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outline

D+ ! K�K+K�

theory and experiments on 3-body :  interplay, challenges and achievements 

Full model fitted to LHCb data

 highlights of the works concerning 3-body hadronic decay

example :

dynamics of heavy/light meson decays 

Final State Interaction

 why study three-body decays? 

based in chiral  symmetry

main issues and tasks list

prediction for KK scattering amplitude

my work!
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was discussed in Munich WS

how to improve data analyses?
where theory is crucial in data analyses?

how experimentalists can help theoreticians?

https://indico.ph.tum.de/event/3988/

 Munich 11 -13 July 2018

Monday

A. Jackura Dima R., B. Grube

CRC Bochum/Bonn/Beijing/Munich 

this talk

Tuesday
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Universidade de São Paulo

Instituto de F́ısica

Março de 2014

investigate MM up to higher energies in different context

study of CP-Violation (strong phase needed) can lead to new physics 

:  FSI can explain CP violation at low mass B± ! h+h�h±

also B, 𝝉 and light mesons 

exclusive 𝝉 decays  to 2 or 3-hadrons study FFs, resonance (BSM)  parameters, 
hadronization of QCD currents, EDM,…

new high data sample from LHCb, Belle II (soon), Compass, …
need better models !! 

more to came



Patricia MagalhãesFSI in three-body decays

dynamics
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heavy meson decay
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observed

Dalitz plot

7

B– W–

K*(890)π-
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➤ Dalitz plot:  
Technique to analyse three-body decays 

➤ 2 variables are enough to describe the 
phase-space 

➤ Axes are defined as: 

s12 = m2
12 = (p1 + p2)

2

s23 = m2
23 = (p2 + p3)

2

s31 = m2
31 = (p3 + p1)

2

➤ Event distribution is proportional to 
square of the decay amplitude
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ÇÃ
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Já o

diag
ram

a d
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é ch
ama

do d
e an

iqui
laçã
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lúon
s en

tre
os q

uar
ks n

ão f
ora

m rep
rese

nta
das

.

No
caso

esp
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Final State Interactions (FSI) 

+=M
F
S
 I

++ ++ ...

weak primary vertex 

to extract  information from data we need an amplitude MODEL

full unitarity:  Faddeev, Khury-Trieman, triangles  2-body  is crucial 

(2+1)

not precise for 3-body: no FSI and 3-body NR

QCD factorization approach  

ok for B decays NOT for D decays

light mesons diffractive production do not have a well defined decay model…

W

F
S
I
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standard isobar model…

- violates two-body unitarity  ( 2 res in the same channel);  

good for narrow and isolated resonance 

-  does NOT include rescattering and  coupled-channels;
-  free parameters are not connected with theory !  

ABW (s) =
1

M2
R � s� iMR�R

Adecay = ANR +
X

ckAk Ak = [FF ]⇥ [spin]⇥ [ABW ]

+=M
F
S
 I

++ ++ ....
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standard isobar model…

- violates two-body unitarity  ( 2 res in the same channel);  

good for narrow and isolated resonance 

-  does NOT include rescattering and  coupled-channels;
-  free parameters are not connected with theory !  

ABW (s) =
1

M2
R � s� iMR�R

Adecay = ANR +
X

ckAk Ak = [FF ]⇥ [spin]⇥ [ABW ]

+=M
F
S
 I

++ ++ ....

experimentalist and  
theorist agreement

pole position: universal for each resonances 

light scalars can be deep in complex plane

could be hidden… modified by production

 (phase not at 90 degrees)

different in different processes

M Robilotta seminar 
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2-body x 3-body  phases

   LASS 

   FOCUS/E791

D+ ! K�⇡+⇡+ different S- wave phase from 

COMMON believe:  2 body phase is enough for 3-body….

PC Magalhães et.al: PRD84 094001 (2011), PRD92 094005 (2015)
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2-body x 3-body  phases

   LASS 

   FOCUS/E791

D+ ! K�⇡+⇡+ different S- wave phase from 

 different dynamic! 

COMMON believe:  2 body phase is enough for 3-body….

PC Magalhães et.al: PRD84 094001 (2011), PRD92 094005 (2015)
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2-body x 3-body  phases

To overcome these problems, we use a model-independent
partial wave analysis introduced by the Fermilab E791
Collaboration [5]: instead of including the S wave ampli-
tude as a superposition of relativistic Breit-Wigner func-
tions, we divide the !þ!" mass spectrum into 29 slices
and we parametrize the S wave by an interpolation be-
tween the 30 end points in the complex plane:

AS waveðm!!Þ ¼ Interpðck ðm!!Þei"k ðm!!ÞÞk ¼ 1;::;30: (7)

The amplitude and phase of each end point are free pa-

rameters. The width of each slice is tuned to get approxi-
mately the same number of !þ!" combinations
( ’ 13 179 & 2=29). Interpolation is implemented by a re-
laxed cubic spline [14]. The phase is not constrained in a
specific range in order to allow the spline to be a continu-
ous function.
The background shape is obtained by fitting the Dþ

s

sidebands. In this fit, resonances are assumed to be inco-
herent, i.e. are represented by Breit-Wigner intensity terms
only. A good representation of the background includes

TABLE I. Results from the Dþ
s ! !þ!"!þ Dalitz plot analysis. The table reports the fit

fractions, amplitudes and phases. Errors are statistical and systematic, respectively.

Decay mode Decay fraction (%) Amplitude Phase (rad)

f2ð1270Þ!þ 10:1 ' 1:5 ' 1:1 1.0 (fixed) 0.0 (fixed)
#ð770Þ!þ 1:8 ' 0:5 ' 1:0 0:19 ' 0:02 ' 0:12 1:1 ' 0:1 ' 0:2
#ð1450Þ!þ 2:3 ' 0:8 ' 1:7 1:2 ' 0:3 ' 1:0 4:1 ' 0:2 ' 0:5
S wave 83:0 ' 0:9 ' 1:9 Table II Table II
Total 97:2 ' 3:7 ' 3:8
$2=NDF 437

422"64 ¼ 1:2
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FIG. 2 (color online). (a) S wave amplitude extracted from the best fit, (b) corresponding S wave phase, (c) S wave amplitude
compared to the FOCUS and E791 amplitudes, and (d) S wave phase compared to the FOCUS and E791 phases. Errors are statistical
only.

DALITZ PLOT ANALYSIS OF Dþ
s ! !þ!"!þ PHYSICAL REVIEW D 79, 032003 (2009)

032003-7

BaBar 
Ds ➝ 3π

COMPASS 
(preliminary) 
π(1800) ➝ 3π

CERN/Munich		
K-decays	
Locher

Heavy Flavour and Light Meson Decays: Similarities
S. Paul seminar 
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no direct connection 

 between 2 and 3-body phases

2-body x 3-body  phases
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no direct connection 

 between 2 and 3-body phases

2-body x 3-body  phases

       3-body data: only spin and       dynamics (weak vertex,  FSI, 3rd particle, …)6=
2-body amplitude: spin and isospin well defined!

To overcome these problems, we use a model-independent
partial wave analysis introduced by the Fermilab E791
Collaboration [5]: instead of including the S wave ampli-
tude as a superposition of relativistic Breit-Wigner func-
tions, we divide the !þ!" mass spectrum into 29 slices
and we parametrize the S wave by an interpolation be-
tween the 30 end points in the complex plane:

AS waveðm!!Þ ¼ Interpðck ðm!!Þei"k ðm!!ÞÞk ¼ 1;::;30: (7)

The amplitude and phase of each end point are free pa-

rameters. The width of each slice is tuned to get approxi-
mately the same number of !þ!" combinations
( ’ 13 179 & 2=29). Interpolation is implemented by a re-
laxed cubic spline [14]. The phase is not constrained in a
specific range in order to allow the spline to be a continu-
ous function.
The background shape is obtained by fitting the Dþ
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sidebands. In this fit, resonances are assumed to be inco-
herent, i.e. are represented by Breit-Wigner intensity terms
only. A good representation of the background includes

TABLE I. Results from the Dþ
s ! !þ!"!þ Dalitz plot analysis. The table reports the fit

fractions, amplitudes and phases. Errors are statistical and systematic, respectively.
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FIG. 2 (color online). (a) S wave amplitude extracted from the best fit, (b) corresponding S wave phase, (c) S wave amplitude
compared to the FOCUS and E791 amplitudes, and (d) S wave phase compared to the FOCUS and E791 phases. Errors are statistical
only.
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 low energy MM rescattering, coupled-channels and resonances

how to improve PWA?

FSI
3-body 

what can we learn from data?how theorist can help improving PWA? ⌦
W unknown FF;  critical in D decays… 
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 low energy MM rescattering, coupled-channels and resonances

how to improve PWA?

FSI
3-body 

what can we learn from data?how theorist can help improving PWA? ⌦
W unknown FF;  critical in D decays… 

how to describe simultaneously  full energy range?
how to join weak and strong interactions?? (scale problem)

how to implement 2-body unitarity in data?
experimental list of wishes…

 need 2-body amplitude up to high energy ! 
theorist to work on diffractive physics ! (COMPASS and GlueX)

theoretical  list of issues…

how to identify/include the  importance of 3-body FSI?

differences between triangle singularities and resonances

access to data in a “nice and understandable way” 

spin formalism agreement: no NR corrections. But Tensor or Helicity? 
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MM dispersion relations and chiral symmetry

dispersive and analytic approach to 2-body

T. Isken 

 implies left cut  (could be an issue) 

calculate T where there is not data 

model independent extrapolation
 to complex s-plane

E. Passamar 
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J Ruiz Elvira 



Patricia MagalhãesFSI in three-body decays �10

MM dispersion relations and chiral symmetry

dispersive and analytic approach to 2-body

T. Isken 

 implies left cut  (could be an issue) 

calculate T where there is not data 

model independent extrapolation
 to complex s-plane

limited to  ~1 GeVworks well in the elastic region 

E. Passamar 

J Ruiz Elvira 
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Patricia MagalhãesFSI in three-body decays

extensions 

unitarization

isobar

SU(2) SU(3)

ChPT

energy

KK⇡⇡ DR

scale  

�11

non-perturbative 

we need non-perturbative MM interactions…

data decayscattering
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Parametrization for the partial wave amplitude

Consider Bethe-Salpeter equation for the partial wave amplitude T

T = V + V TG

Split scattering kernel V = V0 + VR ) T = T0 + TR

Unitary scattering amplitude T0 (given by phases and inelasticities)

T0 = V0 + V0 T0G

Resonance exchange potential VR

VR = �
X

R

gR gR
R

= �
X

R

gR
i

s

m2

R (s �m2

R)
gR
j

4

Comparison T⇡⇡ with J I = 0
0

⇢⇢
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Fit 1, Fit 2, Fit 3 and the input from Dai, Pennington, PRD90(2014)036004

Shift at lower energies - Improved by another subtraction of the potential?
Can produce resonance signal in form factor by either resonance potential or
source term ) ambiguity

F = ⌦ [1� VR⌃]
�1 M

Need to include scattering data e.g.
Anisovich, Sarantsev, EPJA16(2003)229

21

Decay B̄0
s ! J/ ⇡+⇡�(K+K�

)

B̄0

s

J/ 

⇡+⇡�

b

c

s

c̄

s̄
s̄

F⇡
s

W�

All dynamics contained in ⇡+⇡�/K+K� subchannel

For B̄0

s ! J/ ⇡+⇡� only S- and D-waves (for K+K� also P-waves)

B̄0

s ! J/ ⇡+⇡� is S-wave dominated

7

Extensions of pion form factors beyond 1GeV

Stefan Ropertz

Helmholtz-Institut für Strahlen- und Kernphysik (Theorie)

in collaboration with Christoph Hanhart and Bastian Kubis

TRR110 Workshop - Amplitudes for Three-Body Final States

München, July 13
th

2018

1

S. Ropertz

fit the S-wave

Parametrization for the form factor

Decay of a source

F = M + T MG

Full parametrization for the form factor F

F = ⌦ [1 � VR ⌃]�1 M

Source term M(s)

M = P �
X

R

gR ↵R
R

Mi (s) = ai + bi s + . . .�
X

R

gR
i

s

s �m2

R

↵R

6

New Form Factor parametrization

MM non-perturbative amplitude
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MM non-perturbative amplitudes

chiral Lagrangian and Unitarized ChPT

unitarize amplitude by Bethe-Salpeter eq. [Oller and Oset PRD 60 (1999)]

�⌦̄= + + + ...

