

# FSI in hadronic three-body decay

## Patricia C. Magalhães

Technical University of Munich - TUM

patricia.magalhaes@tum.de

PAATHOS - 18/07/2018 - Beijing

International workshop on Partial Wave Analyses and Advanced Tools for Hadron Spectroscopy



## TRR110 Workshop - Amplitudes for Three-Body Final States

- -> theory and experiments on 3-body : interplay, challenges and achievements
- why study three-body decays?
  - → dynamics of heavy/light meson decays
  - → Final State Interaction
- highlights of the works concerning 3-body hadronic decay

---> main issues and tasks list

- example :  $D^+ \to K^- K^+ K^-$  my work!
  - ---> Full model fitted to LHCb data
  - $\longrightarrow$  based in chiral symmetry
  - $\longrightarrow$  prediction for KK scattering amplitude

# was discussed in Munich WS

# TRR110 Workshop - Amplitudes for Three-Body Final States

#### Meson-Meson scattering

**Jacobo Ruiz de Elvira (Bern)** Dispersive analysis for πK

**Bachir Moussallam (Paris)** Isospin and chiral symmetries in  $D \rightarrow K \pi \pi$  amplitudes in the Khuri-Treiman formalism

**Miguel Albaladejo (Murcia)** Khuri-Treiman for ππ scattering

Stefan Ropertz (Bonn) Extensions of pion form factors beyond 1 GeV

Manoel Robilotta (Sao Paulo)this talkKK scattering predictions from  $D+ \rightarrow K-K+K+$  decay amplitude

Bertram Kopf (Bochum - BESS II) Tuesday Coupled Channel Analysis with e+e- and Scattering data

#### Three-body final states interactions

**Tobias Isken (Bonn)** A. Jackura Khuri--Treiman for  $\eta'$  decays and D+  $\rightarrow$  K- $\pi$ + $\pi$ +

Bruno El-Bennich (Sao Paulo) Parametrisations of hadronic three-body decay amplitudes

**Feng-Kun Guo (Beijing)** Monday What we learn about the charmed meson spectrum from  $B \rightarrow D\pi\pi$ 

Keri Vos (Siegen) CP Violation in Multi-body B-decays from QCD Factorization

Emilie Passemar (Indiana) Hadronic tau decays

FSI in three-body decays

#### CRC Bochum/Bonn/Beijing/Munich

Munich 11 -13 July 2018

https://indico.ph.tum.de/event/3988/

how to improve data analyses? where theory is crucial in data analyses? how experimentalists can help theoreticians?

#### Experimental Three-body final states interactions

M. Mikhasenko (Bonn - COMPASS) 3π production in COMPASS

Fabian Krinner (TUM - COMPASS) Dima R., B. Grube Model-independent analysis in COMPASS

Jonas Rademacker (Bristol - LHCb) LHCb owerview on FSI of many-body decays

Jeremy Dalseno ( Santiago de Compostela - LHCb ) B  $\rightarrow$  3h amplitude analysis in LHCb

Alexey Garmash (Novosibirsk - Belle) Belle results in three-body B decays

Alexander Austregesilo (Jlab - Gluex) Strategy and foreseeable issues in GlueX 3-body analysis

Patricia Magalhães



Patricia Magalhães Bastian Kubis Christoph Hanhart Norbert Kaiser Stephan Paul

3





- three-body HADRONIC decays are dominated by resonances
  - spectroscopy



 $D^+ \to K^- \pi^+ \pi^+$ 

к(800)

K\*(892)

 $\checkmark$  also B, au and light mesons

• information of MM interactions  $\longrightarrow$  no  $K\overline{K}$  data available

investigate MM up to higher energies in different context



- three-body HADRONIC decays are dominated by resonances
  - spectroscopy



 $D^+ \to K^- \pi^+ \pi^+$ 

к(800)

K\*(892)



• information of MM interactions  $\longrightarrow$  no  $K\overline{K}$  data available

investigate MM up to higher energies in different context

• study of CP-Violation (strong phase needed)  $\longrightarrow$  can lead to new physics  $\searrow B^{\pm} \rightarrow h^{+}h^{-}h^{\pm}$  : FSI can explain CP violation at low mass



- three-body HADRONIC decays are dominated by resonances
  - spectroscopy



 $D^+ \to K^- \pi^+ \pi^+$ 

 $\checkmark$  also B, au and light mesons

K\*(892)

к(800)

• information of MM interactions  $\longrightarrow$  no  $K\overline{K}$  data available

investigate MM up to higher energies in different context

study of CP-Violation (strong phase needed) -> can lead to new physics

 $\searrow B^{\pm} \rightarrow h^{+}h^{-}h^{\pm}$  : FSI can explain CP violation at low mass

• exclusive  $\tau$  decays to 2 or 3-hadrons  $\longrightarrow$  study FFs, resonance (BSM) parameters, hadronization of QCD currents, EDM,...



- three-body HADRONIC decays are dominated by resonances
  - spectroscopy



 $D^+ \to K^- \pi^+ \pi^+$ 

к(800)

K\*(892)



• information of MM interactions  $\longrightarrow$  no  $K\overline{K}$  data available

investigate MM up to higher energies in different context

study of CP-Violation (strong phase needed) -> can lead to new physics

 $\searrow B^{\pm} \rightarrow h^{+}h^{-}h^{\pm}$  : FSI can explain CP violation at low mass

- exclusive  $\tau$  decays to 2 or 3-hadrons  $\longrightarrow$  study FFs, resonance (BSM) parameters, hadronization of QCD currents, EDM,...
- new high data sample from LHCb, Belle II (soon), Compass, ... more to came
   need better models !!

FSI in three-body decays

#### Patricia Magalhães







→ light mesons diffractive production do not have a well defined decay model...

## Final State Interactions (FSI)









→ light mesons diffractive production do not have a well defined decay model...

## Final State Interactions (FSI)









→ light mesons diffractive production do not have a well defined decay model...

