Pion photoproduction on the deuteron and extraction of neutron-target observables

arXiv:1804.04757

Satoshi Nakamura

Universidade Cruzeiro do Sul, Brazil

Collaborators: H. Kamano (Osaka U.), T.-S. H. Lee (ANL), T. Sato (Osaka U.)

Introduction

Why neutron target data ?

First motivation

 $\gamma^{(*)} p \rightarrow N^* \text{ AND } \gamma^{(*)} n \rightarrow N^* \text{ form factors } \rightarrow \text{ Isospin structure of } \gamma^{(*)} N \rightarrow N^* \text{ form factors }$

- Interesting quantities for understanding hadron structures
- Necessary for application to neutrino-induced reactions
 - \rightarrow needed for analyzing data from neutrino-oscillation experiments SXN et al. PRD (2015)

Photon and electron-induced meson productions off deuteron

To obtain $\gamma^{(*)}$ 'n' $\rightarrow \pi N$, ηN , KY data, Deuteron is the primary target; we need to understand:

How to extract $\gamma^{(*)}$ 'n' $\rightarrow MB$ cross sections from $\gamma^{(*)}d \rightarrow MBN$ data

To address this question theoretically, we first need understand meson productions on deuteron

- Photo- and electro-excitations of bound nucleons
 - initial nucleons are in Fermi motion
 - Final state interactions (FSI)

Features

Q: How to extract $\sigma(\gamma^{(*)} n \rightarrow MB)$ from $\sigma(\gamma^{(*)} d \rightarrow MBN)$?

Common (and practical) procedure

Kinematical cuts \rightarrow quasi-free $\gamma^{(*)}$ 'n' $\rightarrow MB$ events selected

Concerns : FSI and/or cuts could distort $\sigma(\gamma^{(*)} n' \rightarrow MB)$ from true one ?

This work

- A dynamical model for $\gamma d \rightarrow \pi NN$ with FSI is developed
- $d\sigma/d\Omega_{\pi}$ and Σ, E, G for $\gamma d \rightarrow \pi NN$ are calculated; FSI effects examined
- $d\sigma/d\Omega_{\pi}$ and Σ, E, G for $\gamma 'n' \rightarrow \pi^0 n, \pi^- p$ are extracted from $\gamma d \rightarrow \pi NN$
- We address how FSI and cuts could distort γ '*n*' observables

$\gamma d \rightarrow \pi NN$ reaction model based on dynamical coupled-channels model

Model for $\gamma d \rightarrow \pi N N$

Multiple scattering theory truncated at the first-order rescattering

Elementary amplitudes

 $\gamma N \rightarrow \pi N, \ \pi N \rightarrow \pi N$ amplitude **CD**-Bonn potential (Machleidt et al., PRC 94 (2016)) **CD**-Bonn potential (Machleidt et al., PRC 63 (2001))

3-dim. loop integral with off-shell amplitudes are numerically evaluated

ANL-Osaka Dynamical coupled-channels model for meson productions in resonance region

Data for
$$\gamma p imes X$$

Need develop a model to describe these reactions in a unified manner

- Several nucleon resonances form characteristic peaks
- 2π production is comparable to 1π
- η , K productions (multi-channel couplings are important physics)

Dynamical coupled-channels model for resonance region

Resonance excitation + non-resonant meson-exchange mechanisms

Theoretically sound model should also account for:

- Channel-couplings required by unitarity (πN , ηN , $K\Lambda$, $K\Sigma$ stable channels)
- 2 π production mechanisms ($\rho N, \sigma N, \pi \Delta \leftrightarrow \pi \pi N$ channels)

Dynamical Coupled-Channels (DCC) model accounts for these features developed through analyzing data for γN , $\pi N \rightarrow \pi N$, ηN , $K\Lambda$, $K\Sigma \sim 26,000$ data points

DCC (Dynamical Coupled-Channels) model

Matsuyama et al., Phys. Rept. 439, 193 (2007) Kamano et al., PRC 88, 035209 (2013)

