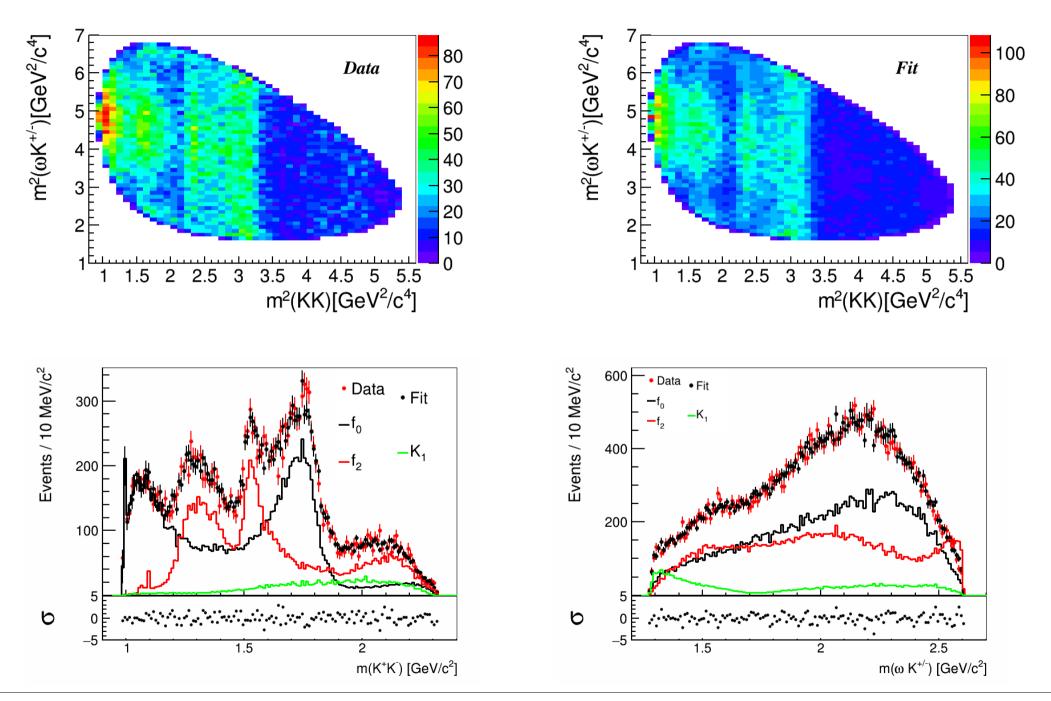
PWA Strategy

- K-matrix description with 0th order background terms, each for
 - > f_0 with 7 poles, 6 channels ($\pi\pi$, $\rho\rho$, $\overline{K}K$, $\eta\eta$, $\eta\eta'$, $\overline{p}p$)
 - > f_2 with 6 poles, 5 channels ($\pi\pi$, 4π , $\overline{K}K$, $\eta\eta$, $\overline{p}p$)
 - > ρ with 4 poles, 3 channels ($\pi\pi$, 4π , $\omega\pi$)
 - > ρ_3 with 2 poles, 3 channels ($\pi\pi$, 4π , $\omega\pi$)
 - > b_1 with 2 poles, 2 channels ($\pi\pi$, $\omega\pi$)
 - > K₁ with 3 poles, 2 channels (K* π , K ω)
- Breit-Wigner description for
 - ≻ η(2225) → $\overline{p}p$
 - ≻ X(1835) → p̄p


Fit result for $J/\psi \rightarrow \omega \bar{p} p$ (Toy Data)