## Final State Interactions (FSI)



• 2-body is crucial

full unitarity: Faddeev, Khury-Trieman, triangles





## Final State Interactions (FSI)



• 2-body is crucial

full unitarity: Faddeev, Khury-Trieman, triangles

# standard isobar model...



• 
$$A_{decay} = A^{NR} + \sum c_k A_k$$

$$A_{BW}(s) = \frac{1}{M_R^2 - s - i M_R \Gamma_R}$$

good for narrow and isolated resonance

 $A_k = [FF] \times [spin] \times [A_{BW}]$ 

- violates two-body unitarity (2 res in the same channel);
- does NOT include rescattering and coupled-channels;
- free parameters are not connected with theory !

# standard isobar model...



• 
$$A_{decay} = A^{NR} + \sum c_k A_k$$

$$A_{BW}(s) = \frac{1}{M_R^2 - s - i M_R \Gamma_R}$$

good for narrow and isolated resonance

 $A_k = [FF] \times [spin] \times [A_{BW}]$ 

- violates two-body unitarity (2 res in the same channel);
- does NOT include rescattering and coupled-channels;
- free parameters are not connected with theory !

experimentalist and theorist agreement

# standard isobar model...



• 
$$A_{decay} = A^{NR} + \sum c_k A_k$$

$$A_{BW}(s) = \frac{1}{M_R^2 - s - i M_R \Gamma_R}$$

good for narrow and isolated resonance

 $A_k = [FF] \times [spin] \times [A_{BW}]$ 

- violates two-body unitarity (2 res in the same channel);
- does NOT include rescattering and coupled-channels;
- free parameters are not connected with theory !

experimentalist and theorist agreement

- pole position: universal for each resonances
  - → light scalars can be deep in complex plane (phase not at 90 degrees)

could be hidden... modified by production

different in different processes

|         |                                           |           | 4                    | ?•                      | meaning                        | g? |
|---------|-------------------------------------------|-----------|----------------------|-------------------------|--------------------------------|----|
| data    | Reso                                      | nance N   | Magnitude            | Phase (°)               | Fraction (%)                   |    |
| summary | - ρ <b>(</b> 770                          | )         | 1 [fixed]            | 0 [fixed]               | 24.1±0.3                       |    |
|         | $f_0(980)$<br>$f_2(12)$                   | 0)<br>70) | 3.9±0.02<br>1.1±0.01 | -157.9±0.5<br>89±0.5    | 8.1±0.2<br>14.5±0.2            |    |
|         | $\rho(143)$<br>$f_0(13)$<br>$\sigma(500)$ | 70)<br>)) | 0.9±0.05<br>23.2±0.2 | -80.2±2.5<br>184.4±3.3  | 0.4±0.1<br>0.4±0.1<br>58 2+1 5 |    |
|         | NR<br>f <sub>0</sub> (150                 | 00)       | 10.1±0.2<br>2.1±0.04 | -148.3±1.1<br>180.5±1.1 | 7.5±0.6<br>2.9±0.2             |    |
|         | Total                                     |           |                      |                         | 116.02                         |    |

#### M Robilotta seminar

#### FSI in three-body decays

#### Patricia Magalhães

7

• COMMON believe: 2 body phase is enough for 3-body....

•  $D^+ \to K^- \pi^+ \pi^+ \rightarrow$  different S- wave phase from  $K^- \pi^+$ scattering

PC Magalhães et.al: PRD84 094001 (2011), PRD92 094005 (2015)







• COMMON believe: 2 body phase is enough for 3-body....



•  $D^+ \to K^- \pi^+ \pi^+ \rightarrow$  different S- wave phase from  $K^- \pi^+$  scattering



#### FSI in three-body decays

• COMMON believe: 2 body phase is enough for 3-body....







FSI in three-body decays



## Heavy Flavour and Light Meson Decays: Similarities



S. Paul seminar



## Heavy Flavour and Light Meson Decays: Similarities





## Heavy Flavour and Light Meson Decays: Similarities

![](_page_19_Figure_3.jpeg)

- 2-body amplitude: spin and isospin well defined!
- 3-body data: only spin and  $\neq$  dynamics (weak vertex, FSI, 3rd particle, ...)

## how to improve PWA?

![](_page_20_Picture_1.jpeg)

low energy MM rescattering, coupled-channels and resonances
 3-body

![](_page_20_Picture_3.jpeg)

FSI

unknown FF; critical in D decays...

how theorist can help improving PWA?  $\rightleftharpoons$  what can we learn from data?

## how to improve PWA?

![](_page_21_Picture_1.jpeg)

low energy MM rescattering, coupled-channels and resonances
 3-body

![](_page_21_Picture_3.jpeg)

FSI

unknown FF; critical in D decays...

how theorist can help improving PWA?  $\rightleftharpoons$  what can we learn from data?

## experimental list of wishes...

- how to implement 2-body unitarity in data?
- need 2-body amplitude up to high energy !
- theorist to work on diffractive physics ! (COMPASS and GlueX)
- differences between triangle singularities and resonances
- spin formalism agreement: no NR corrections. But Tensor or Helicity?
- theoretical list of issues...
  - how to describe simultaneously full energy range?
  - how to join weak and strong interactions?? (scale problem)
  - how to identify/include the importance of 3-body FSI?
  - access to data in a "nice and understandable way"

## MM dispersion relations and chiral symmetry

![](_page_22_Picture_1.jpeg)

dispersive and analytic approach to 2-body

![](_page_22_Figure_3.jpeg)

- based on fundamental properties:
  - analyticity (causality)
  - unitarity (probability conservation)
  - crossing symmetry → implies left cut (could be an issue)
     ⇒ model independence

#### T. Isken

![](_page_22_Figure_9.jpeg)

- calculate T where there is not data
- model independent extrapolation to complex s-plane

## MM dispersion relations and chiral symmetry

![](_page_23_Picture_1.jpeg)