Coupled-channel Lippmann-Schwinger equation for meson-baryon scattering

$$T_{ab} = V_{ab} + \sum_{c} V_{ac} G_{c} T_{cb} \qquad \{a, b, c\} = \{\pi N, \eta N, \pi \pi N, \pi \Delta, \sigma N, \rho N, K \Lambda, K \Sigma\}$$

In addition, γN channel is included perturbatively

$\gamma p \rightarrow \pi^0 p$

$d\sigma/d\Omega$ for W < 2.1 GeV

Comparison of DCC model with data

Kamano, Nakamura, Lee, Sato, PRC 88 (2013)

Reasonable fit to data

in the whole resonance region

$\gamma n \rightarrow \pi^0 n \mid d\sigma/d\Omega$ for W < 2 GeV

: new fit

Recent MAMI data included PRL 112, 142001 (2014)

Recent JLab data included PRC 96, 035204 (2017)

SXN, Kamano, Lee, Sato, arXiv:1804.04757

 $\gamma n \rightarrow \pi^0 n$

 $d\sigma/d\Omega$ for W < 2 GeV

Partial wave amplitudes of π N scattering

Partial wave amplitudes of π N scattering

Results for $\gamma d \rightarrow \pi N N$

$\gamma d \rightarrow \pi N N$: model predictions and data

 $\gamma d \rightarrow \pi^- pp$

- Large NN FSI effect for π⁰ productions
 ← NN and deuteron wave fn. are orthogonal
- FSI effects are small for π^- productions
- Reasonable agreement with data

Data: EPJA 6, 309 (1999); 10, 365 (2001) for $\gamma d \Rightarrow \pi^0 pn$ NPB 65, 158 (1973) for $\gamma d \Rightarrow \pi^- pp$

Model predictions for *E* of $\gamma d \rightarrow \pi N N$

Polarization asymmetry
$$E: \quad E \equiv \frac{\sigma_{+-} - \sigma_{++}}{\sigma_{+-} + \sigma_{++}} \quad \sigma_{+\pm} \equiv \sigma(s_{\gamma}^z = \pm 1, s_d^z = \pm 1)$$

 $\gamma d \rightarrow \pi^0 pn$

- FSI effects are smaller than $d\sigma\!/\!d\Omega_{\pi}$, but still visible
 - ightarrow not completely cancelled out in the ratio

Model predictions for *E* of $\gamma d \rightarrow \pi N N$

Polarization observable
$$E: \quad E = \frac{\sigma_{+-} - \sigma_{++}}{\sigma_{+-} + \sigma_{++}} \quad \sigma_{+\pm} \equiv \sigma(s_{\gamma}^z = \pm 1, s_d^z = \pm 1)$$

• FSI effects are small as the same for $d\sigma/d\Omega_{\pi}$

Quasi-free $\gamma' n'$ cross sections extracted from γd cross sections

How to extract $\sigma(\gamma' n' \rightarrow \pi^0 n)$ from $\sigma(\gamma d \rightarrow \pi^0 np)$

First we need to establish a formula to relate $\sigma(\gamma' n' \rightarrow \pi^0 n)$ and $\sigma(\gamma d \rightarrow \pi^0 np)$

Ideal situation : only this mechanism contributes → No FSI, No exchange terms, No deuteron D-wave "quasi-free mechanism"

$$\frac{d^2\sigma(\gamma d \to \pi^0 np; E_{\gamma})}{dW d\cos\theta_{\pi}^*} = \phi(W) \frac{\tilde{E}_{\gamma}}{E_{\gamma}} \frac{d\sigma(\gamma n \to \pi^0 n; W)}{d\cos\theta_{\pi}^*}$$

 $E_{\gamma}(\widetilde{E}_{\gamma}): \gamma - d(\gamma - n')$ Lab frame

W: $\pi^0 n$ invariant mass $\cos \theta_{\pi}^* = \hat{q}_{\gamma} \cdot \hat{k}_{\pi}$ in $\pi^0 - n$ CM frame

 $\phi\left(W\right)$: Probability of a photon of E_{γ} interacting with the nucleon with W

$$\phi(W) = \int dp_p^3 \,\delta(W - W(\vec{p}_p, E_\gamma)) \left| \psi_d(\vec{p}_p) \right|^2 \,, \quad W(\vec{p}_p, E_\gamma) = \sqrt{(E_\gamma + m_d - E_p(\vec{p}_p))^2 - (\vec{q}_\gamma - \vec{p}_p)^2}$$