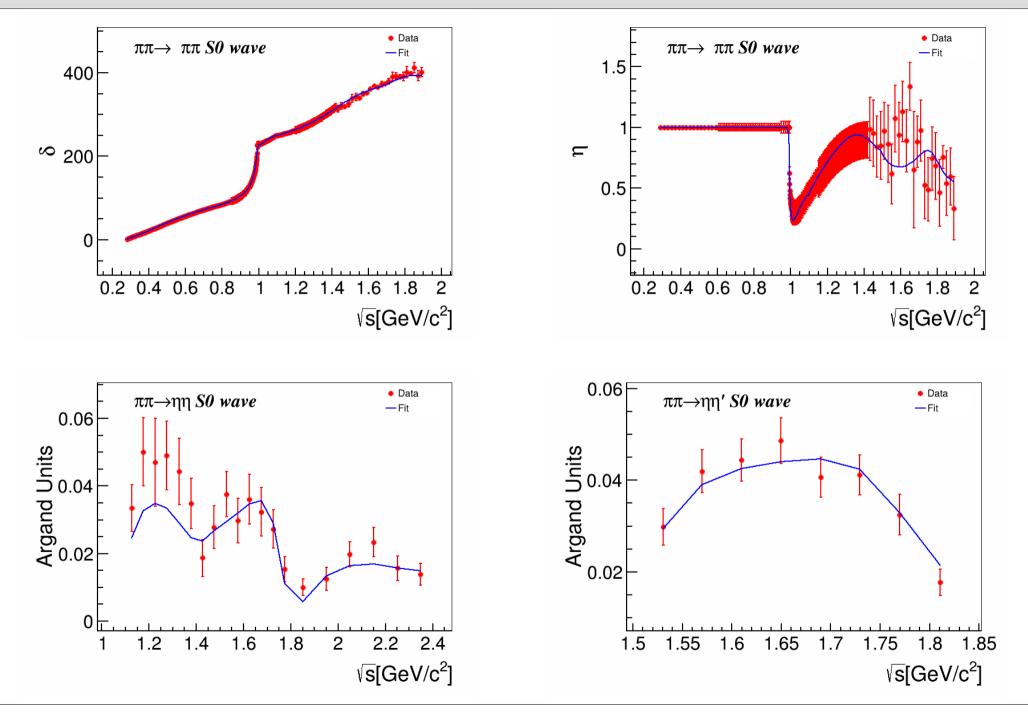
PWA10/ATHOS5, July 16-20, 2018

Bertram Kopf, Ruhr-Universität Bochum

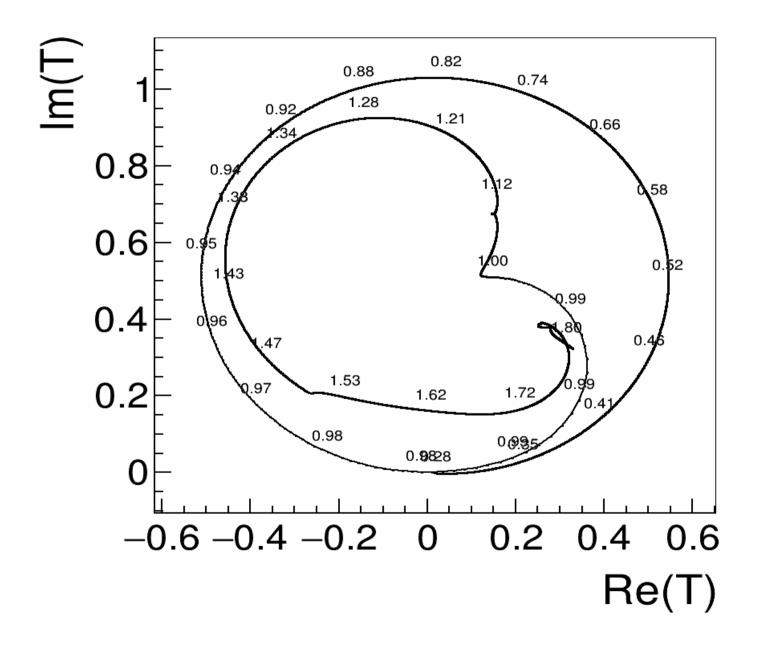

Fit result for $J/\psi \rightarrow \omega \pi^0 \pi^0$ (Toy Data)

PWA10/ATHOS5, July 16-20, 2018

Bertram Kopf, Ruhr-Universität Bochum


Fit result for $J/\psi \rightarrow \omega K^+K^-$ (Toy Data)

