PWA10/ATHOS5 @IHEP, Beijing on 19 July, 2018

Light meson photoproduction at SPring-8 LEPS2/BGOegg experiments

Norihito Muramatsu (ELPH, Tohoku University) for the BGOegg Collaboration

<u>Today's Aim</u>: Providing **new input data** for the PWA model calculations to study **baryon resonances** (N^* , Δ^*). PWA itself is not used to extract this "input" data.

Introduction of Spring-8 LEPS2/BGOegg experiments

Photoproduction experiments by a Laser Compton Scattering (LCS) beam.

Differential cross sections & Photon beam asymmetry

Especially, the beam asymmetries at $E_{\gamma} \gtrsim 2$ GeV are new.

- $rac{\pi^0}$ photoproduction off proton
- $\Im \eta$ photoproduction off proton
- $rac{1}{2}$ m (0) photoproduction off proton

Photon Beam Facilities in Japan

Laser Compton Scattering

• LEP (Laser Electron Photon) beam has nearly flat spectrum up to Compton

edge.

 $k_{\max} = \frac{(E_e + P_e)k_{laser}}{E_e - P_e + 2k_{laser}} \cong \frac{4E_e^2 k_{laser}}{m_e^2 + 4E_e k_{laser}} = 2.38 GeV(355 nm)$

- LEP intensity is 3-order higher than Bremsstrahlung radiation by residual gas.
- LEP beam polarization ~95% at maximum energy.

LEPS2 Beamline

Three Detector Setups at SPring-8

	LEPS (BL33LEP)	LEPS2 (BL31LEP)
Tagged γ Energy	E_{γ} >1.5 GeV E_{γ} >1.3 GeV Max. E_{γ} is 2.4/2.9 GeV. (UV/DUV Laser Injection)	
Tagged γ Beam Intensity	2-Laser Injection 2×10 ⁶ cps	Max. 4-Laser Injection ≾10⁷ cps
Detector System	Charged Spectrometer with Forward Acceptance	Covering Large Solid Angles BGOegg / Solenoid

LEPS2/BGOegg (2014 ~)

Electromagnetic Calorimeter

LEPS2/BGOegg Eexperimental Setup

Large Acceptance EM calorimeter BGOegg

- 'Egg'-shape assembly of 1320 Bi₄Ge₃O₁₂ crystals without supporting structures b/w crystals.
- Each BGO covers $\sim 6^{\circ}$ in (θ, ϕ) with $L_{crystal} = 220 \text{ mm} (20X_0)$. There are 22 layers.
- World-highest energy resolution in the energy region below 1 GeV. (1.3% @ 1 GeV)

Crystal Barrel with CsI(TI) : $\sigma_{E_{\gamma}}$ =2.5% @ 1 GeV BGO-OD with BGO : $\sigma_{M_{\pi}}$ =14 MeV & $\sigma_{M_{\eta}}$ =24 MeV

Large Acceptance EM calorimeter BGOegg

- 'Egg'-shape assembly of 1320 Bi₄Ge₃O₁₂ crystals without supporting structures b/w crystals.
- Each BGO covers $\sim 6^{\circ}$ in (θ, ϕ) with $L_{crystal} = 220 \text{ mm} (20X_0)$. There are 22 layers.
- World-highest energy resolution in the energy region below 1 GeV. (1.3% @ 1 GeV)

Crystal Barrel with CsI(TI) : $\sigma_{E_{\gamma}}$ =2.5% @ 1 GeV BGO-OD with BGO : $\sigma_{M_{\pi}}$ =14 MeV & $\sigma_{M_{\eta}}$ =24 MeV

Large Acceptance EM calorimeter BGOegg

- 'Egg'-shape assembly of 1320 Bi₄Ge₃O₁₂ crystals without supporting structures b/w crystals.
- Each BGO covers $\sim 6^{\circ}$ in (θ, ϕ) with $L_{crystal} = 220 \text{ mm} (20X_0)$. There are 22 layers.
- World-highest energy resolution in the energy region below 1 GeV. (1.3% @ 1 GeV)

Crystal Barrel with CsI(TI) : $\sigma_{E_{\gamma}}$ =2.5% @ 1 GeV BGO-OD with BGO : $\sigma_{M_{\pi}}$ =14 MeV & $\sigma_{M_{\eta}}$ =24 MeV