#### dispersive and analytic approach to 2-body

#### Why Roy-Steiner equations? Advantages of d ε based on funda Roy(-Steiner) eqs. = Partial-Wave (Hyberbolic) Dispersion Relations coupled by unitarity and crossing symmetry • analyticity ( factor S) unitarity (pr $\pi$ scattering phase crossing sym Respect all symmetries: analyticity, unitarity, crossing implies ∕n • Model independent $\Rightarrow$ the actual parametrization of the data is irrelevant once it is used in $\Rightarrow$ model indepe $\tau \pm \pi$ $\left(\overline{f}_{+,0}(s) \rightarrow 1/s\right)$ the integral. Brodsky & Lepad Framework allows for systematic improvements (subtractions, higher partial waves, ...) T. Is • PW(H)DRs help to study processes with high precision: • $\pi\pi$ -scattering: [Ananthanarayan et al. (2001), García-Martín et al. (2011)] calculate T w • $\pi K$ -scattering: [Büttiker et al. (2004)] • $\gamma \gamma \rightarrow \pi \pi$ scattering: [Hoferichter et al. (2011)] J Ruiz Elvira 🌭 model indepe • $\pi N$ scattering: [Hoferichter et al. (2015)] to complex 5900 < ロ > < 四 > < 回 > < 回 > < 回 J. Ruiz de Elvira (ITP) Pion-kaon scattering TRR110 workshop

## MM dispersion relations and chiral symmetry

![](_page_24_Picture_1.jpeg)

#### dispersive and analytic approach to 2-body

#### Why Roy-Steiner equations? Advantages of d ε based on funda Roy(-Steiner) eqs. = Partial-Wave (Hyberbolic) Dispersion Relations coupled by unitarity and crossing symmetry • analyticity ( factor S) unitarity (pr $\pi$ scattering phase crossing sym Respect all symmetries: analyticity, unitarity, crossing implies ∕n • Model independent $\Rightarrow$ the actual parametrization of the data is irrelevant once it is used in $\Rightarrow$ model indepe $\tau \pm \pi$ $\left(\overline{f}_{+,0}(s) \rightarrow 1/s\right)$ the integral. Brodskv & Lepad Framework allows for systematic improvements (subtractions, higher partial waves, ...) T. Is • PW(H)DRs help to study processes with high precision: • $\pi\pi$ -scattering: [Ananthanarayan et al. (2001), García-Martín et al. (2011)] calculate T w • $\pi K$ -scattering: [Büttiker et al. (2004)] • $\gamma \gamma \rightarrow \pi \pi$ scattering: [Hoferichter et al. (2011)] J Ruiz Elvira 🌭 model indepe • $\pi N$ scattering: [Hoferichter et al. (2015)] to complex < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > 5900 J. Ruiz de Elvira (ITP) Pion-kaon scattering TRR110 workshop limited to ~1 GeV works well in the elastic region FSI in three-body decays 10 Patricia Magalhães

![](_page_25_Picture_1.jpeg)

![](_page_25_Figure_2.jpeg)

Patricia Magalhães

![](_page_26_Picture_1.jpeg)

![](_page_26_Figure_2.jpeg)

![](_page_27_Picture_1.jpeg)

![](_page_27_Figure_2.jpeg)

![](_page_28_Picture_1.jpeg)

![](_page_28_Figure_2.jpeg)

#### we need non-perturbative MM interactions...

FSI in three-body decays

#### Patricia Magalhães

![](_page_29_Picture_1.jpeg)

#### S. Ropertz

#### Extensions of pion form factors beyond $1\,{\rm GeV}$

#### Decay $ar{B}^0_s o J/\psi \pi^+\pi^-(K^+K^-)$

#### Parametrization for the partial wave amplitude

• Consider Bethe-Salpeter equation for the partial wave amplitude T

![](_page_29_Figure_7.jpeg)

- Split scattering kernel  $V = V_0 + V_R \Rightarrow T = T_0 + T_R$
- Unitary scattering amplitude  $T_0$  (given by phases and inelasticities)

![](_page_29_Figure_10.jpeg)

• Resonance exchange potential  $V_R$ 

![](_page_29_Figure_12.jpeg)

New Form Factor parametrization

$$F = \Omega \left[ \mathbb{1} - V_R \Sigma \right]^{-1} M$$

![](_page_29_Figure_15.jpeg)

- $\bullet$  All dynamics contained in  $\pi^+\pi^-/{\cal K}^+{\cal K}^-$  subchannel
- For  $\bar{B}^0_s \to J/\psi \pi^+\pi^-$  only S- and D-waves (for  $K^+K^-$  also P-waves)
- $ar{B}^0_s 
  ightarrow J/\psi \pi^+\pi^-$  is S-wave dominated

![](_page_29_Figure_19.jpeg)

![](_page_29_Figure_20.jpeg)

0.5

## MM non-perturbative amplitudes

- chiral Lagrangian and Unitarized ChPT
  - → LO chiral (Gasser&Leutwyler)
  - NLO: include resonances as a field
     (Ecker, Gasser, Pich and De Rafael)

$$\mathcal{L}_{S}^{(2)} = \frac{2\,\tilde{c}_{d}}{F^{2}}\,R_{0}\,\partial_{\mu}\phi_{i}\,\partial^{\mu}\phi_{i} - \frac{4\,\tilde{c}_{m}}{F^{2}}\,B\,R_{0}\left(\sigma_{0}\,\delta_{ij} + \sigma_{8}\,d_{8ij}\right)\,\phi_{i}\,\phi_{j}$$
$$\frac{2\,c_{d}}{\sqrt{2}F^{2}}\,d_{ijk}\,R_{k}\,\partial_{\mu}\phi_{i}\,\partial^{\mu}\phi_{i} - \frac{4Bc_{m}}{\sqrt{2}F^{2}}\left[\sigma_{0}\,d_{ijk} + \sigma_{8}\,\left(\frac{2}{3}\,\delta_{ik}\,\delta_{j8} + \,d_{i8s}\,d_{jsk}\right)\right]\,\phi_{i}\,\phi_{j}R_{k}$$

unitarize amplitude by Bethe-Salpeter eq. [Oller and Oset PRD 60 (1999)]