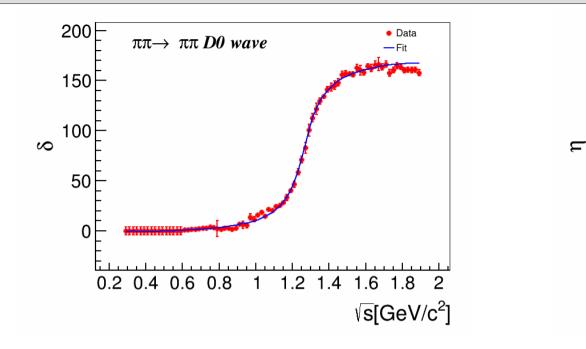
PWA10/ATHOS5, July 16-20, 2018

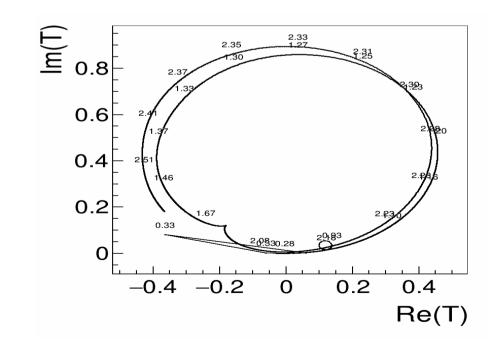

Bertram Kopf, Ruhr-Universität Bochum

Fit result for Scattering Data: $\pi\pi$ S-Wave

PWA10/ATHOS5, July 16-20, 2018

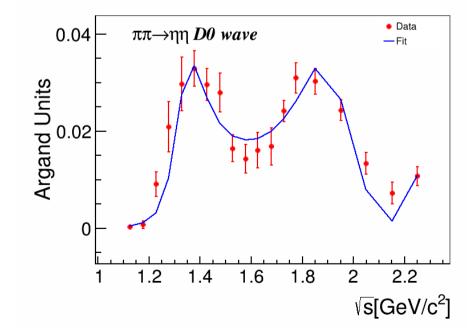
Fit result for Scattering Data: $\pi\pi$ S-Wave




Fit result for Scattering Data: $\pi\pi$ D-Wave

1.2

0.8


0.6

 $\pi\pi \rightarrow \pi\pi D\theta$ wave

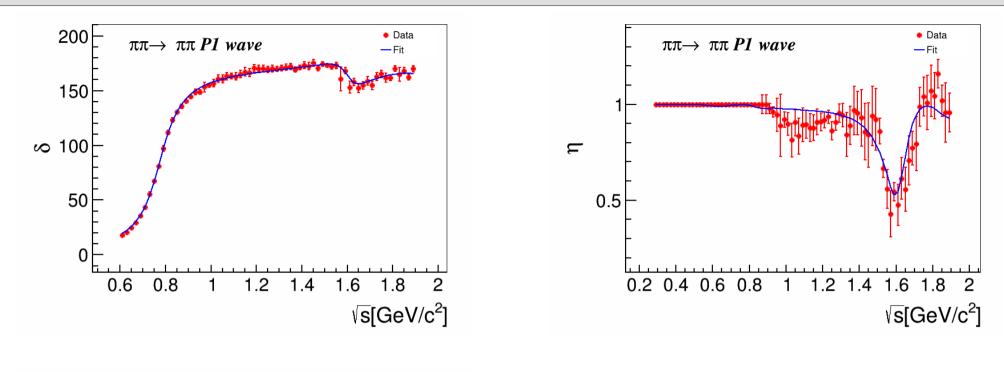
0.2 0.4 0.6 0.8

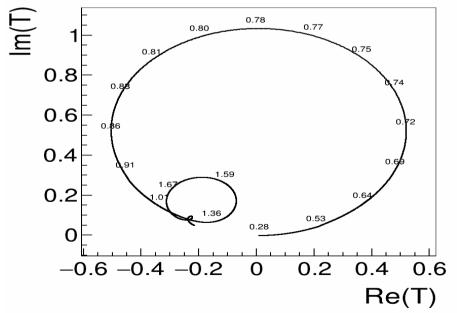
1.2

1.4

Data

2

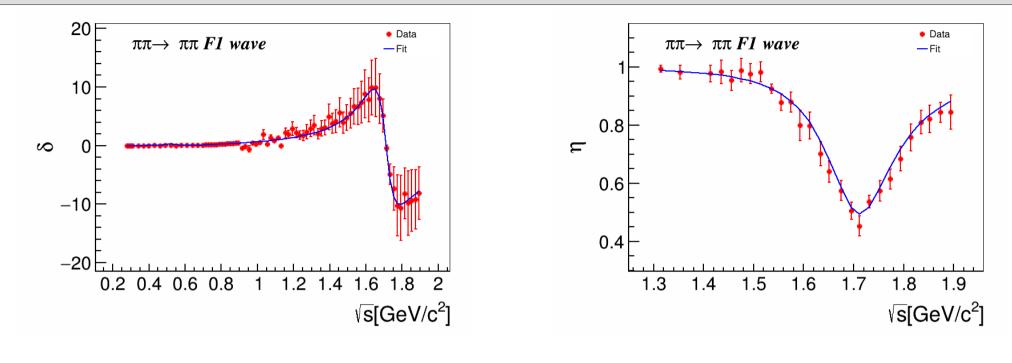

1.6

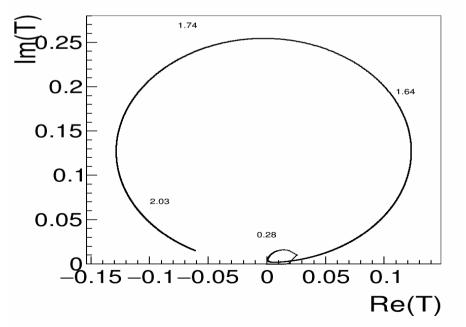

1.8

√s[GeV/c²]