= +(a)

(b)

FIG. 6: (a) Tree-level two-body interaction kernel K(J,I)
ab→cd - a NLO s-channel resonance, added to

a LO contact term. (b) Structure of the unitarized scattering amplitude.

The basic meson-meson intermediate interactions P aP b → P cP d are described by kernels

K(J,I)
ab|cd and their simple dynamical structure is shown in Fig.6, as LO four point terms, typical

of chiral symmetry, supplemented by NLO resonance exchanges in the s-channel. Just in

the (J = 0, I = 0) channel two resonances, S1 and So, are needed. In these diagrams, all

vertices represent interactions derived from chiral lagrangians[46]. Kernels are then functions

depending on just masses and coupling constants. The mathematical structure of these

functions is displayed in App.F. In the case of the φ-meson, the kernel includes an effective

coupling to the (ρπ+πππ) channel, which accounts for about 15% of its width. This effective

interaction is discussed in App.(C) and yields eq.(F6).

All other resonance terms in the kernels contain bare poles. However, the evaluation of

amplitudes involves the iteration of the basic kernels by means of two-meson propagators,

as in Fig.6(b). The propagators, denoted by Ω̄, are discussed in App.B and, in principle,

they have both real and imaginary components. The former contain divergent contributions

and their regularization brings unknown parameters into the problem. This considerable

nuisance is avoided by working in the K-matrix approximation, whereby just the imaginary

parts of the two-meson propagators are kept. This gives rise to the structure sketched within

the square bracket of eq.(2), where the terms (loop×K) are realized by the functions M (J,I)
ij

given in eqs.(G10-G13). The ressummation of the geometric series, indicated in Fig.6(b),

endows the s-channel resonances with widths. Thus among other structures, intermediate

two-body amplitudes yield denominators D(J,I), which are akin to those of the form DBW =

[s − m2 + imΓ] employed in BW functions. These denominators, that correspond to the

predictions of the model for the resonance line shapes, are given in App.G and reproduced

12

�⌦̄ �⌦̄

resonance (NLO) + contact (LO)

= + + + ...

= +(a)

(b)

FIG. 6: (a) Tree-level two-body interaction kernel K(J,I)
ab→cd - a NLO s-channel resonance, added to

a LO contact term. (b) Structure of the unitarized scattering amplitude.

The basic meson-meson intermediate interactions P aP b → P cP d are described by kernels

K(J,I)
ab|cd and their simple dynamical structure is shown in Fig.6, as LO four point terms, typical

of chiral symmetry, supplemented by NLO resonance exchanges in the s-channel. Just in

the (J = 0, I = 0) channel two resonances, S1 and So, are needed. In these diagrams, all

vertices represent interactions derived from chiral lagrangians[46]. Kernels are then functions

depending on just masses and coupling constants. The mathematical structure of these

functions is displayed in App.F. In the case of the φ-meson, the kernel includes an effective

coupling to the (ρπ+πππ) channel, which accounts for about 15% of its width. This effective

interaction is discussed in App.(C) and yields eq.(F6).

All other resonance terms in the kernels contain bare poles. However, the evaluation of

amplitudes involves the iteration of the basic kernels by means of two-meson propagators,

as in Fig.6(b). The propagators, denoted by Ω̄, are discussed in App.B and, in principle,

they have both real and imaginary components. The former contain divergent contributions

and their regularization brings unknown parameters into the problem. This considerable

nuisance is avoided by working in the K-matrix approximation, whereby just the imaginary

parts of the two-meson propagators are kept. This gives rise to the structure sketched within

the square bracket of eq.(2), where the terms (loop×K) are realized by the functions M (J,I)
ij

given in eqs.(G10-G13). The ressummation of the geometric series, indicated in Fig.6(b),

endows the s-channel resonances with widths. Thus among other structures, intermediate

two-body amplitudes yield denominators D(J,I), which are akin to those of the form DBW =

[s − m2 + imΓ] employed in BW functions. These denominators, that correspond to the

predictions of the model for the resonance line shapes, are given in App.G and reproduced
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acoplam aos pseudoescalares, no contexto de SU(3). A vantagem desta abordagem, em

comparação com cálculos de O(q4) em ChPT[58], é que ela permite estender o alcance da

teoria a energias mais altas.

O termo da lagrangiana[22] que descreve a interação entre ressonâncias escalares e

mésons pseudoescalares é dado por:

L(2)
S =

2 c̃d
F 2

R0 ∂µφi ∂
µφi −

4 c̃m
F 2

B R0 (σ0 δij + σ8 d8ij) φi φj (2.5)

+
2 cd√
2F 2

dijk Rk ∂µφi ∂
µφi −

4Bcm√
2F 2

[

σ0 dijk + σ8

(

2

3
δik δj8 + di8s djsk

)]

φi φjRk ;

em que c̃d, c̃m e cd, cm são as constantes de acoplamento estre os mésons pseudoescalares e

as ressonâncias escalares R0, singleto, e Rk, membro do octeto, que precisam ser fixadas.

Essa lagrangiana também foi usada para o sistemaKπ na referência [14], na qual os valores

para cd e cm foram estimados, impondo a saturação das constantes de baixa energia pelas

ressonâncias. Os autores obtiveram os valores:

|cd| = 30± 10MeV ; |cm| = 43± 14MeV ; (2.6)

muito próximos dos obtidos em [22], |cd| = 32 MeV e |cm| = 42 MeV, extráıdos do

decaimento a0 → η π. Os valores de c̃d e c̃m foram definidos, como em [22], impondo o

v́ınculo dado pelo limite de grande Nc: |c̃d| = |cd|/
√
3 e |c̃m| = |cm|/

√
3.

A lagrangiana da interação de ressonâncias vetoriais e mésons pesudoescalares,

também proposta em [22], é dada por:

L(2)
V =

iGV√
2
⟨Vµνu

µuν⟩ ; (2.7)

⟨Vµνu
µuν⟩ =

1

F 2
V µν
a ∂µφi ∂νφj (ifaij + daij); (2.8)

em que V µν
a é um elemento do octeto vetorial. No caso das ressonâncias com estranheza,

a = 6, 7, temos:

⟨Vµνu
µuν⟩ =

√
2

F 2

[(

∂µπ
− ∂νK

+ −
1√
2
∂µπ

0 ∂νK
0

)

K̄∗µν

+

(

∂µK
− ∂νπ

+ −
1√
2
∂µK̄

0 ∂νπ
0

)

K∗µν
]

+ ... (2.9)

sendo GV uma constante de acoplamento universal que, no limite de grande Nc, pode ser

aproximada para GV = fπ/
√
2 = 65.3 MeV[66]. Nesse trabalho usamos GV = fKπ/

√
2 =

72.63 MeV, que também está dentro do intervalo de valores dispońıveis na literatura[14].
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D+ ! K�K+K+

M. Robilotta 

multi-meson-model for 
MM: chiral Lagrangian + resonances + unitarized amplitudes
(2+1) + 3-body NR  - fitted to LHCb my work!
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MM dispersion relations and chiral symmetry

e.g. tau decay….
E. Passamar
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K. Vos

QCD Factorizations  

Working in the improvement of the theory of QDCF

diff factorization in each regions…

working on non-perturbative  sector… LCDA

W
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QCD Factorizations  with form factors

�4

Weak effective hamiltonian

Sum of local operatorsSum of local operators  QQii  multiplied by short-range Wilson coefficientsmultiplied by short-range Wilson coefficients    CCii((µµ))
and CKM matrix elements:and CKM matrix elements:

  OO11 and  and OO22 are left-handed current-current operators, for example: are left-handed current-current operators, for example:

   OO3 3 ……. . OO10  10  are  QCD and electroweak penguin operators, for instance:are  QCD and electroweak penguin operators, for instance:

   
H  =

GF

2
VubVus

* (C1(µ)O1
u +C2(µ)O2

u ) −VtbVts
* Ci (µ)Oi

i=3

10

∑
#

$
%

&

'
(

  
O1

u = s
α
γ
µ
(1− γ 5)u

α
u
β
γ
µ
(1− γ 5)b

β

  
O4 = s

α
γ
µ
(1− γ 5)b

β
q
β
γ
µ
(1− γ 5)

q=u,d ,s,c
∑ q

α

B. El-Bennich

naive factorization

W

quasi-two-body appox. 

�7

Meson-Meson Form Factors

hM⇤|J i
µ|0i / hM1M2|J i

µ|0i :  form factor, creation from a q̅q pair.

Usage of dispersion relations and field theory  ⇒   form factors known if 
M1M2  interactions  known  at  all  energies  [G.  Barton,  Introduction  to 
dispersion  techniques  in  field  theory,  W.  A.  Benjamin,  INC,  New  York 
(1965)].  
 
Method: Two-body data + unitarity + asymptotic QCD + chiral symmetry at 
low energies. 

always mediated by resonances

+=M
F
S
 I

++ ++ ...+



Patricia MagalhãesFSI in three-body decays �17

QCD Factorizations  with form factors

�4

Weak effective hamiltonian

Sum of local operatorsSum of local operators  QQii  multiplied by short-range Wilson coefficientsmultiplied by short-range Wilson coefficients    CCii((µµ))
and CKM matrix elements:and CKM matrix elements:

  OO11 and  and OO22 are left-handed current-current operators, for example: are left-handed current-current operators, for example:

   OO3 3 ……. . OO10  10  are  QCD and electroweak penguin operators, for instance:are  QCD and electroweak penguin operators, for instance:

   
H  =

GF

2
VubVus

* (C1(µ)O1
u +C2(µ)O2

u ) −VtbVts
* Ci (µ)Oi

i=3

10

∑
#

$
%

&

'
(

  
O1

u = s
α
γ
µ
(1− γ 5)u

α
u
β
γ
µ
(1− γ 5)b

β

  
O4 = s

α
γ
µ
(1− γ 5)b

β
q
β
γ
µ
(1− γ 5)

q=u,d ,s,c
∑ q

α
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Isobar  parametrizations do not  respect  unitarity  and extraction of  strong CP 
phases should be taken with caution. S-wave resonance contribution hard to fit. 

Our parametrizations, while not fully three-body unitary, are based on a sound 
theoretical  application  of  QCD  factorization  to  a  hadronic  quasi-two-body 
decay. 

Assume  final  three-meson  state  preceded  by  intermediate  resonant  states, 
justified by phenomenological and experimental evidence. 