• kernel  $\mathcal{K}_{ab \rightarrow cd}^{(J,I)}$  = + + + resonance (NLO) + contact (LO)

• loops  $\longrightarrow$  K-matrix approximation: only on-shell

$$\{I_{ab}; I_{ab}^{\mu\nu}\} = \int \frac{d^4\ell}{(2\pi)^4} \frac{\{1; \ell^{\mu} \ell^{\nu}\}}{D_a D_b}$$
$$D_a = (\ell + p/2)^2 - M_a^2 \qquad D_b = (\ell - p/2)^2 - M_b^2$$

$$\bar{\Omega}_{ab}^{S} = -\frac{i}{8\pi} \frac{Q_{ab}}{\sqrt{s}} \theta(s - (M_a + M_b)^2)$$
$$\bar{\Omega}_{aa}^{P} = -\frac{i}{6\pi} \frac{Q_{aa}^3}{\sqrt{s}} \theta(s - 4M_a^2)$$
$$Q_{ab} = \frac{1}{2} \sqrt{s - 2(M_a^2 + M_b^2) + (M_a^2 - M_b^2)^2/s}$$

#### FSI in three-body decays

![](_page_30_Picture_13.jpeg)

#### M. Robilotta

![](_page_31_Picture_1.jpeg)

![](_page_31_Figure_3.jpeg)

![](_page_32_Picture_1.jpeg)

![](_page_32_Picture_3.jpeg)

- scalar and vector  $\pi\pi$ , K $\pi$  form factors up to ~1.4 GeV  $\rightarrow$  (2+1)
  - $\searrow$  important tool for  $\tau \rightarrow hhh \nu_{\tau}$  decay E Passamar

![](_page_33_Picture_1.jpeg)

![](_page_33_Picture_3.jpeg)

- scalar and vector  $\pi\pi$ ,  $K\pi$  form factors up to ~1.4 GeV  $\rightarrow$  (2+1)
  - $\blacktriangleright$  important tool for  $au o hhh \, 
    u_{ au}$  decay E Passamar
- parametrization for B and D $\rightarrow$ 3h with QCDF + scalar and vector MM form factor  $\rightarrow$  (2+1)  $\rightarrow$  Boito et al. PRD96 (2017) [Paris, Kracov, SP] B. El-Bennich

![](_page_34_Picture_1.jpeg)

![](_page_34_Picture_3.jpeg)

- scalar and vector  $\pi\pi$ , K $\pi$  form factors up to ~1.4 GeV  $\rightarrow$  (2+1)  $\searrow$  important tool for  $\tau \rightarrow hhh \nu_{\tau}$  decay E Passamar
- parametrization for B and D $\rightarrow$ 3h with QCDF + scalar and vector MM form factor (2+1) Boito et al. PRD96 (2017) [Paris,Kracov, SP] B. El-Bennich
- 3-body FSI in hadronic decay with Khuri-Treiman limited to very low E  $\searrow D^+ \to (\bar{K}\pi)\pi^+$  B. Moussallam, T. Isken - Kubis et al.[Bonn] and M. Albaladejo

![](_page_35_Picture_1.jpeg)

![](_page_35_Picture_3.jpeg)

- scalar and vector  $\pi\pi$ , K $\pi$  form factors up to ~1.4 GeV  $\rightarrow$  (2+1)  $\searrow$  important tool for  $\tau \rightarrow hhh \nu_{\tau}$  decay E Passamar
- parametrization for B and D $\rightarrow$ 3h with QCDF + scalar and vector MM form factor  $\rightarrow$  (2+1) Boito et al. PRD96 (2017) [Paris,Kracov, SP] B. El-Bennich
- 3-body FSI in hadronic decay with Khuri-Treiman limited to very low E  $\searrow D^+ \to (\bar{K}\pi)\pi^+$  B. Moussallam, T. Isken - Kubis et al.[Bonn] and M. Albaladejo
- "K-matrix": ππ S-wave with 5 coupled-channel (pole + polynomial) modulated by a production vector amplitude up to 1.9 GeV
   (2+1) Anisovich PLB653(2007) used by Babar, LHCb, BESSII B.Kopf (talk)

→ LHCb 
$$B^{\pm} \rightarrow \pi^{+}\pi^{-}\pi^{\pm}$$
 decay analysis J. Dalceno


• what do we have on the market for three-body PWA?



- scalar and vector  $\pi\pi$ , K $\pi$  form factors up to ~1.4 GeV  $\rightarrow$  (2+1)  $\searrow$  important tool for  $\tau \rightarrow hhh \nu_{\tau}$  decay E Passamar
- parametrization for B and D $\rightarrow$ 3h with QCDF + scalar and vector MM form factor  $\rightarrow$  (2+1) Boito et al. PRD96 (2017) [Paris,Kracov, SP] B. El-Bennich
- 3-body FSI in hadronic decay with Khuri-Treiman limited to very low E  $\searrow D^+ \to (\bar{K}\pi)\pi^+$  B. Moussallam, T. Isken - Kubis et al.[Bonn] and M. Albaladejo
- "K-matrix": ππ S-wave with 5 coupled-channel (pole + polynomial) modulated by a production vector amplitude up to 1.9 GeV
   (2+1) Anisovich PLB653(2007) used by Babar, LHCb, BESSII B.Kopf (talk)

> LHCb 
$$B^{\pm} \rightarrow \pi^{+}\pi^{-}\pi^{\pm}$$
 decay analysis J Dalceno

- multi-meson-model for  $D^+ \to K^- K^+ K^+$ 
  - MM: chiral Lagrangian + resonances + unitarized amplitudes
  - (2+1) + 3-body NR fitted to LHCb M. Robilotta

my work!

e.g. tau decay....