- Fit

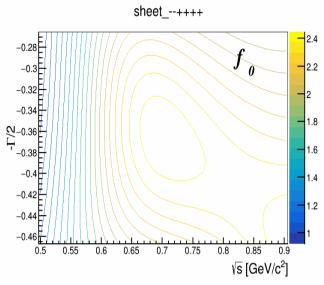
Fit result for Scattering Data: $\pi\pi$ P-Wave

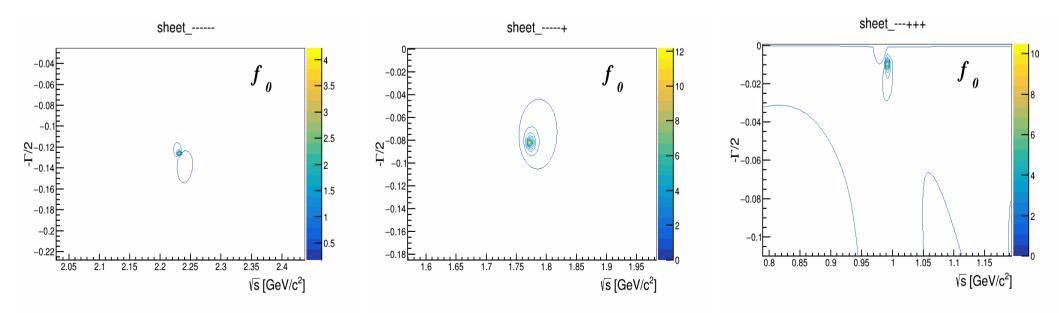




Bertram Kopf, Ruhr-Universität Bochum

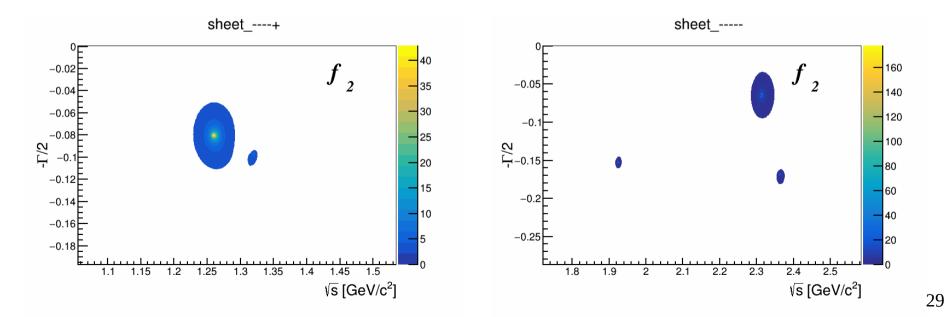
PWA10/ATHOS5, July 16-20, 2018


Fit result for Scattering Data: $\pi\pi$ F-Wave



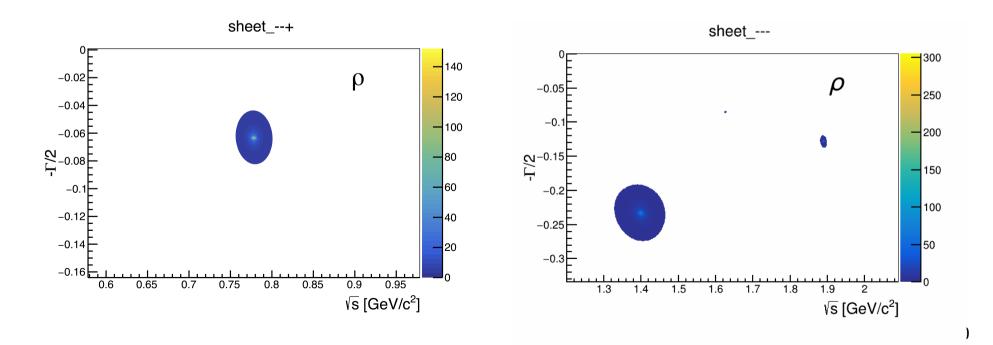
Obtained Pole Positions for f₀ Resonances

