Spectroscopy on the lattice Raúl Briceño

Amplitude analysis

Experiments

... perhaps there is a hierarchy [.e.g. $c_0 > c_1 > c_2 > c_3 > c_4$]

identification of states, production/decay mechanisms

Lattice QCD

- Solution Wick rotation [Euclidean spacetime]: $t_M \rightarrow -it_E$
- Monte Carlo sampling
- quark masses: $m_q \to m_q^{\text{phys.}}$
- a lattice spacing: $a \sim 0.03 0.15$ fm
- finite volume

Lattice QCD

- Solution Wick rotation [Euclidean spacetime]: $t_M \rightarrow -it_E$
- Monte Carlo sampling
- quark masses: $m_q \rightarrow m_q^{\text{phys.}}$
- a lattice spacing: $a \sim 0.03 0.15$ fm
- finite volume

Lattice QCD

- Wick rotation [Euclidean spacetime]: $t_M \rightarrow -it_E$ Ş
- Monte Carlo sampling Ş
- quark masses: $m_q \rightarrow m_q^{\text{phys.}}$ Ş
- lattice spacing: $a \sim 0.03 0.15$ fm Ş
- finite volume Ş

The isoscalar, scalar and tensor sectors

Wilson (Royal fellow / Tri	nity)	had	spec
E CHICAN	PRL 118, 022002 (2017) PHYSICA	L REVIEW LETTERS	week ending 13 JANUARY 2017
Dudek (W&M/JLab)	Isoscalar $\pi\pi$ Scattering a	and the σ Meson Resonance from	QCD
	Raul A. Briceño, ^{1,*} Jozef J. Dude	ek, ^{1,2,†} Robert G. Edwards, ^{1,‡} and David J. V	Wilson ^{3,§}
	(for the Had	dron Spectrum Collaboration)	
	¹ Thomas Jefferson National Accelerator Facili ² Department of Physics, College of Wi ³ Department of Applied Mathematics a	lity, 12000 Jefferson Avenue, Newport News, Vir illiam and Mary, Williamsburg, Virginia 23187- and Theoretical Physics, Centre for Mathematica	rginia 23606, USA ·8795, USA al Sciences,
Edwards (JLab)			JLAB-THY-17-2534
	Isoscalar $\pi\pi, K\overline{K}, \eta\eta$ scattering and the σ, f_0, f_2 mesons from QCD		
	Raul A. Briceño, ^{1, 2, *} Jozef J. (for t	. Dudek, ^{1,3,†} Robert G. Edwards, ^{1,‡} and Dav	rid J. Wilson ^{4,§}
	¹ Thomas Jefferson National Acceler ² Department of Physic ³ Department of Physics, C ⁴ School of M	rator Facility, 12000 Jefferson Avenue, Newport Ne ics, Old Dominion University, Norfolk, VA 23529, College of William and Mary, Williamsburg, VA 2 Iathematics, Trinity College, Dublin 2, Ireland (Dated: August 23, 2017)	ews, VA 23606, USA , USA 23187, USA
	We present the first lattice QC extracted from discrete finite-vo mass corresponding to $m_{\pi} \sim 391$ σ and $f_0(980)$ states, where the to what is seen in experiment, vicinity of the $K\overline{K}$ threshold. For observed as narrow peaks, with the $K\overline{K}$. The presence of all these st of scattering amplitudes, and the	CD study of coupled isoscalar $\pi\pi$, $K\overline{K}$, $\eta\eta$ <i>S</i> - and <i>D</i> plume spectra computed on lattices which have a va 1 MeV. In the $J^P = 0^+$ sector we find analogues of t σ appears as a stable bound-state below $\pi\pi$ thresh the $f_0(980)$ manifests itself as a dip in the $\pi\pi$ cross for $J^P = 2^+$ we find two states resembling the $f_2(127)$ the lighter state dominantly decaying to $\pi\pi$ and the states is determined rigorously by finding the pole sin heir couplings to decay channels are established usin	P-wave scattering lue of the quark the experimental old, and, similar ss section in the 70) and $f'_2(1525)$, the heavier state to ngularity content g the residues of