E. Passamar

# 1.3 Exclusive hadronic processes

Experimental situation :

 $\cdot \quad \tau \to PPv_{\tau}$ 

 $\begin{cases} \pi^{-}\pi^{0}, K^{-}K^{0} & \text{Branc} \\ K^{-}\pi^{0}, \overline{K}^{0}\pi^{-} & \text{Spect} \\ \eta \text{ modes} & \text{Branc} \end{cases}$ 

Branching fractions Spectrum

Branching fractions

ALEPH, CLEOIII, OPAL Belle, BaBar

 $\tau \to PPPv_{\tau} \\ (\pi \ \pi \ \pi \ \pi)$ 

| 6 |                     |
|---|---------------------|
|   | Branching fractions |
|   | Spectrum            |
|   |                     |

 $\eta$  modes

KKπ

Κππ

KKK

Branching fractions ALEPH, CLEOIII, OPAL Belle, BaBar Theoretical situation

Parametrization using

ChPT + Analiticity + Unitarity Dispersion relations on the market

Reasonably good control

Parametrization using ChPT + Analiticity + Unitarity+ Resonances

Much more difficult and model dependent

# QCD Factorizations

Working in the improvement of the theory of QDCF



# **Factorization in three-body** *B* **decays**

Kraenkl, Mannel, Virto [2015]; Klein, Mannel, Virto, KKV [2018]

Data-driven model-independent factorization approach

- Improvement over quasi-two body interpretation
- Introduces new non-perturbative strong phases
- Focuss here on  $B \to \pi \pi \pi$  but similar for  $B \to hhh$



K. Vos

(First) Challenge: Reach the same level as two-body QCDF

 $\rightarrow$  diff factorization in each regions...





→ working on non-perturbative sector... LCDA



# QCD Factorizations with form factors

### Weak effective hamiltonian

Sum of local operators  $Q_i$  multiplied by short-range Wilson coefficients  $C_i(\mu)$  and CKM matrix elements:

$$\mathcal{H} = \frac{G_F}{\sqrt{2}} \left[ V_{ub} V_{us}^* (C_1(\mu) O_1^u + C_2(\mu) O_2^u) - V_{tb} V_{ts}^* \sum_{i=3}^{10} C_i(\mu) O_i \right]$$

 $O_1$  and  $O_2$  are left-handed current-current operators, for example:

 $O_1^u = \overline{s}_{\alpha} \gamma_{\mu} (1 - \gamma_5) M_{\alpha} \overline{e}_{\beta} \gamma_{\mu} \eta - M_{\beta} \overline{e}_{\beta} \sigma_{\mu} \eta$  Form Factors



- $\rightarrow$  naive factorization
  - quasi-two-body appox.

always mediated by resonances

 $\bigstar \quad \langle M^* | J^i_{\mu} | 0 \rangle \propto \langle M_1 M_2 | J^i_{\mu} | 0 \rangle : \text{ form factor}_{q=u,d,s,c}$ 

# QCD Factorizations with form factors

### Weak effective hamiltonian

Sum of local operators  $Q_i$  multiplied by short-range Wilson coefficients  $C_i(\mu)$  and CKM matrix elements:

$$\mathcal{H} = \frac{G_F}{\sqrt{2}} \left[ V_{ub} V_{us}^* (C_1(\mu) O_1^u + C_2(\mu) O_2^u) - V_{tb} V_{ts}^* \sum_{i=3}^{10} C_i(\mu) O_i \right]$$

 $O_1$  and  $O_2$  are left-handed current-current operators, for example:

 $O_1^u = \overline{s}_{\alpha} \gamma_{\mu} (1 - \gamma_5) M_{\alpha} \overline{s}_{\beta} \gamma_{\mu} \eta - M_{5} \overline{s}_{\beta} \sigma_{\mu} n Form Factors$ 



- $\rightarrow$  naive factorization
  - quasi-two-body appox.

always mediated by resonances

FSI in three-body decays

## QCD Factorizations with form factors

• LHCb used such parametrization..

 $B^{\circ} \rightarrow K_{S}\pi\pi$  Dalitz Plot Analysis





#### \*) B. El-Bennich, A. Furman, R. Kaminski, L. Lesniak, B. Loiseau, B. Moussallam <u>PRD79 (2009) 094005, PRD83 (2011) 039903</u>

Jonas Rademacker (University of Bristol) FSI @ LHCb TRR110 Workshop - Amplitudes for 3-Body Final States, Munich, 11/07/2018 8



## J. Rademacker

• LHCb used such parametrization..





- Khuri–Treiman (KT) equations for 3-body decays: final state T. Isken interaction (FSI) among all three decay products are fully taken into account [Khuri and Treiman (1960)]
- $D \rightarrow \bar{K}\pi\pi$  nice laboratory for 3-body final-state interactions B. Moussallam Previous work: [Franz Niecknig, Bastian Kubis, JHEP 1510,142 (2015), P.L. B780,471 (2018)]:Khuri-Treiman Also: [S.X. Nakamura, P.R. D93,014005 (2015), P.C. Magalhães et al. P.R. D84,094001 (2011)]
- Khuri-Treiman [PR 119,1115 (1960)] renewed interest for  $\eta \to 3\pi$
- Experimentally: evidence for exotic  $\kappa$  meson in  $D^+ \rightarrow K^- \pi^+ \pi^+$  [E791, PRL 89,121801 (2001)]
  - $\rightarrow$  But:  $\kappa$  not seen in  $D^0$  decays ?
  - 2-body systems (Omnès fcts.) obey universal (hadr.) phase relations



Khuri–Treiman (KT) equations for 3-body decays: final state T. Isken interaction (FSI) among all three decay products are fully taken into account [Khuri and Treiman (1960)]





- Experimentally: evidence for exotic  $\kappa$  meso  $D^+ \rightarrow K^- \pi^+ \pi^+$  [E791, PRL 89,121801 (
  - $\rightarrow$  But:  $\kappa$  not seen in  $D^0$  decays ?