Fit Result [MeV/c ²]		PDG [MeV/c ²]		
Mass	Width	PDG State	Mass	Width
683	742	f ₀ (550)	400 - 550	400 - 700
998	46	f ₀ (980)	990 ± 20	10 - 100
1335	319	f ₀ (1370)	1200 - 1500	200 - 500
1771	163	f ₀ (1710)	1723 ± 6	139 ± 8
2231	251	f ₀ (2200)	2189 ± 13	238 ± 50



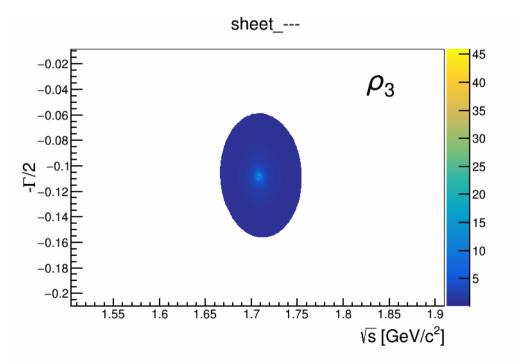
PWA10/ATHOS5, July 16-20, 2018

Obtained Pole Positions for f₂ Resonances


Fit Result [MeV/c ²]		PDG [MeV/c ²]		
Mass	Width	PDG State	Mass	Width
1260	161	f ₂ (1270)	1275.5 ± 0.8	186.7 ± 2.5
1320	193	f ₂ (1430)	~ 1430	?
1925	305	f ₂ (1950)	1944 ± 12	472 ± 18
2313	129	f ₂ (2300)	2297 ± 28	149 ± 40
2363	337	f ₂ (2340)	2345 ± 50	322 ± 70

PWA10/ATHOS5, July 16-20, 2018

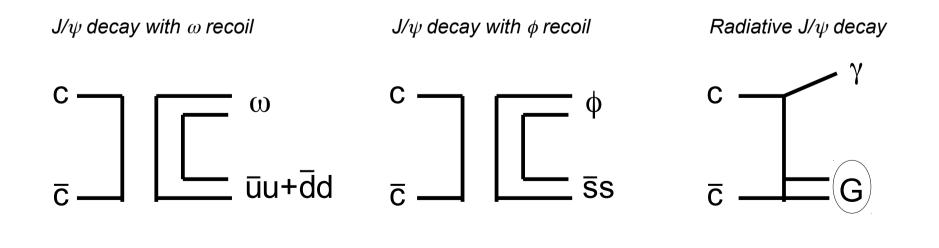
Obtained Pole Positions for ρ Resonances


Fit Result [MeV/c ²]		PDG [MeV/c ²]		
Mass	Width	PDG State	Mass	Width
778	127	ρ(770)	775.26 ± 0.25	147.8 ± 0.9
1401	467	ρ(1450)	1465 ± 25	400 ± 60
1627	169	ρ(1570)	1570 ± 70	144 ± 90
1890	255	ρ(1900)	1840-1930	15 - 180

PWA10/ATHOS5, July 16-20, 2018

Obtained Pole Positions for ρ_3 Resonances

Fit Result [MeV/c ²]		PDG [MeV/c ²]		
Mass	Width	PDG State	Mass	Width
1708	217	ρ ₃ (1690)	1688.8 ± 2.1	161 ± 10



Summary

- PAWIAN is a user-friendly and generic PWA software package
- Coupled channel analysis with K-Matrix description
 - > advantages to fits performed with only Breit-Wigner descriptions
 - can solve ambiguities and is more model independent
- Analysis in the past: $\overline{p}p \rightarrow K^+ K^- \pi^0$, $\pi^0 \pi^0 \eta$, $\pi^0 \eta \eta$
 - > fixed K-Matrix parameterization for I=0 $(\pi\pi)_{s}$ -wave and I=1/2 $(K\pi)_{s}$ -wave
- Current Analysis: $J/\psi \rightarrow \omega \pi^0 \pi^0$, $\omega K^+ K^-$, $\omega \overline{p}p$ with scattering data
 - strong constraints to phase shifts and pole positions
 - replacement of normal phase space factor by Chew-Mandelstam function
 - Chew-Mandelstam function for unstable particles
 - > reasonable results for the obtained pole positions for f_0 , f_2 , ρ and ρ_3 states

Outlook

- Adding corresponding channels where the ω is replaced be a φ and radiative $\gamma,$ respectively
- Determination of the coupling constants for the different production processes may shed light on the structure of the observed resonances
 - radiative processes are gluon rich processes
 - resonances with s-quark contents are expected to be produced with \u03c6 recoil particle