Analyticity,  unitarity,  chiral  symmetry  +  correct  asymptotic  behavior  of  the 
two-meson scattering amplitude in S and P waves implemented. 

Alternatives to Isobar model

“Parametrizations of three-body hadronic B- and D-decay amplitudes 
in terms of analytic and unitary meson-meson form factors”

D. Boito, J.-P. Dedonder, B. El-Bennich, R. Escribano, R. Kamiski, 
L. Lesniak, B. Loiseau, Phys. Rev. D 96, 113003 (2017)

naive factorization

W
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3-body Unitarity - Khuri Treiman

T. Isken 

B. Moussallam 

departs from two-body Uni. and
 by crossing impose 3-body Unitarity
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T. Isken 

limited to low energy 
knowledge of  ππ and Kπ FF

3-body Unitarity - Khuri Treiman

Niecknig&Kubis PLB 780

T. Isken 
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fit to data looks nice! in agreement with PLB780 

3-body Unitarity - Khuri Treiman

B. Moussallam 

different way to include isospin breaking
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multi meson model -

�22

FSI: (2+1) + 3-body  non-resonant  based on chiral  Lagrangian

D+ ! K�K+K+

of SU(3) mesons. ChPT is fully suited for describing these effective processes. The primary

weak decay is then followed by purely hadronic final state interactions (FSIs), in which the

mesons produced initially rescatter in many different ways, before being detected. The decay

D+ → K−K+K+ is doubly-Cabibbo-suppressed and any model describing it should involve

a combination of these two parts, as suggested by Fig.1.
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FIG. 1: Amplitude T for D+ → K−K+K+: (a) primary weak vertex; (b) weak vertex dressed by

final state interactions, the full line is the D, dashed lines are pseudoscalars.

In this work we allow for the coupling of intermediate states and, within the (2 + 1)

approximation, final state interactions are always associated with loops describing two-

meson propagators. This provides a topological criterion for distinguishing the primary

weak vertex from FSIs, namely that the former is represented by tree diagrams and the

latter by a series with any number of loops. Each of these loops is multiplied by a tree-level

scattering amplitude K and, schematically, this allows the decay amplitude T to be written

as

T = (weak tree) ×
[

1 + (loop×K) + (loop×K)2 + (loop×K)3 + · · ·
]

. (2)

The term within square brackets involves strong interactions only and represents a geometric

series for the FSIs, which can be summed. Denoting this sum by S, one has S = 1/[1 −

(loop×K)], which corresponds to the model prediction for the resonance line shape.

= +
K

+
3

b

a

K
+
3

b

a

K
+
3

b

a

(a) (b)

W

FIG. 2: Competing topologies for the decay D+ → K−K+K+; the pair P aP b is produced either

after (a) or before (b) the weak interaction.
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alternative to isobar model in 
R. Aoude, P. C. Magalhaes,  A dos Reis, M. Robilotta arXiv: 1805.11764 

D+ ! K�K+K+ amplitude analysis

better fit to LHCb data !  (non-disclose)

no KK scattering data       use 3-body data to obtain information from KK
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unitary scattering amplitude for ab ! K+K�
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multi meson model -

�22

FSI: (2+1) + 3-body  non-resonant  based on chiral  Lagrangian

D+ ! K�K+K+

of SU(3) mesons. ChPT is fully suited for describing these effective processes. The primary

weak decay is then followed by purely hadronic final state interactions (FSIs), in which the

mesons produced initially rescatter in many different ways, before being detected. The decay

D+ → K−K+K+ is doubly-Cabibbo-suppressed and any model describing it should involve

a combination of these two parts, as suggested by Fig.1.
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FIG. 1: Amplitude T for D+ → K−K+K+: (a) primary weak vertex; (b) weak vertex dressed by

final state interactions, the full line is the D, dashed lines are pseudoscalars.

In this work we allow for the coupling of intermediate states and, within the (2 + 1)

approximation, final state interactions are always associated with loops describing two-

meson propagators. This provides a topological criterion for distinguishing the primary

weak vertex from FSIs, namely that the former is represented by tree diagrams and the

latter by a series with any number of loops. Each of these loops is multiplied by a tree-level

scattering amplitude K and, schematically, this allows the decay amplitude T to be written

as

T = (weak tree) ×
[

1 + (loop×K) + (loop×K)2 + (loop×K)3 + · · ·
]

. (2)

The term within square brackets involves strong interactions only and represents a geometric

series for the FSIs, which can be summed. Denoting this sum by S, one has S = 1/[1 −

(loop×K)], which corresponds to the model prediction for the resonance line shape.
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FIG. 2: Competing topologies for the decay D+ → K−K+K+; the pair P aP b is produced either

after (a) or before (b) the weak interaction.
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D+ ! K�K+K+ amplitude analysis

better fit to LHCb data !  (non-disclose)

no KK scattering data       use 3-body data to obtain information from KK
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Figure 1: Annihilation diagram for D+
! K�K+K+ via �, a0 and f0 resonances (right); tree

diagram for D+
! f0/a0K+ (left).

model. Although it is not known how to calculate the left diagram, a full description
would require both diagrams. In the case that this model does not give good and reliable
results, this argument should be revisited.

In the specific topology of the annihilation diagram, the steps D+
! W+ and W+

!

K�K+K+ can be factorized. As consequence, the decay amplitude may be written as

A = h (KKK)+|Aµ|0 ih 0|Aµ
|D+

i

where Aµ is the axial weak current. The second term in the right-hand side corresponds
to the weak vertex and depends on the quark content of the initial meson D+. The first
term of the decay amplitude, h (KKK)+|Aµ|0 i, is the coupling between the W boson and
the light mesons. In this thesis we present a model for this matrix element. We refer to
this as the Multi-Meson model (MMM).

This model provides an alternative to the Isobar Model in order to parametrize the
decay amplitude. In contrast to the pure phenomenological aspect of the Isobar model, the
MMM is based on Chiral Perturbation Theory with Resonances (ChPTR) and provides
improvements to some di�culties of the Isobar.

This thesis is organized as follows. In Section 2 the theoretical background required to
understand the heavy-meson decays and the ChPTR is presented. This includes a brief
overview of the Standard Model, chiral symmetries, Chiral Perturbation Theory (ChPT)
up to leading order (LO) [1]. The next-to-leading order in ChPT will be included by
Resonances coupling to the LO [2]. These two theories will be used in the construction of
the Multi-Meson model.

The formalism for amplitude analysis will be explained in Section 4. This includes the
description of the kinematics of a three-body decay and of the Dalitz plot. We describe the
so called Isobar Model and its main di�culties. The fitting procedure and the limitations
of the Isobar are also discussed.

The data used in this thesis correspond to approximately 2.0fb�1 of pp collisions at
p
s = 8 TeV collected by LHCb in 2012. The LHCb experiment is described in Section 3

The selection of the D+
! K�K+K+ sample, the background estimation and modelling,

and the determination of the e�ciency variation across the phase space are described in
Section 5. Results of fits to the data using the Isobar model are presented in Section 6.

Lastly, the Multi-meson model for the decay amplitude is proposed as an alternative to
the Isobar model. Details of the calculation and results are given in Section 7. Since this
is an ongoing work, it is presented the result of one fit and some studies of the importance
of individual components of the MMM.
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need a rescattering! 

both are doubly Cabibbo-suppressed
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of SU(3) mesons. ChPT is fully suited for describing these effective processes. The primary

weak decay is then followed by purely hadronic final state interactions (FSIs), in which the

mesons produced initially rescatter in many different ways, before being detected. The decay

D+ → K−K+K+ is doubly-Cabibbo-suppressed and any model describing it should involve

a combination of these two parts, as suggested by Fig.1.
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FIG. 1: Amplitude T for D+ → K−K+K+: (a) primary weak vertex; (b) weak vertex dressed by

final state interactions, the full line is the D, dashed lines are pseudoscalars.

In this work we allow for the coupling of intermediate states and, within the (2 + 1)

approximation, final state interactions are always associated with loops describing two-

meson propagators. This provides a topological criterion for distinguishing the primary

weak vertex from FSIs, namely that the former is represented by tree diagrams and the

latter by a series with any number of loops. Each of these loops is multiplied by a tree-level

scattering amplitude K and, schematically, this allows the decay amplitude T to be written

as

T = (weak tree) ×
[

1 + (loop×K) + (loop×K)2 + (loop×K)3 + · · ·
]

. (2)

The term within square brackets involves strong interactions only and represents a geometric

series for the FSIs, which can be summed. Denoting this sum by S, one has S = 1/[1 −

(loop×K)], which corresponds to the model prediction for the resonance line shape.
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quarks c and d̄ in the D+ annihilate into a W+, which subsequently hadronizes. The primary

weak decay is followed by final state interactions, involving the scattering amplitude A. This

yields the decay amplitude T given in Fig.4, which includes the weak vertex and indicates

that the relationship with A is not straightforward, supporting statement a.dynamics, in

sect.II.
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FIG. 4: Decay amplitude forD+ → K−K+K+; the weak vertex proceeds thought the intermediate

steps D+ → W+ and W+ → K−K+K+ and strong final state interactions are encompassed by

the scattering amplitude A.

This decay amplitude is given by

T = −
[

GF√
2
sin2 θC

]

⟨K−(p1)K
+(p2)K

+(p3)|Aµ| 0 ⟩ ⟨ 0 |Aµ|D+(P )⟩ , (4)

where GF is the Fermi decay constant, θC is the Cabibbo angle, the Aµ are axial currents

and P = p1 + p2 + p3 . Throughout the paper, the label 1 refers to the K−, the label 3 the

spectator K+ and kinematical relations are given in appendix A.

Denoting the D+ decay constant by FD, we write ⟨ 0 |Aµ|D+(P )⟩ = −i
√
2FD Pµ and

find a decay amplitude proportional to the divergence of the remaining axial current, given

by

T = i

[

GF√
2
sin2 θC

] √
2FD [Pµ ⟨Aµ⟩] , (5)

with ⟨Aµ⟩ = ⟨K−(p1)K+(p2)K+(p3)|Aµ| 0 ⟩. This result is important because, if SU(3)

were an exact symmetry, the axial current would be conserved and the amplitude T would

vanish. As the symmetry is broken by the meson masses, one has the partial conservation

of the axial current (PCAC) and T must be proportional to M2
K . In the expressions below,

this becomes a signature of the correct implementation of the symmetry.

The rich dynamics of the decay amplitude T is incorporated in the current ⟨Aµ⟩ and

displayed in Fig.5. Diagrams are evaluated using the techniques described in Refs.[45, 46]. In
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Figure 1: Annihilation diagram for D+
! K�K+K+ via �, a0 and f0 resonances (right); tree

diagram for D+
! f0/a0K+ (left).

model. Although it is not known how to calculate the left diagram, a full description
would require both diagrams. In the case that this model does not give good and reliable
results, this argument should be revisited.

In the specific topology of the annihilation diagram, the steps D+
! W+ and W+

!

K�K+K+ can be factorized. As consequence, the decay amplitude may be written as

A = h (KKK)+|Aµ|0 ih 0|Aµ
|D+

i

where Aµ is the axial weak current. The second term in the right-hand side corresponds
to the weak vertex and depends on the quark content of the initial meson D+. The first
term of the decay amplitude, h (KKK)+|Aµ|0 i, is the coupling between the W boson and
the light mesons. In this thesis we present a model for this matrix element. We refer to
this as the Multi-Meson model (MMM).