How to extract
$$\sigma(\gamma' n' \rightarrow \pi^0 n)$$
 from $\sigma(\gamma d \rightarrow \pi^0 np)$

In reality, photon hits the other nucleon and FSI contribute

 \rightarrow kinematical cuts are applied to remove them

Counterpart from our $\gamma d \mod$:

$$\frac{d^2\sigma(\gamma d \to \pi^0 np)}{dW d\cos\theta^*_{\pi}} \bigg|_{\rm cuts}$$

Assuming that this is solely from quasi-free contribution integrated over the same phase-space

$$\frac{d^{2}\sigma(\gamma d \rightarrow \pi^{0} np)}{dW d\cos\theta_{\pi}^{*}} \bigg|_{\text{cuts}} = \phi_{\text{mod}}(W) \frac{\tilde{E}_{\gamma}}{E_{\gamma}} \frac{d\sigma(\gamma n \rightarrow \pi^{0} n)}{d\cos\theta_{\pi}^{*}}, \quad \phi_{\text{mod}}(W) = \int^{\text{cuts}} dp_{p}^{3} \, \delta(W - W(\vec{p}_{p}, E_{\gamma})) \left|\psi_{d}(\vec{p}_{p})\right|^{2}$$
Formula to extract $\sigma(\gamma' n' \rightarrow \pi^{0} n)$ from $\sigma(\gamma d \rightarrow \pi^{0} np)$

from either experiment or model

Examine within our model how much $\sigma(\gamma \, n \rightarrow \pi^0 n)$ deviates from 'free' $\sigma(\gamma n \rightarrow \pi^0 n)$ due to FSI

Q: How FSI and kinematical cuts could distort γ '*n*' observables ($d\sigma/d\Omega$, Σ , E, G) ?

Kinematical cuts

For extracting $\gamma' n' \rightarrow \pi^- p$ from $\gamma d \rightarrow \pi^- pp$, we use : [1] CLAS@JLab, PRC 86 (2012) [2] CLAS@JLab, PRC 96 (2017) [3] CLAS@JLab, PRL 118 (2017)

Ref.	[1] ($d\sigma\!/\!d\Omega$)	[2] (<i>dσ/dΩ</i>)	[3] (<i>E</i>)
E_{γ} (MeV)	301 - 455	445 - 2510	700 - 2400
π^- momentum (MeV)	> 80	> 100	> 400
Faster proton momentum (MeV)	> 270	> 360	> 400
Slower proton momentum (MeV)	< 270	< 200	< 100
$\Delta \phi_{\pi} = \left \phi_{\pi} - \phi_{\text{faster proton}} \right $	-	_	$160^{\circ} < \Delta \phi < 200^{\circ}$

For extracting $\gamma' n' \rightarrow \pi^0 n$ from $\gamma d \rightarrow \pi^0 pn$, the same cuts are used after modification " π^- " \rightarrow " π^0 ", "Faster proton" \rightarrow "neutron", "Slower proton" \rightarrow "proton"

NOTE: Different kinematical cuts were used in A2@MAMI analysis on $\gamma n \rightarrow \pi^0 n$

Check the extraction method in ideal case

Q: With quasi-free mechanism only, examine if the formula $\frac{d^2\sigma(\gamma d \rightarrow \pi^0 np)}{dW d\cos\theta_{\pi}^*}\Big|_{\text{cuts}} = \phi_{\text{mod}}(W) \frac{\tilde{E}_{\gamma}}{E_{\gamma}} \frac{d\sigma(\gamma n \rightarrow \pi^0 n)}{d\cos\theta_{\pi}^*}$ returns $\sigma(\gamma \, n' \rightarrow \pi N)$ that agree with 'free' $\sigma(\gamma n \rightarrow \pi N)$

Check the extraction method in ideal case

Q: With quasi-free mechanism only, examine if the formula $\frac{d^2\sigma(\gamma d \rightarrow \pi^0 np)}{dW d\cos\theta_{\pi}^*}\Big|_{\text{cuts}} = \phi_{\text{mod}}(W) \frac{E_{\gamma}}{E_{\gamma}} \frac{d\sigma(\gamma n \rightarrow \pi^0 n)}{d\cos\theta_{\pi}^*}$ returns $\sigma(\gamma \, n \rightarrow \pi N)$ that agree with 'free' $\sigma(\gamma n \rightarrow \pi N)$

Free $\sigma(\gamma n \rightarrow \pi N)$ are well reproduced as expected for the ideal case

Now go on to realistic case !

