Dispersive analysis of $K^+ \rightarrow \pi^+ \ell^+ \ell^-$ decays

Sergi Gonzàlez-Solís¹

(Work in progress)

Institute of Theoretical Physics Chinese Academy of Sciences

The International Workshop on Partial Wave Analyses and Advanced Tools for Hadron Spectroscopy Beijing (China), 20 july 2018

¹sgonzalez@itp.ac.cn

Motivation: Flavor anomalies in *B* decays

• Hints of Lepton Flavor Universality Violation (LFUV) in $B \to K^{(*)} \ell^+ \ell^-$

$$R_{K} = 0.745^{+0.090}_{-0.074}(\text{stat}) \pm 0.036(\text{syst}), \quad 1 \le q^{2} \le 6 \text{ GeV}^{2}$$

$$R_{K^{*0}} = \begin{cases} 0.66^{+0.11}_{-0.07}(\text{stat}) \pm 0.03(\text{syst}) & \text{for} \quad 0.045 < q^{2} < 1.1 \text{ GeV}^{2}, \\ 0.69^{+0.11}_{-0.07}(\text{stat}) \pm 0.05(\text{syst}) & \text{for} \quad 1.1 \quad < q^{2} < 6.0 \text{ GeV}^{2}, \end{cases}$$

$$\stackrel{\bullet}{\underset{l = 0.00}{\overset{\bullet}{_{-0.07}}} \stackrel{\bullet}{\underset{l = 0.00}{\overset{\bullet}{_{-0.07}}}} \stackrel{\bullet}{\underset{l = 0.00}{\overset{\bullet}{_{-0.00}}}} \stackrel{\bullet}{\underset{l = 0.00}{\overset{\bullet}{_{-0.00}}}} \stackrel{\bullet}{\underset{l = 0.00}{\overset{\bullet}{_{-0.00}}}} \stackrel{\bullet}{\underset{l = 0.00}{\overset{\bullet}{_{-0.00}}}} \stackrel{\bullet}{\underset{l = 0.00}{\overset{\bullet}{_{-0.00}}} \stackrel{\bullet}{\underset{l = 0.00}{\overset{\bullet}{\underset{l = 0.00}{\overset{\bullet}{_{-0.00}}} \stackrel{\bullet}{\underset{l = 0.00}{\overset{\bullet}{_{-0.00}}} \stackrel{\bullet}{\underset{l = 0.00}{\overset{\bullet}{\underset{l = 0.$$

• Measured rates for $B \to D\tau\nu_{\tau}$ and $B \to D^*\tau\nu_{\tau}$ are enhanced relative to SM

$$R(D)_{exp} = \frac{BR(B \to D\tau\nu_{\tau})}{BR(B \to D\ell\nu_{\ell})} = 0.407(39)(24),$$

$$R(D^{*})_{exp} = \frac{BR(B \to D^{*}\tau\nu_{\tau})}{BR(B \to D^{*}\ell\nu_{\ell})} = 0.304(13)(7),$$

Motivation: Flavor anomalies in *B* decays

• Expressed in terms of the effective $\Delta B = 1$ Hamiltonian

$$\mathcal{H}_{eff} = -\frac{4G_F}{\sqrt{2}} V_{tb} V_{ts}^* \sum_i C_i^B Q_i^B \,,$$

potential NP interpreted as contributions to $C_{9,10}^B$

Kaon probes of LFUV

- Examine the role of $K^+ \rightarrow \pi^+ \ell^+ \ell^-$ decays in testing *B*-anomalies
- Dominant contribution to $K^+ \to \pi^+ \ell^+ \ell^-$ due to $K^+ \to \pi^+ \gamma^*$

- a₊ and b₊ are related to chiral LEC's poorly known
- Fits to E865 and NA48/2 spectra data yields:

$$a_{+}^{ee} = -0.587(10), \quad a_{+}^{\mu\mu} = -0.575(39),$$

• One can show that (Crivellin et. al. Phys.Rev. D93 (2016) no.7, 074038)

$$C_9^{B,\mu\mu} - C_9^{B,ee} = -\frac{a_+^{\mu\mu} - a_+^{ee}}{\sqrt{2}V_{ts}^* V_{td}} \simeq -19 \pm 79 \,,$$

S.Gonzàlez-Solís

PWAATHOS 2018

Kaon probes of LFUV

- Determination of a^{µµ}₊ a^{ee}₊ needs one order of magnitude improvement to probe NP explanations of *B*-anomalies
- Improvements of this size possible at the NA62 experiment
 ⇒ High-statistics: Number of decay~ 50 times larger than NA48/2
- Proposal to experimentalists: (re)measure K⁺ → π⁺ℓ⁺ℓ⁻ sepctrum to determine a₊ at high precision
- **Proposal from theorists**: revisit the description with the advances of the field to understand better low-energy meson dynamics