This model provides an alternative to the Isobar Model in order to parametrize the
decay amplitude. In contrast to the pure phenomenological aspect of the Isobar model, the
MMM is based on Chiral Perturbation Theory with Resonances (ChPTR) and provides
improvements to some di�culties of the Isobar.

This thesis is organized as follows. In Section 2 the theoretical background required to
understand the heavy-meson decays and the ChPTR is presented. This includes a brief
overview of the Standard Model, chiral symmetries, Chiral Perturbation Theory (ChPT)
up to leading order (LO) [1]. The next-to-leading order in ChPT will be included by
Resonances coupling to the LO [2]. These two theories will be used in the construction of
the Multi-Meson model.

The formalism for amplitude analysis will be explained in Section 4. This includes the
description of the kinematics of a three-body decay and of the Dalitz plot. We describe the
so called Isobar Model and its main di�culties. The fitting procedure and the limitations
of the Isobar are also discussed.

The data used in this thesis correspond to approximately 2.0fb�1 of pp collisions at
p
s = 8 TeV collected by LHCb in 2012. The LHCb experiment is described in Section 3

The selection of the D+
! K�K+K+ sample, the background estimation and modelling,

and the determination of the e�ciency variation across the phase space are described in
Section 5. Results of fits to the data using the Isobar model are presented in Section 6.

Lastly, the Multi-meson model for the decay amplitude is proposed as an alternative to
the Isobar model. Details of the calculation and results are given in Section 7. Since this
is an ongoing work, it is presented the result of one fit and some studies of the importance
of individual components of the MMM.
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of SU(3) mesons. ChPT is fully suited for describing these effective processes. The primary

weak decay is then followed by purely hadronic final state interactions (FSIs), in which the

mesons produced initially rescatter in many different ways, before being detected. The decay

D+ → K−K+K+ is doubly-Cabibbo-suppressed and any model describing it should involve

a combination of these two parts, as suggested by Fig.1.
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In this work we allow for the coupling of intermediate states and, within the (2 + 1)

approximation, final state interactions are always associated with loops describing two-

meson propagators. This provides a topological criterion for distinguishing the primary

weak vertex from FSIs, namely that the former is represented by tree diagrams and the

latter by a series with any number of loops. Each of these loops is multiplied by a tree-level

scattering amplitude K and, schematically, this allows the decay amplitude T to be written

as

T = (weak tree) ×
[

1 + (loop×K) + (loop×K)2 + (loop×K)3 + · · ·
]

. (2)

The term within square brackets involves strong interactions only and represents a geometric

series for the FSIs, which can be summed. Denoting this sum by S, one has S = 1/[1 −

(loop×K)], which corresponds to the model prediction for the resonance line shape.
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quarks c and d̄ in the D+ annihilate into a W+, which subsequently hadronizes. The primary

weak decay is followed by final state interactions, involving the scattering amplitude A. This

yields the decay amplitude T given in Fig.4, which includes the weak vertex and indicates

that the relationship with A is not straightforward, supporting statement a.dynamics, in

sect.II.
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steps D+ → W+ and W+ → K−K+K+ and strong final state interactions are encompassed by

the scattering amplitude A.

This decay amplitude is given by

T = −
[

GF√
2
sin2 θC

]

⟨K−(p1)K
+(p2)K

+(p3)|Aµ| 0 ⟩ ⟨ 0 |Aµ|D+(P )⟩ , (4)

where GF is the Fermi decay constant, θC is the Cabibbo angle, the Aµ are axial currents

and P = p1 + p2 + p3 . Throughout the paper, the label 1 refers to the K−, the label 3 the

spectator K+ and kinematical relations are given in appendix A.

Denoting the D+ decay constant by FD, we write ⟨ 0 |Aµ|D+(P )⟩ = −i
√
2FD Pµ and

find a decay amplitude proportional to the divergence of the remaining axial current, given

by

T = i

[

GF√
2
sin2 θC

] √
2FD [Pµ ⟨Aµ⟩] , (5)

with ⟨Aµ⟩ = ⟨K−(p1)K+(p2)K+(p3)|Aµ| 0 ⟩. This result is important because, if SU(3)

were an exact symmetry, the axial current would be conserved and the amplitude T would

vanish. As the symmetry is broken by the meson masses, one has the partial conservation

of the axial current (PCAC) and T must be proportional to M2
K . In the expressions below,

this becomes a signature of the correct implementation of the symmetry.

The rich dynamics of the decay amplitude T is incorporated in the current ⟨Aµ⟩ and

displayed in Fig.5. Diagrams are evaluated using the techniques described in Refs.[45, 46]. In
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chiral perturbation theory, the primary couplings of the W+ to the K−K+K+ system always

involve a direct interaction, accompanied by a kaon-pole term, denoted by (A) and (B) in

the figure. Only their joint contribution is compatible with PCAC. Diagrams (1A+1B) are

LO and describe a non-resonant term, a proper three body interaction, which goes beyond

the (2 + 1) approximation, whereas Figs. (2A+2B) allow for the possibility that two of the

mesons rescatter, after being produced in the primary weak vertex. Diagrams (3A+3B) are

NLO and describe the production of bare resonances at the weak vertex, whereas final state

rescattering processes (4A+4B) endow them with widths.

A. two-body unitarization and resonance line shapes

In the description of the two-body subsystem, we consider just S- and P - waves, corre-

sponding to (J = 1, 0, I = 1, 0) spin-isospin channels. The associated resonances are ρ(770),

φ(1020), a0(980), and two SU(3) scalar-isoscalar states, S1 and So, corresponding to a sin-

glet and to a member of an octet, respectively. The physical f0(980), together with a higher

mass f0 state, would be linear combinations of S1 and So. Depending on the channel, the

intermediate two-meson propagators may involve ππ, KK, ηη, and πη intermediate states,

so there is a large number of coupled channels to be considered.
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FIG. 6: (a) Tree-level two-body interaction kernel K(J,I)
ab→cd - a NLO s-channel resonance, added to

a LO contact term. (b) Structure of the unitarized scattering amplitude.

The basic meson-meson intermediate interactions P aP b → P cP d are described by kernels

K(J,I)
ab|cd and their simple dynamical structure is shown in Fig.6, as LO four point terms, typical

of chiral symmetry, supplemented by NLO resonance exchanges in the s-channel. Just in

the (J = 0, I = 0) channel two resonances, S1 and So, are needed. In these diagrams, all

vertices represent interactions derived from chiral lagrangians[46]. Kernels are then functions

depending on just masses and coupling constants. The mathematical structure of these

functions is displayed in App.F. In the case of the φ-meson, the kernel includes an effective

coupling to the (ρπ+πππ) channel, which accounts for about 15% of its width. This effective

interaction is discussed in App.(C) and yields eq.(F6).

All other resonance terms in the kernels contain bare poles. However, the evaluation of

amplitudes involves the iteration of the basic kernels by means of two-meson propagators,

as in Fig.6(b). The propagators, denoted by Ω̄, are discussed in App.B and, in principle,

they have both real and imaginary components. The former contain divergent contributions

and their regularization brings unknown parameters into the problem. This considerable

nuisance is avoided by working in the K-matrix approximation, whereby just the imaginary

parts of the two-meson propagators are kept. This gives rise to the structure sketched within

the square bracket of eq.(2), where the terms (loop×K) are realized by the functions M (J,I)
ij

given in eqs.(G10-G13). The ressummation of the geometric series, indicated in Fig.6(b),

endows the s-channel resonances with widths. Thus among other structures, intermediate

two-body amplitudes yield denominators D(J,I), which are akin to those of the form DBW =

[s − m2 + imΓ] employed in BW functions. These denominators, that correspond to the

predictions of the model for the resonance line shapes, are given in App.G and reproduced
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scattering amplitude isospin decomposition [J, I = (0, 1), (0, 1)]
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NLO and describe the production of bare resonances at the weak vertex, whereas final state

rescattering processes (4A+4B) endow them with widths.
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In the description of the two-body subsystem, we consider just S- and P - waves, corre-

sponding to (J = 1, 0, I = 1, 0) spin-isospin channels. The associated resonances are ρ(770),

φ(1020), a0(980), and two SU(3) scalar-isoscalar states, S1 and So, corresponding to a sin-

glet and to a member of an octet, respectively. The physical f0(980), together with a higher

mass f0 state, would be linear combinations of S1 and So. Depending on the channel, the

intermediate two-meson propagators may involve ππ, KK, ηη, and πη intermediate states,

so there is a large number of coupled channels to be considered.
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NLO and describe the production of bare resonances at the weak vertex, whereas final state
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φ(1020), a0(980), and two SU(3) scalar-isoscalar states, S1 and So, corresponding to a sin-

glet and to a member of an octet, respectively. The physical f0(980), together with a higher
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sponding to (J = 1, 0, I = 1, 0) spin-isospin channels. The associated resonances are ρ(770),

φ(1020), a0(980), and two SU(3) scalar-isoscalar states, S1 and So, corresponding to a sin-

glet and to a member of an octet, respectively. The physical f0(980), together with a higher

mass f0 state, would be linear combinations of S1 and So. Depending on the channel, the

intermediate two-meson propagators may involve ππ, KK, ηη, and πη intermediate states,

so there is a large number of coupled channels to be considered.
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FIG. 6: (a) Tree-level two-body interaction kernel K(J,I)
ab→cd - a NLO s-channel resonance, added to

a LO contact term. (b) Structure of the unitarized scattering amplitude.

The basic meson-meson intermediate interactions P aP b → P cP d are described by kernels

K(J,I)
ab|cd and their simple dynamical structure is shown in Fig.6, as LO four point terms, typical

of chiral symmetry, supplemented by NLO resonance exchanges in the s-channel. Just in

the (J = 0, I = 0) channel two resonances, S1 and So, are needed. In these diagrams, all

vertices represent interactions derived from chiral lagrangians[46]. Kernels are then functions

depending on just masses and coupling constants. The mathematical structure of these

functions is displayed in App.F. In the case of the φ-meson, the kernel includes an effective

coupling to the (ρπ+πππ) channel, which accounts for about 15% of its width. This effective

interaction is discussed in App.(C) and yields eq.(F6).

All other resonance terms in the kernels contain bare poles. However, the evaluation of

amplitudes involves the iteration of the basic kernels by means of two-meson propagators,

as in Fig.6(b). The propagators, denoted by Ω̄, are discussed in App.B and, in principle,

they have both real and imaginary components. The former contain divergent contributions

and their regularization brings unknown parameters into the problem. This considerable

nuisance is avoided by working in the K-matrix approximation, whereby just the imaginary

parts of the two-meson propagators are kept. This gives rise to the structure sketched within

the square bracket of eq.(2), where the terms (loop×K) are realized by the functions M (J,I)
ij

given in eqs.(G10-G13). The ressummation of the geometric series, indicated in Fig.6(b),

endows the s-channel resonances with widths. Thus among other structures, intermediate

two-body amplitudes yield denominators D(J,I), which are akin to those of the form DBW =

[s − m2 + imΓ] employed in BW functions. These denominators, that correspond to the

predictions of the model for the resonance line shapes, are given in App.G and reproduced
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chiral perturbation theory, the primary couplings of the W+ to the K−K+K+ system always

involve a direct interaction, accompanied by a kaon-pole term, denoted by (A) and (B) in

the figure. Only their joint contribution is compatible with PCAC. Diagrams (1A+1B) are

LO and describe a non-resonant term, a proper three body interaction, which goes beyond

the (2 + 1) approximation, whereas Figs. (2A+2B) allow for the possibility that two of the

mesons rescatter, after being produced in the primary weak vertex. Diagrams (3A+3B) are

NLO and describe the production of bare resonances at the weak vertex, whereas final state

rescattering processes (4A+4B) endow them with widths.