Summary of Data Collection

Period	Target	Integrated # of γ 's (tagged E _{γ} region)
2014A (Apr.~July)	Carbon/CH ₂ [20 mm]	C: 1.31×10^{12} , CH ₂ : 1.58×10^{12} with RPC (In total, C: 4.29×10^{12} , CH ₂ : 2.56×10^{12}) Test sample for η' -mesic nuclei search & γp analyses
2014B (Nov.~Feb.)	<mark>ԼН</mark> ₂ [40 mm]	Hori: 2.24×10 ¹² , Vert: 2.01×10 ¹² N [*] physics, etc (with spin observable)
2015A (Apr.~July)	Carbon [20 mm]	9.77×10 ¹² (Vert: 8.97×10 ¹²) η'-mesic nuclei search
2015B (Sep.~Dec.)	<mark>ԼН</mark> ₂ [40 mm]	Hori: 2.87×10 ¹² , Vert: 2.92×10 ¹² Additional data for γp reactions
2016A (Apr.~July)	LH₂ [40 mm] Carbon [20 mm]	C: 7.04×10 ¹² (LH ₂ : 1.44×10 ¹²) Additional data for η'-mesic nuclei search
2017A (May)	Cu [1.5 mm]	0.41×10 ¹² (all horizontal) Test sample by 1-week data taking
2017B (Jan.~Feb.)	<mark>Cu</mark> [7.5 mm]	1.43×10 ¹² (all horizontal) Forward gamma detector was installed.

BGOegg Physics Program 1 : η'-mesic nuclei search

BGOegg Physics Program 2 : Baryon Resonance

- The studies of excited baryon resonances at 1.5—2.5 GeV/c² are important for understanding the constituent quark model and beyond.
 - ex. missing resonance, diquark correlation, exotic baryon,

The N*s have broad widths overlapping with each other. The measurement of the photon beam asymmetry in addition to the differential cross section helps to decompose the N*s with the interferences of helicity amplitudes.

$$\sigma \propto |H_1|^2 + |H_2|^2 + |H_3|^2 + |H_4|^2$$

$$\Sigma \propto Re(H_1 H_4^* + H_2 H_3^*)$$

The photon beam asymmetries for $E_{\gamma} \gtrsim 2$ GeV are very scarce.

BGOegg Physics Program 2 : Baryon Resonance

> π^{0} photoproduction : > I=1 \Rightarrow Both N^{*} and Δ^{*} contribute at s-channel.

 \Rightarrow Check of analysis method & luminosity.

Can we expect **any new knowledge** from the π^0 photoproduction ?

- Photon beam asymmetry above 2 GeV.
- Discrepancy of CLAS & CBELSA differential cross sections at low energies & backward angles.

π^0 Photoproduction Analysis

Acceptance for the $\gamma p \rightarrow \pi^0 p$ reaction

Acceptance measurement was **iterated** by using the MC sample of the $\gamma p \rightarrow \pi^0 p$ reaction. Started from the phase space and took into account the **differential cross sections** in MC.

<u>Differential Cross Section of $\gamma p \rightarrow \pi^0 p$ below 1.9 GeV</u>

22 energy bins for 1300<E_{γ}<2400 MeV & **17 polar angle bins** for $-1.0 < \cos \theta_{\pi}^{CM} < 0.7$

<u>Differential Cross Section of $\gamma p \rightarrow \pi^0 p$ above 1.9 GeV</u>

Closer to the CLAS, GRAAL, and LEPS results than the CBELSA result at the low E, range.

◆: this work (BGOegg), □: CLAS [PRC76 (2007) 025211],
○: CBELSA [PRL94 (2005) 012003], △: CBELSA [PRC84 (2011) 055203]
◇: GRAAL [EPJA26 (2005) 399], ¹/₂: LEPS [PLB657 (2007) 32]
Note: The histogram indicates the systematic error of the BGOegg meas.

<u>Comparison with Model Calculations (π^0 cross section)</u>

: this work (BGOegg)

- —: Bonn-Gatchina [https://pwa.hiskp.uni-bonn.de/BG2014_02_obs_int.htm]
- —: GWU SAID [http://gwdac.phys.gwu.edu/analysis/pr_analysis.html]
- ----: ANL-Osaka [Private communication with Prof. Sato (Osaka Univ.)]

More or less consistent with the model calculations because the differential cross sections are well defined by the existing data.

Photon Beam Asymmetry Measurement

- Vertical & horizontal data were summed by adjusting the linear polarization directions with rotations.
- No acceptance correction is necessary.
- > Fit A $(1 + \Sigma' \cos 2\phi)$.
- > The beam asymmetry Σ was obtained by multiplying the **polarization degree** P_{γ} to the fitted Σ' .

$$P_{\gamma} = P_{\text{laser}} \frac{(1 - \cos \alpha)^2}{2(\chi + 1 + \cos \alpha^2)}$$

Eq.16 of NIM A 455 (2000) 1.