disc  $\mathcal{F}(s) = 2i\theta(s - 4M_{\pi}^2)\mathcal{F}(s)\sin\delta_1^1(s)e^{-i\delta_1^1(s)}$ 



departs from two-body Uni. and by crossing impose 3-body Unitarity

2-body systems (Omnès fcts.) obey universal (hadr.) phase relations





T. Isken





[BESIII (2014)]



 $\Rightarrow \pi \pi \ P$ -wave only couples indirectly via  $D^+ \rightarrow \bar{K}^0 \pi^0 \pi^+$ 

•  $\omega/\phi \rightarrow 3\pi$  decays

[Niecknig, Kubis and Schneider (2012)]

▶  $\eta' \rightarrow \eta \pi \pi/3\pi$  decays [Isken, Kubis, Schneider and Stoffer (2017), in preparation]

Niecknig&Kubis PLB 780

FSI in three-body decays





•  $\omega/\phi \rightarrow 3\pi$  decays

[Niecknig, Kubis and Schneider (2012)]

▶  $\eta' \rightarrow \eta \pi \pi/3\pi$  decays [Isken, Kubis, Schneider and Stoffer (2017), in preparation]

Niecknig&Kubis PLB 780

FSI in three-body decays





fit to data looks nice! in agreement with PLB780

# multi meson model - $D^+ \rightarrow K^- K^+ K^+$

- alternative to isobar model in  $D^+ \to K^- K^+ K^+$  amplitude analysis
   R.Aoude, P. C. Magalhaes, A dos Reis, M. Robilotta arXiv: 1805.11764

better fit to LHCb data ! (non-disclose)



• FSI: (2+1) + 3-body non-resonant based on chiral Lagrangian

• no KK scattering data  $\rightarrow$  use 3-body data to obtain information from KK

# multi meson model - $D^+ \rightarrow K^- K^+ K^+$

• alternative to isobar model in  $D^+ \rightarrow K^- K^+ K^+$  amplitude analysis R.Aoude, P.C. Magalhaes, A dos Reis, M. Robilotta arXiv: 1805.11764

better fit to LHCb data ! (non-disclose)



• FSI: (2+1) + 3-body non-resonant based on chiral Lagrangian

• no KK scattering data  $\rightarrow$  use 3-body data to obtain information from KK

•  $A_{ab}^{JI} \longrightarrow$  unitary scattering amplitude for  $ab \rightarrow K^+K^-$ 

$$\mathcal{A}_{ab}^{JI} = \frac{\mathcal{K}_{ab \to cd}^{(JI)}}{1 + \bar{\Omega}_{ab} \, \mathcal{K}_{ab \to cd}^{(JI)}}$$

# multi meson model - $D^+ \rightarrow K^- K^+ K^+$

• alternative to isobar model in  $D^+ \rightarrow K^- K^+ K^+$  amplitude analysis R.Aoude, P. C. Magalhaes, A dos Reis, M. Robilotta arXiv: 1805.11764

better fit to LHCb data ! (non-disclose)



• FSI: (2+1) + 3-body non-resonant based on chiral Lagrangian

- no KK scattering data  $\rightarrow$  use 3-body data to obtain information from KK
- $A_{ab}^{JI} \longrightarrow$  unitary scattering amplitude for  $ab \to K^+ K^ \mathcal{A}_{ab}^{JI} = \frac{\mathcal{K}_{ab \to cd}^{(JI)}}{1 + \bar{\Omega}_{ab} \, \mathcal{K}_{ab \to cd}^{(JI)}}$

> parameters have physical meaning (different from LECs)

• masses:  $m_{\rho}$ ,  $m_{a_0}$ ,  $m_{s0}$ ,  $m_{s1}$ , SU(3) singlet and octet

 $\rightarrow$  physical  $f_0$  states are linear combination of  $m_{s0}$ ,  $m_{s1}$ 

• coupling constants:

 $g_{
ho}, g_{\phi} \quad c_d, c_m, \tilde{c_d}, \tilde{c_m}$ scalar vector

# weak topologies

tree level



Chau [Phys. Rep. 95, I (1983)]





- both are doubly Cabibbo-suppressed
- hypotheses that annihilation is dominant

c d



# weak topologies

tree level



Chau [Phys. Rep. 95, I (1983)]





----- K<sup>+</sup><sub>3</sub> ----- K<sup>+</sup><sub>2</sub>

- both are doubly Cabibbo-suppressed
- hypotheses that annihilation is dominant
  - separate the different energy scales:

c d

$$\mathcal{T} = \langle (KKK)^+ | T | D^+ \rangle = \underbrace{\langle (KKK)^+ | A_\mu | 0 \rangle}_{\text{chiral}} \langle 0 | A^\mu | D^+ \rangle.$$

know how to calculate everything

 $D^+ \to K^- K^+ K^+$ 













### • isospin decomposition [J, I = (0, 1), (0, 1)]

### FSI in three-body decays



- - 2

(2B)



 ${igsilon} Kar{K}$  scattering amplitude

(2A)

### • isospin decomposition [J, I = (0, 1), (0, 1)]

### FSI in three-body decays

+

#### Patricia Magalhães

ПΠ



 $\sqrt{K\bar{K}}$  scattering amplitude

### • isospin decomposition [J, I = (0, 1), (0, 1)]

### FSI in three-body decays



 $K ar{K}$  scattering amplitude

### FSI in three-body decays

# $D^+ \rightarrow K^- K^+ K^+$ Triple- M





• parameter for Toy studies :