A. two-body unitarization and resonance line shapes

In the description of the two-body subsystem, we consider just S- and P - waves, corre-

sponding to (J = 1, 0, I = 1, 0) spin-isospin channels. The associated resonances are ρ(770),

φ(1020), a0(980), and two SU(3) scalar-isoscalar states, S1 and So, corresponding to a sin-

glet and to a member of an octet, respectively. The physical f0(980), together with a higher

mass f0 state, would be linear combinations of S1 and So. Depending on the channel, the

intermediate two-meson propagators may involve ππ, KK, ηη, and πη intermediate states,

so there is a large number of coupled channels to be considered.
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the (2 + 1) approximation, whereas Figs. (2A+2B) allow for the possibility that two of the

mesons rescatter, after being produced in the primary weak vertex. Diagrams (3A+3B) are

NLO and describe the production of bare resonances at the weak vertex, whereas final state

rescattering processes (4A+4B) endow them with widths.

A. two-body unitarization and resonance line shapes

In the description of the two-body subsystem, we consider just S- and P - waves, corre-

sponding to (J = 1, 0, I = 1, 0) spin-isospin channels. The associated resonances are ρ(770),

φ(1020), a0(980), and two SU(3) scalar-isoscalar states, S1 and So, corresponding to a sin-

glet and to a member of an octet, respectively. The physical f0(980), together with a higher

mass f0 state, would be linear combinations of S1 and So. Depending on the channel, the

intermediate two-meson propagators may involve ππ, KK, ηη, and πη intermediate states,
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LO and describe a non-resonant term, a proper three body interaction, which goes beyond

the (2 + 1) approximation, whereas Figs. (2A+2B) allow for the possibility that two of the

mesons rescatter, after being produced in the primary weak vertex. Diagrams (3A+3B) are

NLO and describe the production of bare resonances at the weak vertex, whereas final state

rescattering processes (4A+4B) endow them with widths.

A. two-body unitarization and resonance line shapes

In the description of the two-body subsystem, we consider just S- and P - waves, corre-

sponding to (J = 1, 0, I = 1, 0) spin-isospin channels. The associated resonances are ρ(770),

φ(1020), a0(980), and two SU(3) scalar-isoscalar states, S1 and So, corresponding to a sin-

glet and to a member of an octet, respectively. The physical f0(980), together with a higher

mass f0 state, would be linear combinations of S1 and So. Depending on the channel, the

intermediate two-meson propagators may involve ππ, KK, ηη, and πη intermediate states,

so there is a large number of coupled channels to be considered.
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the (2 + 1) approximation, whereas Figs. (2A+2B) allow for the possibility that two of the

mesons rescatter, after being produced in the primary weak vertex. Diagrams (3A+3B) are

NLO and describe the production of bare resonances at the weak vertex, whereas final state

rescattering processes (4A+4B) endow them with widths.
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φ(1020), a0(980), and two SU(3) scalar-isoscalar states, S1 and So, corresponding to a sin-

glet and to a member of an octet, respectively. The physical f0(980), together with a higher

mass f0 state, would be linear combinations of S1 and So. Depending on the channel, the

intermediate two-meson propagators may involve ππ, KK, ηη, and πη intermediate states,

so there is a large number of coupled channels to be considered.
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FIG. 6: (a) Tree-level two-body interaction kernel K(J,I)
ab→cd - a NLO s-channel resonance, added to

a LO contact term. (b) Structure of the unitarized scattering amplitude.

The basic meson-meson intermediate interactions P aP b → P cP d are described by kernels

K(J,I)
ab|cd and their simple dynamical structure is shown in Fig.6, as LO four point terms, typical

of chiral symmetry, supplemented by NLO resonance exchanges in the s-channel. Just in

the (J = 0, I = 0) channel two resonances, S1 and So, are needed. In these diagrams, all

vertices represent interactions derived from chiral lagrangians[46]. Kernels are then functions

depending on just masses and coupling constants. The mathematical structure of these

functions is displayed in App.F. In the case of the φ-meson, the kernel includes an effective

coupling to the (ρπ+πππ) channel, which accounts for about 15% of its width. This effective

interaction is discussed in App.(C) and yields eq.(F6).

All other resonance terms in the kernels contain bare poles. However, the evaluation of

amplitudes involves the iteration of the basic kernels by means of two-meson propagators,

as in Fig.6(b). The propagators, denoted by Ω̄, are discussed in App.B and, in principle,

they have both real and imaginary components. The former contain divergent contributions

and their regularization brings unknown parameters into the problem. This considerable

nuisance is avoided by working in the K-matrix approximation, whereby just the imaginary

parts of the two-meson propagators are kept. This gives rise to the structure sketched within

the square bracket of eq.(2), where the terms (loop×K) are realized by the functions M (J,I)
ij

given in eqs.(G10-G13). The ressummation of the geometric series, indicated in Fig.6(b),

endows the s-channel resonances with widths. Thus among other structures, intermediate

two-body amplitudes yield denominators D(J,I), which are akin to those of the form DBW =

[s − m2 + imΓ] employed in BW functions. These denominators, that correspond to the

predictions of the model for the resonance line shapes, are given in App.G and reproduced
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making 2 ↔ 3.

chiral perturbation theory, the primary couplings of the W+ to the K−K+K+ system always

involve a direct interaction, accompanied by a kaon-pole term, denoted by (A) and (B) in

the figure. Only their joint contribution is compatible with PCAC. Diagrams (1A+1B) are

LO and describe a non-resonant term, a proper three body interaction, which goes beyond

the (2 + 1) approximation, whereas Figs. (2A+2B) allow for the possibility that two of the

mesons rescatter, after being produced in the primary weak vertex. Diagrams (3A+3B) are

NLO and describe the production of bare resonances at the weak vertex, whereas final state

rescattering processes (4A+4B) endow them with widths.

A. two-body unitarization and resonance line shapes

In the description of the two-body subsystem, we consider just S- and P - waves, corre-

sponding to (J = 1, 0, I = 1, 0) spin-isospin channels. The associated resonances are ρ(770),

φ(1020), a0(980), and two SU(3) scalar-isoscalar states, S1 and So, corresponding to a sin-

glet and to a member of an octet, respectively. The physical f0(980), together with a higher

mass f0 state, would be linear combinations of S1 and So. Depending on the channel, the

intermediate two-meson propagators may involve ππ, KK, ηη, and πη intermediate states,

so there is a large number of coupled channels to be considered.
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mesons rescatter, after being produced in the primary weak vertex. Diagrams (3A+3B) are

NLO and describe the production of bare resonances at the weak vertex, whereas final state
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φ(1020), a0(980), and two SU(3) scalar-isoscalar states, S1 and So, corresponding to a sin-

glet and to a member of an octet, respectively. The physical f0(980), together with a higher

mass f0 state, would be linear combinations of S1 and So. Depending on the channel, the

intermediate two-meson propagators may involve ππ, KK, ηη, and πη intermediate states,

so there is a large number of coupled channels to be considered.
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NLO and describe the production of bare resonances at the weak vertex, whereas final state

rescattering processes (4A+4B) endow them with widths.

A. two-body unitarization and resonance line shapes

In the description of the two-body subsystem, we consider just S- and P - waves, corre-

sponding to (J = 1, 0, I = 1, 0) spin-isospin channels. The associated resonances are ρ(770),
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so there is a large number of coupled channels to be considered.
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FIG. 6: (a) Tree-level two-body interaction kernel K(J,I)
ab→cd - a NLO s-channel resonance, added to

a LO contact term. (b) Structure of the unitarized scattering amplitude.

The basic meson-meson intermediate interactions P aP b → P cP d are described by kernels

K(J,I)
ab|cd and their simple dynamical structure is shown in Fig.6, as LO four point terms, typical

of chiral symmetry, supplemented by NLO resonance exchanges in the s-channel. Just in

the (J = 0, I = 0) channel two resonances, S1 and So, are needed. In these diagrams, all

vertices represent interactions derived from chiral lagrangians[46]. Kernels are then functions

depending on just masses and coupling constants. The mathematical structure of these

functions is displayed in App.F. In the case of the φ-meson, the kernel includes an effective

coupling to the (ρπ+πππ) channel, which accounts for about 15% of its width. This effective

interaction is discussed in App.(C) and yields eq.(F6).

All other resonance terms in the kernels contain bare poles. However, the evaluation of

amplitudes involves the iteration of the basic kernels by means of two-meson propagators,

as in Fig.6(b). The propagators, denoted by Ω̄, are discussed in App.B and, in principle,

they have both real and imaginary components. The former contain divergent contributions

and their regularization brings unknown parameters into the problem. This considerable

nuisance is avoided by working in the K-matrix approximation, whereby just the imaginary

parts of the two-meson propagators are kept. This gives rise to the structure sketched within

the square bracket of eq.(2), where the terms (loop×K) are realized by the functions M (J,I)
ij

given in eqs.(G10-G13). The ressummation of the geometric series, indicated in Fig.6(b),

endows the s-channel resonances with widths. Thus among other structures, intermediate

two-body amplitudes yield denominators D(J,I), which are akin to those of the form DBW =

[s − m2 + imΓ] employed in BW functions. These denominators, that correspond to the

predictions of the model for the resonance line shapes, are given in App.G and reproduced
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scattering amplitude isospin decomposition [J, I = (0, 1), (0, 1)]

D+ ! K�K+K+
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quarks c and d̄ in the D+ annihilate into a W+, which subsequently hadronizes. The primary

weak decay is followed by final state interactions, involving the scattering amplitude A. This

yields the decay amplitude T given in Fig.4, which includes the weak vertex and indicates

that the relationship with A is not straightforward, supporting statement a.dynamics, in

sect.II.
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FIG. 4: Decay amplitude forD+ → K−K+K+; the weak vertex proceeds thought the intermediate

steps D+ → W+ and W+ → K−K+K+ and strong final state interactions are encompassed by

the scattering amplitude A.

This decay amplitude is given by

T = −
[

GF√
2
sin2 θC

]

⟨K−(p1)K
+(p2)K

+(p3)|Aµ| 0 ⟩ ⟨ 0 |Aµ|D+(P )⟩ , (4)

where GF is the Fermi decay constant, θC is the Cabibbo angle, the Aµ are axial currents

and P = p1 + p2 + p3 . Throughout the paper, the label 1 refers to the K−, the label 3 the

spectator K+ and kinematical relations are given in appendix A.

Denoting the D+ decay constant by FD, we write ⟨ 0 |Aµ|D+(P )⟩ = −i
√
2FD Pµ and

find a decay amplitude proportional to the divergence of the remaining axial current, given

by

T = i

[

GF√
2
sin2 θC

] √
2FD [Pµ ⟨Aµ⟩] , (5)

with ⟨Aµ⟩ = ⟨K−(p1)K+(p2)K+(p3)|Aµ| 0 ⟩. This result is important because, if SU(3)

were an exact symmetry, the axial current would be conserved and the amplitude T would

vanish. As the symmetry is broken by the meson masses, one has the partial conservation

of the axial current (PCAC) and T must be proportional to M2
K . In the expressions below,

this becomes a signature of the correct implementation of the symmetry.