 $d\sigma/d\Omega_{\pi}$ for $\gamma 'n' \rightarrow \pi^- p$

- impulse + NN FSI
- : impulse + NN FSI + π N FSI

 $\cdots \cdots : \text{ free } \sigma(\gamma n \rightarrow \pi N)$

- $NN(\pi N)$ FSI reduce $d\sigma/d\Omega_{\pi}$ of forward (backward) pion
- kinematical cuts cannot remove the FSI effect
- Larger FSI effects for smaller E_{γ}

 $d\sigma/d\Omega_{\pi}$ for $\gamma 'n' \rightarrow \pi^0 n$

- ▲ : impulse + NN FSI
- : impulse + NN FSI + π N FSI

 $\cdots \cdots : \text{ free } \sigma(\gamma n \rightarrow \pi N)$

- Significant FSI effects reduce $d\sigma/d\Omega_{\pi}$; πN and NN FSI are comparably important
- kinematical cuts cannot remove FSI effect
- Larger FSI effects for smaller E_{γ}

• FSI effects on $\gamma' n' \rightarrow \pi^0 n$ and $\gamma' p' \rightarrow \pi^0 p$ are generally similar (a few % difference)

⇔ Same FSI effects are assumed in A2@MAMI analysis [PRL 112 (2014)]

• But sometimes more different

• FSI effects on $\gamma' n' \rightarrow \pi^0 n$ and $\gamma' p' \rightarrow \pi^0 p$ are generally similar (a few % difference)

⇔ Same FSI effects are assumed in A2@MAMI analysis [PRL 112 (2014)]

• But sometimes more different

Comparison with Data : FSI effect

 $\gamma' n' \rightarrow \pi^0 n$

- ▲ : impulse + NN FSI
- : impulse + NN FSI + π N FSI

 $\cdots \cdots : \text{ free } \sigma(\gamma n \rightarrow \pi N)$

• Good agreement on the FSI effects estimated by A2@MAMI (first theoretical explanation)

• A2@MAMI analysis assumed

$$\frac{\sigma(\gamma' n' \to \pi^0 n)}{\text{free } \sigma(\gamma n \to \pi^0 n)} = \frac{\sigma(\gamma' p' \to \pi^0 p)}{\text{free } \sigma(\gamma p \to \pi^0 p)}$$

no theoretical estimate

• FSI effects can depend on the cuts; MAMI analysis uses different cuts

Extraction formula used so far in this presentation

$$\frac{d^{2}\sigma(\gamma d \to \pi^{0} np; E_{\gamma})}{dW d\cos\theta_{\pi}^{*}} = \phi_{\text{mod}}(W) \frac{\tilde{E}_{\gamma}}{E_{\gamma}} \frac{d\sigma(\gamma n \to \pi^{0} n; W)}{d\cos\theta_{\pi}^{*}}, \quad \phi_{\text{mod}}(W) = \int^{\text{cuts}} dp_{p}^{3} \,\delta(W - W(\vec{p}_{p}, E_{\gamma})) \left|\psi_{d}(\vec{p}_{p})\right|^{2}$$

Extraction formula used so far in this presentation

$$\frac{d^2\sigma(\gamma d \to \pi^0 np; E_{\gamma})}{dW d\cos\theta_{\pi}^*} = \phi_{\text{mod}}(W) \frac{\tilde{E}_{\gamma}}{E_{\gamma}} \frac{d\sigma(\gamma n \to \pi^0 n; W)}{d\cos\theta_{\pi}^*}, \quad \phi_{\text{mod}}(W) = \int^{\text{cuts}} dp_p^3 \,\delta(W - W(\vec{p}_p, E_{\gamma})) \left|\psi_d(\vec{p}_p)\right|^2$$