 $\begin{array}{c} \hline \text{masses from PDG (GeV)} \\ m_{\rho} = 0.776, m_{\phi} = 1.019, \\ m_{a0} = 0.960, m_{So} = 0.980 \end{array} \rightarrow m_{S1} = 1.370 \, GeV \\ \begin{array}{c} \text{low energy couplings (GeV)} \\ [F, G_V] = [0.093, 0.067] \quad \text{vectors} \\ [c_d, c_m] = [0.032, 0.042] \quad \text{scalar octet} \\ [\tilde{c_d}, \tilde{c_m}] = [0.018, 0.025] \quad \text{scalar singlet} \end{array} \\ \hline \\ \hline \\ \text{sin } \theta = 0.605 \quad (\phi - \omega) \quad \text{mixing} \end{array} \rightarrow \begin{array}{c} \text{all (I3) were free in the fit to data} \end{array}$ 

## model achievements



- non-resonant: beyond (2+1) is a 3-body amplitude
- FSI: coupled-channel meson-meson departs from chiral Lagrangian
- intensity of each component is predict by theory  $\longrightarrow \neq$  isobar model
- Toy studies



FSI in three-body decays

## model achievements



- non-resonant: beyond (2+1) is a 3-body amplitude
- FSI: coupled-channel meson-meson departs from chiral Lagrangian
- intensity of each component is predict by theory  $\longrightarrow \neq$  isobar model
- Toy studies



# model achievements



predictions for KK S-wave



- needs improvement....
  - first model: simplicity to make the bridge
  - $\rightarrow$  K-matrix approximation!
  - $\rightarrow$  couple higher resonances
- $\rightarrow$  add other topologies
- $\rightarrow$  compare denominators and FF

### FSI in three-body decays

# final remarks



## **TRR110 Workshop - Amplitudes for Three-Body Final States**





### 3 days of intense discussion!

### $\rightarrow$ speakers shared problems and questions



Big question: How to model dynamic isobar amplitudes

- Requirements
  - Physical constraints: Unitarity & Analyticity
  - Simplicity to implement
  - Fit stability
  - Interpretability of results



But:  $\kappa$  not seen in  $D^0$  decays ?

### FSI in three-body decays

# final remarks: results of everybody highlights



- FSI is crucial to all processes with Hadrons
  - all start with good 2-body amplitude 
     → still need for high E (non-perturbative)
  - → how far we really need 2-body amplitude?! all B phase-space ?
- Khuri-Treiman is very limited (besides complex): find a way to diagnose where 3-body rescattering is indeed needed?
   → start fitting with GOOD 2-body, e.g.: B<sup>0</sup><sub>s</sub> → K<sup>0</sup><sub>s</sub>π<sup>+</sup>π<sup>-</sup>, D<sup>+</sup> → K<sup>-</sup>K<sup>+</sup>K<sup>+</sup>
- polynom singularities and the zero modes observed in free isobar (multiple solutions) in the PWA analysis are somehow related.
- strong correlation between FSI in heavy mesons decay (mainly D), diffractive production and tau decays.
  - In  $\omega/\Phi \rightarrow 3\pi$  Khuri-Treiman, the shape of the rho change with  $3\pi$  mass (mother). • COMPASS observed this as well!
    - $\rightarrow$  how to parametrise this?
    - → how to transfer knowledge?



can we use free isobar to constrain models?



we have good models on the market (even with simplifications and limitations ) experimental should start using it more seriously!!

Thank you!!!



# Extra slides



### references

### FSI in three-body decay :

I. Bediaga, I., T. Frederico, T. and O. Louren Phys. Rev. D89, 094013(2014),[arXiv:1307.8164]

J. H. Alvarenga Nogueira, I. Bediaga, A. B. R. Cavalcante, T. Frederico and O. Louren, Phys. Rev. D92, 054010 (2015) [ArXiv:1506.08332].

PC Magalhães and I Bediaga arXiv:1512.09284;

P. C Magalhães and R.Robilotta, Phys. Rev. D92 094005 (2015) [arXiv:1504.06346] ; P.C.Magalhães et. al. Phys. Rev. D84 094001 (2011) [arXiv:1105.5120]; P.C. Magalhães and Michael C. Birse, PoS QNP2012, 144 (2012).

I. Caprini, Phys. Lett. B 638 468 (2006).

Bochao Liu, M. Buescher, Feng-Kun Guo, C. Hanhart, and Ulf-G. Meissner, Eur. Phys. J. C 63 93 (2009).

F Niecknig and B Kubis - JHEP 10 142 (2015) ArXiv:1509.03188

H. Kamano, S.X. Nakamura, T.-S.H. Lee and T. Sato, Phys. Rev. D 84, 114019 (2011).

S. X. Nakamura, arXiv:1504.02557 (2015).

J. -P. Dedonder, A. Furman, R. Kaminski, L. Lesniak, L. and B. Loiseau, Acta Phys. Polon. B42, 2013 (2011), [Arxiv: 1011.0960]

J.-P. Dedonder, R. Kaminski, L. Lesniak, and B. Loiseau, , Phys. Rev. D89, 094018 (2014).

Donoghue et al., Phys. Rev Letters 77(1996) 2178;

Suzuki, Wolfenstein, Phys. Rev. D 60 (1999)074019; Falk et al. Phys. Rev. D 57,4290(1998); Blok, Gronau, Rosner, *Phys. Rev Letters* 78, 3999 (1997).