The rich dynamics of the decay amplitude T is incorporated in the current ⟨Aµ⟩ and

displayed in Fig.5. Diagrams are evaluated using the techniques described in Refs.[45, 46]. In

10

A

D+ ! K�K+K+

which is different from ChPT. The former correspond to effective parameters describing the

physics within the energy ranges defined by Dalitz plots and should not be expected to have

the same values as the latter.

V. A TOY EXAMPLE: DECAY × SCATTERING AMPLITUDES

The Triple-M is aimed at predicting scattering amplitudes by using parameters ob-

tained from fits to decay data. Even in the want of such parameters at present, we ex-

plore the features of the lagrangian by using those suited to problems at low-energies,

which are: [mρ, mφ, ma0, mSo] = [0.776, 1.019, 0.960, 0.980]GeV[51], F = 0.093GeV,

[GV , cd, cm, c̃d, c̃m] = [0.067, 0.032, 0.042, 0.018, 0.025]GeV[46], whereas the partial width

Γφ→KK̄ ∼ 3.54MeV[51] yields sin θ = 0.605. In the large NC limit, mS1 = mSo[46] but,

in order to perform the toy calculations, we choose mS1 = 1.370GeV[51]. The discussion

presented in the sequence makes it clear that there is no simple relation between the decay

amplitude T and the scattering amplitudes A(J,I).

The non-resonant contribution to the decay amplitude, eq.(23), corresponds to a genuine

three-body interaction predicted by chiral symmetry. Nevertheless, in order to assess its

relative importance, it is convenient to project it into the S- and P -waves suited to the

other terms. Therefore, we rewrite it as

TNR =

[

C

4
(M2 −M2

K +m2
12) +

C

4
(m2

13 −m2
23) + (2 ↔ 3)

]

, (32)

so that the amplitude (21) can then be expressed as

T =
[

T S + T P + (2 ↔ 3)
]

, (33)

T S =

[

C

4
(M2

D −M2
K +m2

12) + T (0,1) + T (0,0)

]

, (34)

T P =

[

C

4
(m2

13 −m2
23) + T (1,1) + T (1,0)

]

. (35)

In the sequence, we discuss some aspects of this relationship, using the low-energy pa-

rameters of ref.[46], as if they could explain decay data. In Figs.7 and 8, we show the moduli

and phases of the S- and P -wave decay amplitudes T S, eq.(34) and T P , eq.(35), together

with the moduli and phases of the corresponding KK̄ scattering amplitudes A(J,I). These

figures illustrate the usefulness of the lagrangian approach. Without it, one would be able
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 prediction AIJ

extend chiral to non perturbative region parameter have different meaning 
mS1 = mSo

mS1 = 1.370GeV

parameter for Toy studies : 

masses from PDG (GeV)

m⇢ = 0.776, m� = 1.019,

ma0 = 0.960, mSo = 0.980

low energy couplings (GeV)

[cd, cm] = [0.032, 0.042]

[c̃d, c̃m] = [0.018, 0.025]

vectors

scalar octet
scalar singlet

[F,GV ] = [0.093, 0.067]

��!KK̄ ⇠ 3.54MeV

sin ✓ = 0.605 (�� !) mixing

additional PDG

all (13) were free in the fit to data
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FSI: coupled-channel meson-meson departs from chiral Lagrangian

non-resonant: beyond (2+1) is a 3-body amplitude 

 intensity of each component is predict by theory isobar model6=

couple channel structure: 
cannot be ignored

can disentangle        anda0 f0

FIG. 7: S-wave sector - top left: the continuous black curve (SW) is the modulus of the decay

amplitude T S, eq.(34), in arbitrary units, whereas other curves are moduli of partial contributions;

top right: moduli of the KK̄ scatterig amplitudes A(0,1), red curve, and A(0,0), blue curve; bottom:

the continuous black curve (SW) is the phase of the decay amplitude T S , eq.(34), and other

continuous curves are phases of partial contributions; the dashed curves represent the phases of

the KK̄ scatterig amplitudes A(0,1) (red) and A(0,0) (blue).

to determine just the full decay amplitudes T S and T P , represented by the continuous black

curves in the figures, and would not have access partial contributions in different isospin

channels. Moreover, it is also clear that one cannot guess the form of the KK̄ scattering

amplitudes A(J,I), represented by the red and blue dotted lines, from the decay components

18

Toy studies

model achievements 

arXiv: 1805.11764 
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to determine just the full decay amplitudes T S and T P , represented by the continuous black

curves in the figures, and would not have access partial contributions in different isospin

channels. Moreover, it is also clear that one cannot guess the form of the KK̄ scattering

amplitudes A(J,I), represented by the red and blue dotted lines, from the decay components

18

Toy studies

Fitting data we can predict 
KK scattering phase

model achievements 

arXiv: 1805.11764 
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 predictions for  KK S-wave

FIG. 9: Phase shifts δ and inelasticity parameter η for KK̄ scattering - top: S-waves; bottom:

P -waves; blue and red curves correspond respectively to isospin I=0 and I=1.

in showing the importance of the coupled channel structure, which is responsible for the in-

elasticities displayed. In the case of the I=1 P -wave, this related with the φ → πππ channel,

as discussed in App.C. In all cases, the bound η ≤ 1 is satisfied.

The Multi-Meson-Model we consider here yields scattering amplitudes involving dynam-

ical features such: i) a chiral contact interaction in the two-body kernel, indicated in Fig.6;

ii) the use of two resonances in the (J = 0, I = 0) channel, preserving unitarity; iii) inclusion

of coupled channels. In App.J we discuss their piecemeal relevance, in the case of A(0,0).

VI. SALAMANCA SUMMARY

this section is fake

Isobar models, successful as they are in providing fits for heavy meson decays, rely on

20

phase inelasticity

needs  improvement…. 

first model: simplicity to make the bridge 

model achievements 

K-matrix approximation!
couple higher resonances

add other topologies
compare denominators and FF
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final remarks
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3 days of intense discussion!
speakers shared problems and questions
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still need for high E (non-perturbative)

strong correlation between FSI in heavy mesons decay (mainly D), diffractive 
production and tau decays. 

final remarks: results of everybody highlights 

�29

Khuri-Treiman is very limited (besides complex):  find a way  to diagnose 
where 3-body rescattering is indeed needed?

how to transfer knowledge? 

polynom singularities and the zero modes observed  in free isobar (multiple 
solutions) in the PWA analysis are somehow related.

how far we really need 2-body amplitude?! all B phase-space ? 

FSI is crucial to all processes with Hadrons 
all start with good 2-body amplitude

start fitting with GOOD 2-body,  e.g.: B0
s ! K0

s⇡
+⇡� D+ ! K�K+K+,

In ω/Φ→3π  Khuri-Treiman, the shape of the rho change with 3π mass (mother).
COMPASS observed this as well!

how to parametrise this?
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we have good models on the market (even with simplifications and limitations )
experimental should start using it more seriously!!

how do we quantify if we have a good model?

Thank you!!!

final remarks: results of everybody highlights 

can we use free isobar to constrain models? 
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Extra slides
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 solid theory to describe MM interactions at low energy

NLO:  include resonances as a field
 Ecker, Gasser, Pich and De Rafael

[Nucl. Phys. B321(1989)]  

21 CAPÍTULO 2. AMPLITUDE DE ESPALHAMENTO Kπ

acoplam aos pseudoescalares, no contexto de SU(3). A vantagem desta abordagem, em

comparação com cálculos de O(q4) em ChPT[58], é que ela permite estender o alcance da

teoria a energias mais altas.

O termo da lagrangiana[22] que descreve a interação entre ressonâncias escalares e

mésons pseudoescalares é dado por:

L(2)
S =

2 c̃d
F 2

R0 ∂µφi ∂
µφi −

4 c̃m
F 2

B R0 (σ0 δij + σ8 d8ij) φi φj (2.5)

+
2 cd√
2F 2

dijk Rk ∂µφi ∂
µφi −

4Bcm√
2F 2

[

σ0 dijk + σ8

(

2

3
δik δj8 + di8s djsk

)]

φi φjRk ;

em que c̃d, c̃m e cd, cm são as constantes de acoplamento estre os mésons pseudoescalares e

as ressonâncias escalares R0, singleto, e Rk, membro do octeto, que precisam ser fixadas.

Essa lagrangiana também foi usada para o sistemaKπ na referência [14], na qual os valores

para cd e cm foram estimados, impondo a saturação das constantes de baixa energia pelas

ressonâncias. Os autores obtiveram os valores:

|cd| = 30± 10MeV ; |cm| = 43± 14MeV ; (2.6)

muito próximos dos obtidos em [22], |cd| = 32 MeV e |cm| = 42 MeV, extráıdos do

decaimento a0 → η π. Os valores de c̃d e c̃m foram definidos, como em [22], impondo o

v́ınculo dado pelo limite de grande Nc: |c̃d| = |cd|/
√
3 e |c̃m| = |cm|/

√
3.

A lagrangiana da interação de ressonâncias vetoriais e mésons pesudoescalares,

também proposta em [22], é dada por:

L(2)
V =

iGV√
2
⟨Vµνu

µuν⟩ ; (2.7)

⟨Vµνu
µuν⟩ =

1

F 2
V µν
a ∂µφi ∂νφj (ifaij + daij); (2.8)

em que V µν
a é um elemento do octeto vetorial. No caso das ressonâncias com estranheza,

a = 6, 7, temos:

⟨Vµνu
µuν⟩ =

√
2

F 2

[(

∂µπ
− ∂νK

+ −
1√
2
∂µπ

0 ∂νK
0

)

K̄∗µν

+

(

∂µK
− ∂νπ

+ −
1√
2
∂µK̄

0 ∂νπ
0

)

K∗µν
]

+ ... (2.9)

sendo GV uma constante de acoplamento universal que, no limite de grande Nc, pode ser

aproximada para GV = fπ/
√
2 = 65.3 MeV[66]. Nesse trabalho usamos GV = fKπ/

√
2 =

72.63 MeV, que também está dentro do intervalo de valores dispońıveis na literatura[14].
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teoria a energias mais altas.

O termo da lagrangiana[22] que descreve a interação entre ressonâncias escalares e
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decaimento a0 → η π. Os valores de c̃d e c̃m foram definidos, como em [22], impondo o

v́ınculo dado pelo limite de grande Nc: |c̃d| = |cd|/
√
3 e |c̃m| = |cm|/

√
3.

A lagrangiana da interação de ressonâncias vetoriais e mésons pesudoescalares,

também proposta em [22], é dada por:
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LO:

2.1. AMPLITUDE EM ÁRVORE 20

Termo de contado

O termo de contato é descrito pela lagrangiana efetiva quiral proposta por Gasser e

Leutwyler [21]:

L(2)
M = 3F 2B σ0

+
1

2
∂µφi ∂

µφi −B (σ0 δij + σ8 d8ij) φi φj

−
1

6F 2
fijs fkls φi ∂µφj φk ∂

µφl +
B

24F 2

[

σ0

(

4

3
δij δkl+2 dijs dkls

)

+ σ8

(

4

3
δij dkl8+

4

3
dij8 δkl+2 dijm dkln d8mn

)]

φi φj φk φl , (2.2)

em que F é a constante de decaimento dos mésons no vácuo, φi são os bósons de

Goldstone de SU(3) e dijk e fijs são, respectivamente, as constantes de estrutura simétrica

e antissimétrica de SU(3). Todas as relações e estruturas que envolvem o grupo de

Lie SU(3) estão detalhadas no apêndice B.1. A primeira linha dessa lagrangiana está

associada à quebra espontânea de simetria quiral e é o termo responsável por conferir

massas aos pseudoescalares; a segunda corresponde à propagação livre e, as demais, a

auto interações, responsáveis pelo termo de contato Kπ → Kπ.