Outline

Review of the $K^+ \rightarrow \pi^+ \ell^+ \ell^-$ decays in ChPT

- 2 $K^+ \rightarrow \pi^+ \ell^+ \ell^-$: Dispersive approach (this work)
 - $K^+ \rightarrow \pi^+ \pi^+ \pi^-$
 - Pion vector form factor

Non-leptonic weak amplitudes in the effective chiral Lagrangian

• The effective Lagrangian we are concerned with reads

$$\mathcal{L}_{\text{eff}} = \mathcal{L}_{\text{strong}} - \frac{1}{4} F_{\mu\nu} F^{\mu\nu} + \mathcal{L}_{\text{em}} + \frac{G_F}{\sqrt{2}} V_{ud} V_{us} (\mathcal{L}_{\Delta S=1} + \mathcal{L}_{\Delta S=1}^{\text{em}})$$

$$\mathcal{L}_{\text{strong}} = \frac{f^2}{4} \langle \partial_{\mu} U \partial^{\mu} U^{\dagger} \rangle + \frac{f^2}{4} \langle U^{\dagger} \chi + \chi^{\dagger} U \rangle$$

$$\mathcal{L}_{\Delta S=1} = g_8 (L_{\mu} L^{\mu})_{23} + \text{h.c.}, \quad L_{\mu} = i f^2 U \partial_u U^{\dagger}$$

$$\mathcal{L}_{\text{em}} = -e A_{\mu} \text{tr} (\hat{Q} V^{\mu}) + \dots, \quad V_{\mu} = \frac{1}{2} i f^2 [U, \partial_{\mu} U^{\dagger}]$$

$$\mathcal{L}_{\Delta S=1}^{\text{em}} = e g_8 f^2 A_{\mu} \{ L^{\mu}, \Delta \}_{23} + \dots, \quad \Delta = U [\hat{Q}, U^{\dagger}]$$

Calculation of the $K^+ \rightarrow \pi^+ \ell^+ \ell^-$ decay amplitude

• Lowest Order $\mathcal{O}(p^2)$

Ecker, Pich, de Rafael Nuclear Physics B291 (1987)

• One-Loop $\mathcal{O}(p^4)$

Counterterms $\mathcal{O}(p^4)$

Ecker, Pich, de Rafael Nuclear Physics B291 (1987)

purely strong and e.m. origin

e.m. induced from $\mathcal{L}^{\text{em},4}_{\Delta S=1}$

 $A(K^{+} \to \pi^{+} \gamma) = \frac{1}{3} \frac{G_{F}}{\sqrt{2}} V_{ud} V_{us} g_{8} e\left(\mathbf{w}_{1} - \mathbf{w}_{2} + 3(\mathbf{w}_{2} - 4L_{9})\right) q^{2} \epsilon^{\mu} (p + p')_{\mu}$

Final amplitude in terms of renormalized couplings

$$A(K^{+} \to \pi^{+} \gamma) = \frac{G_{F} V_{ud} V_{us} g_{8} e}{\sqrt{2} (4\pi)^{2}} q^{2} \hat{\phi}_{+} (q^{2}) \epsilon^{\mu} (p + p')_{\mu}$$
$$\hat{\phi}_{+} (q^{2}) = -\left[\phi_{K} (q^{2}) + \phi_{\pi} (q^{2}) + w_{+} \right]$$
$$w_{+} = -\frac{1}{3} (4\pi)^{2} (w_{1}^{r} - w_{2}^{r} + 3(w_{2}^{r} - 4L_{9}^{r})) - \frac{1}{6} \log \left(\frac{M_{K}^{2} M_{\pi}^{2}}{\mu^{4}} \right)$$

State-of-the-art $\mathcal{O}(p^6)$

D'Ambrosio, Ecker, Isidori Portolés JHEP 9808 (1998) 004

Spectrum in the dilepton invariant mass

$$\frac{d\Gamma}{dz} = \frac{G_F^2 \alpha^2 M_K^5}{12\pi (4\pi)^4} \lambda^{3/2} (1, z, r_\pi^2) \sqrt{1 - 4\frac{r_\ell^2}{z}} \left(1 + 2\frac{r_\ell^2}{z}\right) |V(z)|^2, \quad r_P = M_P/M_K, \quad z = q^2/M_K^2$$