- Multi-meson ops. are crucial
- Spectrum including a larger basis: $\{\pi\pi, K\overline{K}, \eta\eta, \ell\overline{\ell}, s\overline{s}\}$

 m_{π} =391 MeV

- Multi-meson ops. are crucial
- Spectrum including a larger basis: $\{\pi\pi, K\overline{K}, \eta\eta, \ell\overline{\ell}, s\overline{s}\}$

 m_{π} =391 MeV

- Multi-meson ops. are crucial
- Spectrum including a larger basis: $\{\pi\pi, K\overline{K}, \eta\eta, \ell\overline{\ell}, s\overline{s}\}$

Multi-meson ops. are crucial

Spectrum including a larger basis: $\{\pi\pi, K\overline{K}, \eta\eta, \ell\overline{\ell}, s\overline{s}\}$

 m_{π} =391 MeV

Multi-meson ops. are crucial

Spectrum including a larger basis: $\{\pi\pi, K\overline{K}, \eta\eta, \ell\overline{\ell}, s\overline{s}\}$

Finite volume physics

$$i\mathcal{M} = \underbrace{\underbrace{}_{i\epsilon} \underbrace{}_{i\epsilon} \underbrace{}_{i\epsilon}$$

$$i\mathcal{M} = \mathbf{X} + \mathbf{i}\epsilon + \mathbf{i}\epsilon + \mathbf{i}\epsilon + \cdots$$

$$p = \frac{1}{2}\sqrt{s - s_{th}}$$

$$i\mathcal{M} = \mathbf{A} + \mathbf{i}\epsilon + \mathbf{i}\epsilon + \mathbf{i}\epsilon + \cdots$$

$$= \mathbf{A} + \mathbf{i}\epsilon +$$

Toy theory in a finite-volume

Consider the finite-volume two-particle correlator (*E*~2*m*). *Its poles coincide with the finite-volume spectrum*

Toy theory in a finite-volume

Consider the finite-volume two-particle correlator (*E*~2*m*). *Its poles coincide with the finite-volume spectrum*

$$C_L(P) = \underbrace{V} + \underbrace{V} + \underbrace{V} + \cdots$$

$$V = \frac{1}{L^3} \sum_{\mathbf{k}} \frac{iB^2}{(2\omega_k)^2} \frac{i}{E - 2\omega_k} + \text{"smooth"}$$
$$= (iB) \left(\left[\frac{1}{L^3} \sum_{\mathbf{k}} -\int \frac{d^3k}{(2\pi)^3} \right] \frac{1}{(2\omega_k)^2} \frac{i}{E - 2\omega_k + i\epsilon} \right) (iB) + \text{"}i\epsilon \text{ integral"}$$
$$\equiv [iB] iF [iB] + \text{"}i\epsilon \text{ integral"}$$
$$= \bigvee_{V - \infty} + \bigvee_{V - \infty} i\epsilon$$

Toy theory in a finite-volume

Consider the finite-volume two-particle correlator (*E*~2*m*). *Its poles coincide with the finite-volume spectrum*

Isoscalar $\pi\pi$ scattering: elastic region

Isoscalar $\pi\pi$ scattering: elastic region

The $\sigma/f_0(500)$ vs m $_{\pi}$

Weinberg compositeness criterion for the σ

For the heavier ensemble, the σ is a bound state, so we can apply Weinberg's criterion

$$|\sigma\rangle_{391} \sim \sqrt{Z} \left(\mathbf{e} + \mathbf$$

Can relate Z to scattering information

$$a = -2\frac{1-Z}{2-Z}\frac{1}{\sqrt{m_\pi B_\sigma}},$$

$$r = -\frac{Z}{1-Z} \frac{1}{\sqrt{m_\pi B_\sigma}}$$

 $\stackrel{\scriptstyle \odot}{\scriptstyle
m P}$ To obtain: $Z\sim 0.3(1)$

Consistent with the large FV effects

Multi-channel systems - the cutting edge!