A amplitude de contato derivada da lagrangiana 2.2 é:

iTC = i 2 [Aabcd (u− t)−Aacbd (s− u)− Aadbc (s− t)]

+i 8 [Babcd +Bacbd +Badbc] ;

Aijkl = −
1

6F 2
fijs fkls , (2.3)

Bijkl =
B

24F 2

[

σ0

(

4

3
δij δkl + 2 dijs dkls

)

+ σ8

(

4

3
δij dkl8 +

4

3
dij8 δkl + 2 dijm dkln d8mn

)]

. (2.4)

Ressonâncias

As contribuições dos diagramas S e V , na fig.2.1, são dadas por trocas de ressonâncias

escalares ou vetoriais nos canais s, t e u. Todas as interações relevantes podem ser descritas

pela lagrangiana proposta em [22], na qual as ressonâncias também são campos que se
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auto interações, responsáveis pelo termo de contato Kπ → Kπ.

A amplitude de contato derivada da lagrangiana 2.2 é:
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real polynomial

allowed by ChPTR. They are denoted by S1 and So and correspond, respectively, to a

singlet and to a member of an octet of SU(3), with the same quantum numbers. The

physical f0(980) and f0(1370) could then be linear combinations of S1 and So.

When the four spin-isospin channels are considered, the two-meson propagators can in-

volve ππ, KK, ηη and πη intermediate systems. This means that we may have a large

number of coupled channels and this makes the calculation cumbersome. The importance

of the coupled channels depends on the family of diagrams one is dealing with. As diagrams

(3A+3B) involve a bare pole, the contribution of coupled channels in diagrams (4A+4B) is

defintely important, since it gives rise to the various branching ratios and energy dependences

in the decay modes of the various resonances. In this work, we ignore NNLO corrections and

deal with a minimal Multi-Meson-Model (mMMM), based on diagrams (1A+1B), (2A+2B),

and (3A+3B+4A+4B).
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+

FIG. 2: Dynamical structure of the blue blob in fig.1; the wavy line is the W+, dashed lines are

mesons, continuous lines are resonances and the red blob is the meson-meson scattering amplitude,

described in fig.3; all diagrams within square brackets should be symmetrized, by making 2 ↔ 3.

The decay amplitude for the process D+ → K−K+ K+, given by eq.(3), has the general

structure

T = TNR +
[
T (1,1) + T (1,0) + T (0,1) + T (0,0) + (2 ↔ 3)

]
, (5)

5

Chiral symmetry

comparing with isobar (constant)

= + + + ...

= + +

(1) (2) (3)

FIG. 3: Top: tree-level structure for the two-body interaction kernel Kab→cd: process (1) represents

a NLO s-channel resonance, process (2), a LO contact term and processes (3), NLO t- and u-channel

resonances; diagrams were ordered so as to stress contact with the isobar model, which relies just

on process (1). Bottom: unitarized sacattering amplitude.

where TNR is the non-resonant contribution from diagrams (1A+1B) and the T (J,I) are the

resonant contributions from diagrams (3A+3B+4A+4B), in the various spin and isospin

channels. Their explicit forms are displayed below, in terms of the kinematical variables

P = p1 + p2 + p3 and m2
ij = (pi−pj)2. Owing to the use of chiral symmetry, all amplitudes

are proportional to M2
K , included in the common factor

C =

{[
GF√
2
sin2 θC

]
2FD

F

M2
K

M2
D −M2

K

}
, (6)

where F is the SU(3) pseudoscalar decay constant. Explicit evaluation yields

TNR = C
{[
(m2

12 −M2
K) + (m2

13 −M2
K)

]}
, (7)

T (1,1) = −C

{
1

Dρ(m2
12)

[
G2

V

4F 2
m2

12 −
1

8
(m2

12 −m2
ρ)

]
+

1

8

}
(m2

13 −m2
23) , (8)

Dρ(m
2
12) = (m2

12 −m2
ρ) + imρΓρ(m

2
12) , (9)

mρΓρ(m
2
12) =

1

12πm12

{
G2

V

F 4
m2

12

[
2Q3

ππ +Q3
KK

]

−(m2
12 −m2

ρ)
[
P (1,1)
(ππ|ππ)Q

3
ππ + P (1,1)

(KK|KK) Q
3
KK

]}
, (10)

T (1,0) = −C

{
1

Dφ(m2
12)

[
3G2

V sin2θ

4F 2
m2

12 −
3

8
Dπρ

φ (m2
12)

]
+

3

8

}
(m2

13 −m2
23) , (11)

6

3-body effect predicted
 by Chiral symmetry

no possible free parameter

project into 
S- and P- wave

which is different from ChPT. The former correspond to effective parameters describing the

physics within the energy ranges defined by Dalitz plots and should not be expected to have

the same values as the latter.

V. A TOY EXAMPLE: DECAY × SCATTERING AMPLITUDES

The Triple-M is aimed at predicting scattering amplitudes by using parameters ob-

tained from fits to decay data. Even in the want of such parameters at present, we ex-

plore the features of the lagrangian by using those suited to problems at low-energies,

which are: [mρ, mφ, ma0, mSo] = [0.776, 1.019, 0.960, 0.980]GeV[51], F = 0.093GeV,

[GV , cd, cm, c̃d, c̃m] = [0.067, 0.032, 0.042, 0.018, 0.025]GeV[46], whereas the partial width

Γφ→KK̄ ∼ 3.54MeV[51] yields sin θ = 0.605. In the large NC limit, mS1 = mSo[46] but,

in order to perform the toy calculations, we choose mS1 = 1.370GeV[51]. The discussion

presented in the sequence makes it clear that there is no simple relation between the decay

amplitude T and the scattering amplitudes A(J,I).

The non-resonant contribution to the decay amplitude, eq.(23), corresponds to a genuine

three-body interaction predicted by chiral symmetry. Nevertheless, in order to assess its

relative importance, it is convenient to project it into the S- and P -waves suited to the

other terms. Therefore, we rewrite it as

TNR =

[

C

4
(M2 −M2

K +m2
12) +

C

4
(m2

13 −m2
23) + (2 ↔ 3)

]

, (32)

so that the amplitude (21) can then be expressed as

T =
[

T S + T P + (2 ↔ 3)
]

, (33)

T S =

[

C

4
(M2

D −M2
K +m2

12) + T (0,1) + T (0,0)

]

, (34)

T P =

[

C

4
(m2

13 −m2
23) + T (1,1) + T (1,0)

]

. (35)

In the sequence, we discuss some aspects of this relationship, using the low-energy pa-

rameters of ref.[46], as if they could explain decay data. In Figs.7 and 8, we show the moduli

and phases of the S- and P -wave decay amplitudes T S, eq.(34) and T P , eq.(35), together

with the moduli and phases of the corresponding KK̄ scattering amplitudes A(J,I). These

figures illustrate the usefulness of the lagrangian approach. Without it, one would be able
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tree

• ⟨U3 (K
+) |T (0,1)

(0) |D ⟩ =
{
Γ(0,1)
(0)π8 ⟨U

π8
3 |+ Γ(0,1)

(0)KK ⟨UKK
3 |

}
(328)

Γ(0,1)
(0)π8 = C

{
−
[√

2 [X]√
3F 2

]
[cdQ·p+ − cm Q2]

m2
12 −m2

a0

[
cd
(
m2

12 −M2
π −M2

8

)
+ 2 cm M2

π

]

−
√
3√
2

[
1

3
Q2 −Q·p+

]
+ P (0,1)

(Γ|π8)

}
(329)

P (0,1)
(Γ|π8) =

{[√
6G2

V

F 2 m2
V

] [
m4
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3
− 5

12
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12 (M
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8 )
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K) (M
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8 )
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8 ) +
1
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2

]}(4V )
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+
1

3
(M2−M2

K)
2 − 2

3
(M2+M2

K)(M
2
π+M2

8 ) +
1

3
(M2

π−M2
8 )

2 +
1

3m2
12

(M2+M2
K)(M

2
π−M2

8 )
2

+
1

3m2
12

(M2−M2
K)

2(M2
π+M2

8 ) +
1
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]

+ cd cm
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(
1+

M2

M2
K

)
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K)
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1−M2

M2
K
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(−M2

π + 3M2
K)

− cd cm

[
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13−m2
23)
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1− M2
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K
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8 )

(
1 +
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(330)

50

to avoid double counting!

c

c

c

a0 example

⌘⇡, KK[J, I = 0, 1]

and, therefore,

⟨K−K+| = (i/2) ⟨V KK
3 + V KK

8 |− (1/2) ⟨UKK
3 + SKK |. (D14)

Appendix E: tree decay sub-amplitudes

In the evaluation of intermediate state contributions shown in diagrams of Fig.5, we need

tree level contribution for the process D → a bK+, denoted by T (J,I)
(0) , for spin J and isospin

I. In the results displayed below, the first terms correspond to resonances in diagrams

(3A+3B), whereas those within square brackets, labeled by c, represent contact interactions

in the top vertices of diagrams 2A and 2B. Using the constant C defined in eq.(22), we have
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with
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Appendix F: scattering kernels

The intermediate scattering amplitudes depend on interaction kernels in the four channels

considered, associated with J, I = 1, 0. The kernel matrix elements for the reaction c d → a b

are written as ⟨cd | KJ,I | ab⟩, in terms of the states defined in App.D, and displayed below.

All kernels are written as sums of NLO resonance contributions and chiral polynomials,
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D. production amplitude J = 0, I = 1

The tree level amplitude is given by eqs.(??). The one-loop contribution is obtained with

the help of the result[T−32|12/11]
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(2π)4
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d−M2

y ]
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and reads[T−32|12/4]
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(1)KK ⟨UKK
3 |
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(391)

Γ(0,1)
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]
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These results can be expressed in a matrix form, as[T−32|12/11]
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(1) =
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This yields
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1−M (0,1)

]
S(0,1) = 1 (401)
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resonance channels �37

allowed by ChPTR. They are denoted by S1 and So and correspond, respectively, to a

singlet and to a member of an octet of SU(3), with the same quantum numbers. The

physical f0(980) and f0(1370) could then be linear combinations of S1 and So.

When the four spin-isospin channels are considered, the two-meson propagators can in-

volve ππ, KK, ηη and πη intermediate systems. This means that we may have a large

number of coupled channels and this makes the calculation cumbersome. The importance

of the coupled channels depends on the family of diagrams one is dealing with. As diagrams

(3A+3B) involve a bare pole, the contribution of coupled channels in diagrams (4A+4B) is

defintely important, since it gives rise to the various branching ratios and energy dependences

in the decay modes of the various resonances. In this work, we ignore NNLO corrections and

deal with a minimal Multi-Meson-Model (mMMM), based on diagrams (1A+1B), (2A+2B),

and (3A+3B+4A+4B).
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FIG. 2: Dynamical structure of the blue blob in fig.1; the wavy line is the W+, dashed lines are

mesons, continuous lines are resonances and the red blob is the meson-meson scattering amplitude,

described in fig.3; all diagrams within square brackets should be symmetrized, by making 2 ↔ 3.