Integrate both sides with respect to *W*, assuming dominant contribution from nucleon-at-rest in deuteron (More) commonly used extraction formula (and/or fairly weak *W*-dependence)

$$\frac{d^2\sigma(\gamma d \to \pi^0 np; E_{\gamma})}{d\cos\theta_{\pi}^*} \bigg|_{\text{cuts}} = \frac{d\sigma(\gamma n \to \pi^0 n; \overline{W})}{d\cos\theta_{\pi}^*} \int^{\text{cuts}} dp_p^3 \frac{\tilde{E}_{\gamma}}{E_{\gamma}} \left|\psi_d(\vec{p}_p)\right|^2 , \qquad \overline{W}^2 = (E_{\gamma} + m_N)^2 - E_{\gamma}^2$$

Used in recent CLAS@JLab analyses:PRC 96 (2017) for $d\sigma/d\Omega_{\pi}$ PRL 118 (2017) for Ealso in theoretical analysisTarasov et al., PRC 84, 035203 (2011)

Examine the validity of this formula without *W*-cut

Quasi-free mechanism only; no FSI, no exchange terms

- : extracted with *W*-cut
- **x** : without *W*-cut

••••••: free $\sigma(\gamma n \rightarrow \pi N)$

Quasi-free mechanism only; no FSI, no exchange terms

- : extracted with *W*-cut
- **x** : without *W*-cut

••••••: free $\sigma(\gamma n \rightarrow \pi N)$

Quasi-free mechanism only; no FSI, no exchange terms • : extracted with *W*-cut

x : without *W*-cut

••••••: free $\sigma(\gamma n \rightarrow \pi N)$

- E_{γ} =300 MeV : Significant difference in $\Delta(1232)$ -region
 - 1. Sharp peak of $\sigma_{_{\gamma n}}$ at $W\!\!\sim\!$ 1.2 GeV
 - 2. $\sigma_{\gamma d}$ is an average of $\sigma_{\gamma n}$ over W~1.18–1.21 GeV (W<1.2 GeV in $\cos \theta \ge 0.7$) because of Fermi motion

 \rightarrow extracted $\sigma_{_{\!Y\!M}}$ without W-cut is necessarily smaller than $\sigma_{_{\!Y\!M}}$ at W=1.2 GeV

- E_{γ} =1GeV : better agreement between with and without *W*-cut Milder and monotonic *W*-dependence of $\sigma_{\gamma n}$ for *W*~1.6–1.7 GeV
 - ${\boldsymbol{ \rightarrow }}$ W-dependence is canceled in $\sigma_{\!_{\gamma\!d}}$ by W-average, but not completely

Quasi-free mechanism only; no FSI, no exchange terms

- : extracted with *W*-cut
- **x** : without *W*-cut

 $\cdots : \text{free } \sigma(\gamma \, n \rightarrow \pi N)$

Similar result for $\gamma n \rightarrow \pi^- p$

Reasons for deviations from free ones

- $E \text{ at } E_{\gamma}$ =300MeV, $\cos \theta \ge 0.5$: nucleon-at-rest kinematics is largely restricted by cuts; contributions are from different W
- G at E_{γ} =1GeV : Average non-monotonic W-dependence \rightarrow W-dependence not cancelled

Reasons for deviations from free ones

- E at E_{γ} =300MeV, $\cos \theta \ge 0.5$: nucleon-at-rest kinematics is largely restricted by cuts; contributions are from different W
- G at E_{γ} =1GeV : Average non-monotonic W-dependence \rightarrow W-dependence not cancelled

Conclusion

Conclusions

- $d\sigma/d\Omega_{\pi}$ and Σ , E, G for $\gamma 'n' \rightarrow \pi^0 n, \pi^- p$ are extracted from $\gamma d \rightarrow \pi NN$ using kinematical cuts of CLAS@JLab analyses
- $d\sigma/d\Omega_{\pi}$ for $\gamma 'n' \rightarrow \pi N$ are significantly distorted by FSI even after the cuts; FSI effects on $\gamma 'n' \rightarrow \pi^0 n$ data of A2@MAMI explained with πN and NN FSI
- Σ , E, G for γ 'n' $\Rightarrow \pi N$ are mostly unaffected by FSI effects if W-cut is applied
- Without *W*-cut, extracted observables can be largely distorted by Fermi motion