Multi-channel systems - the cutting edge!

set the *necessary* formalism for doing coupled-channel scattering of

Feng, Li, & Liu (2004) [inelastic scalar bosons]Hansen & Sharpe / RB & Davoudi (2012) [moving inelastic scalar bosons]RB (2014) [general 2-body result]

For date, the Hadron Spectrum collaboration is the only one to have extracted coupled-channel scattering amplitude information from QCD

ππ, KK, ηη [isoscalar]:	RB, Dudek, Edwards, Wilson - PRL (2017)
	RB, Dudek, Edwards, Wilson - PRD (2018)
Kπ, Kη:	Dudek, Edwards, Thomas, Wilson - PRL (2015)
	Wilson, Dudek, Edwards, Thomas - PRD (2015)
πη, KK:	Dudek, Edwards, Wilson - PRD (2016)
Dπ, Dη, D _s K:	Moir, Peardon, Ryan, Thomas, Wilson - JHEP (2016)
$\pi\pi$, KK [isovector]:	Wilson, RB, Dudek, Edwards, Thomas - PRD (2015)

Solution Above $2m_K$, there is not a one-to-one correspondence

$$\det \begin{bmatrix} F_{\pi\pi}^{-1} + \mathcal{M}_{\pi\pi,\pi\pi} & \mathcal{M}_{\pi\pi,K\overline{K}} \\ \mathcal{M}_{\pi\pi,K\overline{K}} & F_{K\overline{K}}^{-1} + \mathcal{M}_{K\overline{K},K\overline{K}} \end{bmatrix} = 0$$

Feng, Li, & Liu (2004),

Feng, Li, & Liu (2004), Hansen & Sharpe / RB & Davoudi (2012)

- Solution For a set of the set of
- Need that many energy levels at the same energy
- Alternatively, parametrize scattering amplitude and do a global fit

S-wave above $2m_{\pi}$, $2m_K$, and $2m_{\eta}$

Ansatz $\mathbf{K}^{-1}(s) = \begin{pmatrix} a+bs & c+ds & e \\ c+ds & f & g \\ e & g & h \end{pmatrix}$

Solution D-wave above $2m_{\pi}$, $2m_K$, and $2m_\eta$

Ansatz $K_{ij}(s) = \frac{g_i^{(1)}g_j^{(1)}}{m_1^2 - s} + \frac{g_i^{(2)}g_j^{(2)}}{m_2^2 - s} + \gamma_{ij}$ $\gamma_{ij} = 0$ otherwise

Ansatz
$$K_{ij}(s) = \frac{g_i^{(1)}g_j^{(1)}}{m_1^2 - s} + \frac{g_i^{(2)}g_j^{(2)}}{m_2^2 - s} + \gamma_{ij}$$
 $\gamma_{ij} = 0$ otherwise

Ansatz
$$K_{ij}(s) = \frac{g_i^{(1)}g_j^{(1)}}{m_1^2 - s} + \frac{g_i^{(2)}g_j^{(2)}}{m_2^2 - s} + \gamma_{ij}$$
 $\gamma_{ij} = 0$ otherwise

Ansatz
$$K_{ij}(s) = \frac{g_i^{(1)}g_j^{(1)}}{m_1^2 - s} + \frac{g_i^{(2)}g_j^{(2)}}{m_2^2 - s} + \gamma_{ij}$$
 $\gamma_{ij} = 0$ otherwise

Ansatz
$$K_{ij}(s) = \frac{g_i^{(1)}g_j^{(1)}}{m_1^2 - s} + \frac{g_i^{(2)}g_j^{(2)}}{m_2^2 - s} + \gamma_{ij}$$
 $\gamma_{ij} \neq 0$
 $\gamma_{ij} = 0$

 $\gamma_{\eta\eta} \neq 0$ $\gamma_{ij} = 0$ otherwise

Tensor and scalar nonets

First complete determination of the scalar and tensor nonets from LQCD :