The decay amplitude for the process D+ → K−K+ K+, given by eq.(3), has the general

structure

T = TNR +
[
T (1,1) + T (1,0) + T (0,1) + T (0,0) + (2 ↔ 3)

]
, (5)

5

full FSI!
and

S(0,1) =
[
1−M (0,1)

]−1

=
1

(1−M11) (1−M22)−M12 M21

[
(1−M22) M12

M21 (1−M11)

]
(402)

Calling Γ̄(0,1) = S(0,1) G(0,1)
(0) , one has

Γ̄(0,1)
π8 =

(m2
12 −m2

a0)

Da0(m
2
12)

[
(1−M22)Γ

(0,1)
(0)π8 +M12 Γ

(0,1)
(0)KK

]
(403)

Γ̄(0,1)
KK =

(m2
12 −m2

a0)

Da0(m
2
12)

[
M21 Γ

(0,1)
(0)π8 + (1−M11)Γ

(0,1)
(0)KK

]
(404)

Da0 = (m2
12 −m2

a0) [(1−M11) (1−M22)−M12 M21] (405)

The full amplitude is then given by[T−32|12/6]

⟨U3(K
+
3 )|T (0,1) |D ⟩ =

{
Γ̄(0,1)
π8 ⟨Uπ8

3 |+ Γ̄(0,1)
KK ⟨UKK

3 |
}

(406)

Using eq.(114), one has

⟨K−
1 K

+
2 (K

+
3 )|T (0,1) |D ⟩ = − 1

2
Γ̄(0,1)
KK (407)

In order to avoid double counting, one subtracts both the contribution already included in the

non-resonant term and and the crossed channel resonant tree term. One then finds[T−32|12/11]

⟨K−
1 K

+
2 (K

+
3 )|T (0,1) |D ⟩ = − 1

2

[
Γ̄(0,1)
KK − Γ(0,1)

c|KK − P (0,1)
(Γ|KK)

]
(408)
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D. production amplitude J = 0, I = 1

The tree level amplitude is given by eqs.(??). The one-loop contribution is obtained with

the help of the result[T−32|12/11]

∫
d4ℓ

(2π)4
1

[p2c−M2
x ] [p

2
d−M2

y ]
= −i Ω̄S

xy (390)

and reads[T−32|12/4]

⟨U3 (K
+) |T (0,1)

(1) |D ⟩ =
{
Γ(0,1)
(1)π8 ⟨U

π8
3 |+ Γ(0,1)

(1)KK ⟨UKK
3 |

}
(391)

Γ(0,1)
(1)π8 = −K(0,1)

π8|π8
[
Ω̄S

π8

]
Γ(0,1)
(0)π8 −K(0,1)

π8|KK

[
1

2
Ω̄S

KK

]
Γ(0,1)
(0)KK (392)

Γ(0,1)
(1)KK = −K(0,1)

π8|KK

[
Ω̄S

π8

]
Γ(0,1)
(0)π8 −K(0,1)

KK|KK

[
1

2
Ω̄S

KK

]
Γ(0,1)
(0)KK (393)

These results can be expressed in a matrix form, as[T−32|12/11]

Γ(0,1)
(1) =

[
Γ(0,1)
(1)π8

Γ(0,1)
(1)KK

]
=

[
M11 M12

M21 M22

] [
Γ(0,1)
(0)π8

Γ(0,1)
(0)KK

]
= M (0,1) Γ(0,1)

(0) (394)

with

M11 = −K(0,1)
π8|π8

[
Ω̄S

π8

]
(395)

M12 = −K(0,1)
π8|KK

[
(1/2) Ω̄S

KK

]
(396)

M21 = −K(0,1)
π8|KK

[
Ω̄S

π8

]
(397)

M22 = −K(0,1)
KK|KK

[
(1/2) Ω̄S

KK

]
(398)

Eq.(394) can be generalized to

Γ(0,1)
(n+1) = M (0,1) Γ(0,1)

(n) =
[
M (0,1)

]n+1
Γ(0,1)
(0) (399)

and the full expansion in the number of loops is given by

S(0,1) Γ(0,1)
(0) = Γ(0,1)

(0) +
[
M (0,1)

]1
Γ(0,1)
(0) +

[
M (0,1)

]2
Γ(0,1)
(0) + · · ·

=
[
1 +M (0,1) S(0,1)

]
Γ(0,1)
(0) (400)

This yields

S(0,1) =
[
1 +M (0,1) S(0,1)

]
→

[
1−M (0,1)

]
S(0,1) = 1 (401)
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and

S(0,1) =
[
1−M (0,1)

]−1

=
1

(1−M11) (1−M22)−M12 M21

[
(1−M22) M12

M21 (1−M11)

]
(402)

Calling Γ̄(0,1) = S(0,1) G(0,1)
(0) , one has

Γ̄(0,1)
π8 =

(m2
12 −m2

a0)

Da0(m
2
12)

[
(1−M22)Γ

(0,1)
(0)π8 +M12 Γ

(0,1)
(0)KK

]
(403)

Γ̄(0,1)
KK =

(m2
12 −m2

a0)

Da0(m
2
12)

[
M21 Γ

(0,1)
(0)π8 + (1−M11)Γ

(0,1)
(0)KK

]
(404)

Da0 = (m2
12 −m2

a0) [(1−M11) (1−M22)−M12 M21] (405)

The full amplitude is then given by[T−32|12/6]

⟨U3(K
+
3 )|T (0,1) |D ⟩ =

{
Γ̄(0,1)
π8 ⟨Uπ8

3 |+ Γ̄(0,1)
KK ⟨UKK

3 |
}

(406)

Using eq.(114), one has

⟨K−
1 K

+
2 (K

+
3 )|T (0,1) |D ⟩ = − 1

2
Γ̄(0,1)
KK (407)

In order to avoid double counting, one subtracts both the contribution already included in the

non-resonant term and and the crossed channel resonant tree term. One then finds[T−32|12/11]

⟨K−
1 K

+
2 (K

+
3 )|T (0,1) |D ⟩ = − 1

2

[
Γ̄(0,1)
KK − Γ(0,1)

c|KK − P (0,1)
(Γ|KK)

]
(408)
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⌘⇡, KK[J, I = 0, 1]

only resonance

parameter: cd, cm ma0

access two-body dynamics !
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6=Triple-M disentangle  isospins in data

6=amplitude with similar behave     phase 

�38Toy results  S-wave

FIG. 7: S-wave sector - top left: the continuous black curve (SW) is the modulus of the decay

amplitude T S, eq.(34), in arbitrary units, whereas other curves are moduli of partial contributions;

top right: moduli of the KK̄ scatterig amplitudes A(0,1), red curve, and A(0,0), blue curve; bottom:

the continuous black curve (SW) is the phase of the decay amplitude T S , eq.(34), and other

continuous curves are phases of partial contributions; the dashed curves represent the phases of

the KK̄ scatterig amplitudes A(0,1) (red) and A(0,0) (blue).

to determine just the full decay amplitudes T S and T P , represented by the continuous black

curves in the figures, and would not have access partial contributions in different isospin

channels. Moreover, it is also clear that one cannot guess the form of the KK̄ scattering

amplitudes A(J,I), represented by the red and blue dotted lines, from the decay components
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not possible to extract A(J,I) from data  
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Toy results P-wave

Triple-M

scatteringKK̄

FIG. 8: P -wave sector - top left: the continuous black curve (SW) is the modulus of the decay

amplitude TP , eq.(35), in arbitrary units, whereas other curves are moduli of partial contributions;

top right: muduli of the KK̄ scatterig amplitudes A(1,1), red curve, and A(1,0), blue curve; bottom:

the continuous black curve (SW) is the phase of the decay amplitude T S , eq.(34), and other

continuous curves are phases of partial contributions; the dashed curves represent the phases of

the KK̄ scatterig amplitudes A(1,1) (red) and A(1,0) (blue).

T S and T P .

In Fig.9 we present the phase shifts and inelasticity parameters associated with the scat-

tering amplitudes A(J,I). It important to stress that these figures correspond just to an

exercise, since they are based on low-energy parameters. Nevertheless, they are instructive
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� phases are      6= for s > 1.5

and NR contributions are tiny in TM  ⇢
small in KK 
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Toy results P-wave

Triple-M

FIG. 9: Phase shifts δ and inelasticity parameter η for KK̄ scattering - top: S-waves; bottom:

P -waves; blue and red curves correspond respectively to isospin I=0 and I=1.

in showing the importance of the coupled channel structure, which is responsible for the in-

elasticities displayed. In the case of the I=1 P -wave, this related with the φ → πππ channel,

as discussed in App.C. In all cases, the bound η ≤ 1 is satisfied.

The Multi-Meson-Model we consider here yields scattering amplitudes involving dynam-

ical features such: i) a chiral contact interaction in the two-body kernel, indicated in Fig.6;

ii) the use of two resonances in the (J = 0, I = 0) channel, preserving unitarity; iii) inclusion

of coupled channels. In App.J we discuss their piecemeal relevance, in the case of A(0,0).

VI. SALAMANCA SUMMARY

this section is fake

Isobar models, successful as they are in providing fits for heavy meson decays, rely on

20

phase inelasticity

is the dominant channel �

 inelasticity� ! ⇢⇡ 15% of  the life-time

⇢ ! ⇡⇡  constant inelasticity 
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quarks c and d̄ in the D+ annihilate into a W+, which subsequently hadronizes. The primary

weak decay is followed by final state interactions, involving the scattering amplitude A. This

yields the decay amplitude T given in Fig.4, which includes the weak vertex and indicates

that the relationship with A is not straightforward, supporting statement a.dynamics, in

sect.II.
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FIG. 4: Decay amplitude forD+ → K−K+K+; the weak vertex proceeds thought the intermediate

steps D+ → W+ and W+ → K−K+K+ and strong final state interactions are encompassed by

the scattering amplitude A.

This decay amplitude is given by

T = −
[

GF√
2
sin2 θC

]

⟨K−(p1)K
+(p2)K

+(p3)|Aµ| 0 ⟩ ⟨ 0 |Aµ|D+(P )⟩ , (4)

where GF is the Fermi decay constant, θC is the Cabibbo angle, the Aµ are axial currents

and P = p1 + p2 + p3 . Throughout the paper, the label 1 refers to the K−, the label 3 the

spectator K+ and kinematical relations are given in appendix A.

Denoting the D+ decay constant by FD, we write ⟨ 0 |Aµ|D+(P )⟩ = −i
√
2FD Pµ and

find a decay amplitude proportional to the divergence of the remaining axial current, given

by

T = i

[

GF√
2
sin2 θC

] √
2FD [Pµ ⟨Aµ⟩] , (5)

with ⟨Aµ⟩ = ⟨K−(p1)K+(p2)K+(p3)|Aµ| 0 ⟩. This result is important because, if SU(3)

were an exact symmetry, the axial current would be conserved and the amplitude T would

vanish. As the symmetry is broken by the meson masses, one has the partial conservation

of the axial current (PCAC) and T must be proportional to M2
K . In the expressions below,

this becomes a signature of the correct implementation of the symmetry.

The rich dynamics of the decay amplitude T is incorporated in the current ⟨Aµ⟩ and

displayed in Fig.5. Diagrams are evaluated using the techniques described in Refs.[45, 46]. In

10

A