Future plans

- Similar study for $\gamma 'n' \rightarrow \eta n$, $K\Lambda$, $K\Sigma$ and electroproductions
- More polarization observables including recoil polarization

Thank you very much for your attention

Acknowledgments

- Financial support for this work
 FAPESP 2016/15618-8
 KAKENHI JP25105010
- Computing resource
 The Yukawa Institute Computer Facility
 The Research Center of Nuclear Physics
 LCRC at Argonne National Lab
 NERSC

Proton momentum distribution in $\gamma d \rightarrow \pi^0 np$

- : impulse + NN FSI
- : impulse + NN + π N FSI

Differential cross sections for $\gamma d \rightarrow \pi^0 np$

Meson productions induced by photon and electron beams

Interests

- Information on N^* properties (mass, width, missing resonances, etc.) complementary to πN scattering data \leftarrow "complete" measurements
- Electromagnetic $N \rightarrow N^*$ transition form factors (Q²-dependence)
 - → important information for hadron structures

Measurements of neutron target data (incl. polarization obs.) are recently active

$\gamma n \rightarrow \pi^0 n$	$d\sigma\!/\!d\Omega$	A2@MAMI	PRL 112, 142001 (2014)
	Ε	A2@MAMI	PLB 770, 523 (2017)
$\gamma n \rightarrow \pi^- p$	$d\sigma\!/\!d\Omega$	CLAS@JLab	PRC 96, 035204 (2017)
	E	CLAS@JLab	PRL 118, 242002 (2017)
$\gamma n \rightarrow \eta n$	$d\sigma\!/\!d\Omega$	A2@MAMI	PRC 90, 015205 (2014)
	E	A2@MAMI	PRC 95, 055201 (2017)

More data are available, and more are coming soon

Extraction of polarization observables for $\gamma 'n' \rightarrow \pi^0 n$ from $\gamma d \rightarrow \pi^0 np$

A possible complication : relativistic nucleon spin rotation

 $\leftarrow \text{Lorentz boost from } \gamma n \text{ CM frame to } \gamma d \text{ Lab frame}$

We confirmed this effect is very small for Σ , E, G to be discussed here \rightarrow ignored

Polarized cross sections can be extracted using formula similar to the unpolarized one

$$\frac{d^2\sigma(\gamma d \to \pi^0 np; \lambda, s_d = +1)}{dW d\cos\theta_{\pi}^*} \bigg|_{\text{cuts}} = \phi_{\text{mod}}(W) \frac{\tilde{E}_{\gamma}}{E_{\gamma}} \frac{d\sigma(\gamma n \to \pi^0 n; \lambda, s_N = +1/2)}{d\cos\theta_{\pi}^*}$$

$$E = \frac{\sigma_{1/2} - \sigma_{3/2}}{\sigma_{1/2} + \sigma_{3/2}} = \frac{d\sigma(\lambda = -1, s_N = +1/2) - d\sigma(\lambda = +1, s_N = +1/2)}{d\sigma(\lambda = -1, s_N = +1/2) + d\sigma(\lambda = +1, s_N = +1/2)}$$

 Σ , E, G for $\gamma' n' \rightarrow \pi^0 n$

• : impulse + NN FSI + π N FSI

 $\cdots : \text{ free } \sigma(\gamma n \rightarrow \pi N)$

- Free $\gamma n \rightarrow \pi N$ polarization asymmetries are well reproduced
- FSI effects are very small ; canceled by taking the ratios; One exception
- No FSI effects are assumed in A2@MAMI analysis for E [PLB 770 (2017)]

Off-shell effects

 $d\sigma/d\Omega$ for W < 2.1 GeV

Comparison of DCC model with data

Kamano, Nakamura, Lee, Sato, PRC 94 (2016)

Predicted $\pi N \rightarrow \pi \pi N$ total cross sections with our DCC model