Oudek, Edwards - PRL (2017)
Oudek, Edwards - PRD (2017)
ek, Edwards, Thomas, Wilson - PRL (2015)
on, Dudek, Edwards, Thomas - PRD (2015)
ek, Edwards, Wilson - PRD (2016)

Scattering of spinning particles - $\rho\pi$ scattering

≩the formalism: RB (2014)

 \clubsuit first and only calculation:

 $\rho\pi$ scattering in *I*=2

Woss, Thomas, Dudek, Edwards, Wilson (2018)

Woss

-10-20 $\delta(^3S_1)$ -3010 $\overline{\epsilon}({}^{3}S_{1}|{}^{3}D_{2})$ 50 $\delta(^{3}P_{0})$ -10-20-300 $\delta(^{3}P_{1})$ -10-20-302010 $\delta(^{3}P_{2})$ 0 -10-2010 $\delta(^{3}D_{2})$ 0 -1010 $(^{3}D_{3})$ 0 -10

50

0.37

0

0.36

0

100

0.38

0.39

150

0.40

200

 $E_{\rm cm} - (m_\pi + m_\rho) / {\rm MeV}$

 $({}^{3}D_{1})$

250

0.41 $a_t E_{cm}$

Woss, Thomas, Dudek, Edwards, Wilson (2018)

THE FUTURE IS OURS TO CREATE.

Structure of states:

THE FUTURE IS OURS TO CREATE.

Structure of states:

Beyond two particles

🖗 RB & Davoudi (2013)

- Hansen & Sharpe (2014, '15)
- Hammer, Pang, Rusetsky (2017)

Mai, Doring (2017,'18)

RB, Hansen & Sharpe (2016,'18)

see Maxim's talk

The team and some references

Status of the field

Simple properties of QCD stable states [non-composite states]

 $\frac{1}{2}$ physical or lighter quark masses [down to m_{π}~120 MeV]

- non-degenerate light-quark masses: N_f=1+1+1+1
- 🖗 dynamical QED 💊

Status of the field

Simple properties of QCD stable states [non-composite states]

 \Re physical or lighter quark masses [down to m_{π}~120 MeV]

- non-degenerate light-quark masses: N_f=1+1+1+1
- 🖗 dynamical QED 💊

Status of the field

Simple properties of QCD stable states [non-composite states]

 $\frac{1}{2}$ physical or lighter quark masses [down to m_{π}~120 MeV]

- non-degenerate light-quark masses: N_f=1+1+1+1
- 🖗 dynamical QED 🛛

New "old-school spectroscopy"

Evaluate: $C_{ab}^{2pt.}(t, \mathbf{P}) \equiv \langle 0 | \mathcal{O}_b(t, \mathbf{P}) \mathcal{O}_a^{\dagger}(0, \mathbf{P}) | 0 \rangle = \sum Z_{b,n} Z_{a,n}^* e^{-E_n t}$

... using distillation and a large number [10-30] of local ops, $\mathcal{O}_b \sim \bar{q} \Gamma_b q$

New "old-school spectroscopy"

Evaluate: $C_{ab}^{2pt.}(t, \mathbf{P}) \equiv \langle 0 | \mathcal{O}_b(t, \mathbf{P}) \mathcal{O}_a^{\dagger}(0, \mathbf{P}) | 0 \rangle = \sum Z_{b,n} Z_{a,n}^* e^{-E_n t}$

... using distillation and a large number [10-30] of local ops, $\mathcal{O}_b \sim \bar{q} \Gamma_b q$

New "old-school spectroscopy"

Evaluate: $C_{ab}^{2pt.}(t, \mathbf{P}) \equiv \langle 0 | \mathcal{O}_b(t, \mathbf{P}) \mathcal{O}_a^{\dagger}(0, \mathbf{P}) | 0 \rangle = \sum Z_{b,n} Z_{a,n}^* e^{-E_n t}$

... using distillation and a large number [10-30] of local ops, $\mathcal{O}_b \sim \bar{q} \Gamma_b q$