FSI in three-body decays

# chiral Lagrangians



## solid theory to describe MM interactions at low energy



#### FSI in three-body decays

### non-resonant







$$T_{NR} = \begin{bmatrix} \frac{C}{4} \left( M^2 - M_K^2 + m_{12}^2 \right) + \frac{C}{4} \left( m_{13}^2 - m_{23}^2 \right) + (2 \leftrightarrow 3) \end{bmatrix}$$

$$3\text{-body effect predicted by Chiral symmetry}$$

$$C = \left\{ \begin{bmatrix} \frac{G_F}{\sqrt{2}} \sin^2 \theta_C \end{bmatrix} \frac{2F_D}{F} \frac{M_K^2}{M_D^2 - M_K^2} \right\}$$
project into S- and P- wave

comparing with isobar (constant)



### real polynomial

no possible free parameter

FSI in three-body decays

# resonance channels



• tree 
$$D \to abK^+$$
  
 $(U_3(K^+)|T_{(0)}^{(0,1)}|D) = \left\{ \Gamma_{(0)\pi8}^{(0,1)}(U_3^{\pi8}|+\Gamma_{(0)KK}^{(0,1)}(U_3^{\piK}|) \right\}$   
 $(U_3(K^+)|T_{(0)}^{(0,1)}|D) = \left\{ \Gamma_{(0)\pi8}^{(0,1)}(U_3^{\pi8}|+\Gamma_{(0)KK}^{(0,1)}(U_3^{\piK}|) \right\}$   
 $(U_3(K^+)|T_{(0)}^{(0,1)}|D) = \left\{ \Gamma_{(0)\pi8}^{(0,1)}(U_3^{\pi8}|+\Gamma_{(0)KK}^{(0,1)}(U_3^{\pi}) - C\left\{ \left[ \frac{2\sqrt{2}}{\sqrt{3}F^2} \right] \frac{[-c_dP\cdot p_3 + c_mM_D^2]}{m_{12}^2 - m_{a_0}^2} \left[ c_d \left( m_{12}^2 - M_\pi^2 - M_8^2 \right) + 2c_mM_\pi^2 \right] \right] + \left[ -\frac{\sqrt{3}}{\sqrt{2}} \left[ M_D^2/3 - P\cdot p_3 \right] \right] \right\}$   
 $(D_1 = C \left\{ \left[ \frac{2}{F^2} \right] \frac{[-c_dP\cdot p_3 + c_mM_D^2]}{m_{12}^2 - m_{a_0}^2} \left[ c_d \left( m_{12}^2 - 2M_K^2 \right) + 2c_mM_K^2 \right] \right] + \left[ -\frac{1}{2} \left[ M_D^2 - P\cdot p_3 \right] \right] \right\}$   
 $(D_1 = C \left\{ \left[ \frac{2}{F^2} \right] \frac{[-c_dP\cdot p_3 + c_mM_D^2]}{m_{12}^2 - m_{a_0}^2} \left[ c_d \left( m_{12}^2 - 2M_K^2 \right) + 2c_mM_K^2 \right] \right] + \left[ -\frac{1}{2} \left[ M_D^2 - P\cdot p_3 \right] \right] \right] \right\}$   
 $(D_1 = C \left\{ \left[ \frac{2}{F^2} \right] \frac{[-c_dP\cdot p_3 + c_mM_D^2]}{m_{12}^2 - m_{a_0}^2} \left[ c_d \left( m_{12}^2 - 2M_K^2 \right) + 2c_mM_K^2 \right] \right] + \left[ -\frac{1}{2} \left[ M_D^2 - P\cdot p_3 \right] \right] \right] \right\}$   
 $(D_1 = C \left\{ \left[ \frac{2}{F^2} \right] \frac{[-c_dP\cdot p_3 + c_mM_D^2]}{m_{12}^2 - m_{a_0}^2} \left[ c_d \left( m_{12}^2 - 2M_K^2 \right) + 2c_mM_K^2 \right] \right] + \left[ -\frac{1}{2} \left[ M_D^2 - P\cdot p_3 \right] \right] \right] \right] = \left[ M_{11} - M_{12} - M_{12} + 2c_mM_K^2 \right]$   
 $(D_1 = C \left\{ m_D^2 - P\cdot p_3 \right\} \right] = \left[ M_{11} - M_{12} - M_{12} + 2c_mM_K^2 \right] = \left[ M_{11} - M_{12} - M_{12} + 2c_mM_K^2 \right] = \left[ M_{11} - M_{12} - M_{12} + 2c_mM_K^2 \right] = \left[ M_{11} - M_{12} - M_{12} + 2c_mM_K^2 \right] = \left[ M_{11} - M_{12} - M_{12} + 2c_mM_K^2 \right] = \left[ M_{11} - M_{12} - M_{12} + 2c_mM_K^2 \right] = \left[ M_{11} - M_{12} - M_{12} + 2c_mM_K^2 \right] = \left[ M_{11} - M_{12} - M_{12} + 2c_mM_K^2 \right] = \left[ M_{11} - M_{12} - M_{12} + 2c_mM_K^2 \right] = \left[ M_{11} - M_{12} - M_{12} + 2c_mM_K^2 \right] = \left[ M_{11} - M_{12} - M_{12} + 2c_mM_K^2 \right] = \left[ M_{11} - M_{12} - M_{12} + 2c_mM_K^2 \right] = \left[ M_{11} - M_{12} - M_{12} + 2c_mM_K^2 \right] = \left[ M_{11} - M_{12} - M_{12} + 2c_mM_K^2 \right] = \left[ M_{11} - M_{12} - M_{12} + 2c_mM_K^2 \right] = \left[ M_{11} - M_{12} - M_{12} + 2c_mM_K^2 \right] = \left[ M_{11} - M_{12} - M_{12} + 2c_mM_K^2 \right] = \left[ M_{11} - M_{12}$ 

$$\Gamma^{(0,1)} = \{1 + M^{(0,1)} + [M^{(0,1)}]^2 + \dots \} \Gamma^{(0,1)}_{(0)} \longrightarrow \Gamma^{(0,1)} = \left[1 - M^{(0,1)}\right]^{-1} \Gamma^{(0,1)}_{(0)}$$

## resonance channels





### only resonance

→ parameter:  $c_d$ ,  $c_m m_{a_0}$ access two-body dynamics !

#### FSI in three-body decays

## Toy results S-wave




## Toy results P-wave





## Toy results P-wave







- $\phi$  is the dominant channel
- $\phi 
  ightarrow 
  ho \pi$  inelasticity ightarrow 15% of the life-time
- $\rho \rightarrow \pi \pi$   $\rightarrow$  constant inelasticity







→ powerful tool to extract KK scattering S-wave



## FSI in three-body decays

## Patricia Magalhães