Fit examples for 1900<E_y<2000 MeV

Photon Beam Asymmetry of $\gamma p \rightarrow \pi^0 p$

•: this work (BGOegg)

- □: CLAS [PRC88 (2013) 065203], ○: CBELSA [PRC81 (2010) 065210],
- ♦ : GRAAL [EPJA26 (2005) 399], ¹ : LEPS [PLB657 (2007) 32],
- ★ : Daresbury [NPB104(1976)253], ☆ : Daresbury [NPB154(1979)492]
- * : CEA [PRL28(1972)1403], △ : Yerevan [PLB48(1974)463]

<u>Photon Beam Asymmetry of $\gamma p \rightarrow \pi^0 p$ </u>

- > The wide angle measurement at $E_{y} \gtrsim 2$ GeV is new.
- Very similar to the other experimental results.
- The LCS results (BGOegg, LEPS, GRAAL) may be a bit smaller than the bremsstrahlung beam results at higher energies.

Comparison with Model Calculations (Σ_{π^0})

•: this work (BGOegg)

- -----: Bonn-Gatchina [https://pwa.hiskp.uni-bonn.de/BG2014_02_obs_int.htm]
- ——: GWU SAID [http://gwdac.phys.gwu.edu/analysis/pr_analysis.html]
- ——: ANL-Osaka [Private communication with Prof. Sato (Osaka Univ.)]

There are discrepancies at the high energies where exp. data are scarce.

$\underline{\eta}$ Photoproduction

A charged track at DC or BGOegg (Only direction was measured.)

Kinematic fit (11 variables) was done in the same way as the π^0 analysis. There are **5 constraints** (4-momentum conservation and η mass)

The "yield/acceptance" is unchanged even by
varying the χ² prob. cut point
using tight kinematical cuts instead of the KF

Backgrounds in η Photoproduction

The invariant mass and missing mass are simultaneously fitted with the **template BG shapes**, which have specific mass distributions respectively.

Typical BG contamination is about 5% and subtracted after the χ^2 prob. cut.

Differential Cross Section of $\gamma p \rightarrow \eta p$

20 energy bins for 1820< \sqrt{s} <2320 MeV & **16 polar angle bins** for -1.0< $\cos \theta_{\Pi}^{CM}$ <0.6

LEPS : PRC80,052201 CBELSA : PRC80,055202

CLAS : PRC80,045213

More or less consistent with the CLAS result, but not in good agreement with the LEPS & CBELSA results.

Comparison with Model Calculations (η cross section)

Cross sections have been used for the fit by model calculations.

<u>Photon Beam Asymmetry (γp→ηp)</u>

<u>Comparison with Model Calculations (Σ_n)</u>

new measurement

$\underline{\omega}$ Photoproduction off Proton

ω→π⁰γ→3γ @BGOegg (Br=8.40±0.22%)
Proton direction meas. @ DC or BGOegg
⇒ Kinematic fit (CL cut @2%, Required 4-momentum conservation & π⁰ mass.) :
About 75K events remain finally.
⇒ Fit a signal + BG function. : # of signals : ~37K events
Differential cross section measurement was done at

17 energy bins for 1810<E_{CM}<2320 MeV & **18 polar angle bins** for $-1 < \cos\theta^{\omega}_{CM} < 0.8$.

<u>ω spin density matrix element (Adair frame)</u>

Differential Cross Section of $\gamma p \rightarrow \omega p$

●: this work (BGOegg), □: CLAS [PRC80 (2009) 065208],

O: CBELSA [EPJA 51(2015) 6], ♥ : LEPS [PRC80 (2009) 052201R],

△: LEPS-TPC [PTEP2015 013D01]

Note: The histogram indicates the systematic error of the BGOegg meas.

Comparison with Model Calculations (ω cross section)

: this work (BGOegg), ——: Bonn-Gatchina [Private communication]

More or less similar but there may be some structure.

Photon Beam Asymmetry (ω photoproduction)

Bonn-Gatchina model [private communication, PRC97(2018)055202]

Summary & Prospect

- At the highest energy region, the measured photon beam asymmetries of π⁰, η, ω photoproduction deviate from the existing PWA model calculations.
 ⇒ There is room to update model parameters.
- By using the already collected data, we can explore double-meson photoproduction to study highly excited baryons and heavier mesons. At this stage, PWA would be really necessary.
- We are going to cover the forward acceptance hole of BGOegg by another calorimeter (PWO). At this stage, the experiments with a liquid deuterium target (neutron) would be possible.