• Form factor: polynomial + $\mathcal{O}(p^6)$ unitarity correction

$$V(z) = a_+ + b_+ z + V^{\pi\pi}(z),$$

Polynomial: Low Energy Constants of the ChPT framework

$$a_{+} = \frac{V_{ud}V_{us}g_8}{\sqrt{2}} \left(\frac{1}{3} - w_{+}\right), \quad b_{+} = \frac{V_{ud}V_{us}g_8}{\sqrt{2}} \frac{1}{60}$$
$$w_{+} = \frac{64\pi^2}{3} \left(N_{14}^r - N_{15}^r + 3L_9^r\right) + \frac{1}{3}\ln\frac{\mu^2}{M_K M_\pi}$$

Unitarity correction

$$\underbrace{K^{+}, K_{S}}_{Y} \qquad V_{j}^{\pi\pi}(z) = \underbrace{\frac{K \to \pi\pi\pi}{\alpha_{j} + \beta_{j}(z - z_{0})/r_{\pi}^{2}}}_{G_{F}M_{K}^{2}r_{\pi}^{2}} \begin{bmatrix} \frac{4}{9} - \frac{4}{3z} + \frac{4}{3z}\left(1 - \frac{z}{4}\right)G(z) \end{bmatrix} \begin{bmatrix} F_{V}(z) \\ \left[1 + \frac{z}{r_{\rho}^{2}}\right], \\ 1 + \frac{z}{r_{\rho}^{2}} \end{bmatrix},$$
S.González-Solís PWAATHOS 2018 20 july 2018 10/3

State-of-the-art $\mathcal{O}(p^6)$

- Polynomial dominates over the loop correction $V_{+}^{\pi\pi}(z)$
- $N_{14}^r N_{15}^r$ poorly known (Bijnens et.al. EPJC 39, 347 (2005), Cappiello et.al. EPJC 78, 265 (2018))

$$L_{9} = 7 \times 10^{-3}, N_{14} = -10.4 \times 10^{-3}, N_{15} = 5.95 \times 10^{-3},$$

$$a_{+} = -0.236$$

$$L_{9} = 5.9(4) \times 10^{-3}, N_{14} = -2(28) \times 10^{-4}, N_{15} = 1.65(22) \times 10^{-3},$$

$$a_{+} = -1.012$$

• Theoretical ideas on a_+ and b_+ : $\frac{b_+}{a_+} \sim \frac{\mathcal{O}(p^6)}{\mathcal{O}(p^4)} < 1$.

Source	a_+	b_+	b_{+}/a_{+}	$BR \times 10^9$
$K^+ \rightarrow \pi^+ e^+ e^-$ E865	-0.587(10)	-0.655(44)	~ 1.20	294(15)
$K^+ ightarrow \pi^+ e^+ e^-$ NA48/2	-0.578(16)	-0.779(66)	~ 1.35	314(10)
$K^+ ightarrow \pi^+ \mu^+ \mu^-$ NA48/2	-0.575(39)	-0.813(145)	~ 1.41	96.2(2.5)
Lattice (RBC/UKQCD)	1.6(7)	0.7(8)	~ 0.4	—

 Hierarchy estimated is not correct? Higher order chiral corrections or crossed-channel contributions are not negligible?

S.Gonzàlez-Solís

PWAATHOS 2018

Transition form factor $K \rightarrow \pi \ell^+ \ell^-$

• Two-pion discontinuity of the $K \rightarrow \pi^+ \gamma^*$ transition form factor

Twice subtracted dispersion relation

S.Gonzà

$$disc f_{K\pi}^{\pi\pi}(s) = 2i\sigma(s)F_{\pi}^{V*}(s)\mathcal{M}_{\ell=1}^{K\to3\pi}(s)\theta(s-4m_{\pi}^{2}),$$

$$f_{K\pi}(s) = a+bs+\frac{s^{2}}{2\pi i}\int_{4m_{\pi}^{2}}^{\infty} ds'\frac{disc f_{K\pi}^{\pi\pi}(s')}{(s')^{2}(s'-s)},$$

$$a = a_{+} = \frac{1}{\pi}\int_{4m_{\pi}^{2}}^{\infty} ds'\frac{\sigma(s')F_{\pi}^{V*}(s')\mathcal{M}_{\ell=1}^{K\to3\pi}(s')}{s'},$$

$$b = b_{+}/M_{K}^{2} = \frac{1}{\pi}\int_{4m_{\pi}^{2}}^{\infty} ds'\frac{\sigma(s')F_{\pi}^{V*}(s')\mathcal{M}_{\ell=1}^{K\to3\pi}(s')}{(s')^{2}},$$
Here solve the product of the prod

$K \rightarrow 3\pi$ decay amplitude decomposition

- Assumptions: i) ΔI = 1/2-dominace rule; ii) treat the K meson as spurious I = 1 triplet; iii) isospin is conserved in the decay.
- Partial wave decomposition of the decay amplitude as

$$\mathcal{M}_{K\to 3\pi}^{ijk,l}(s,t,u) = \sum_{\ell=0}^{\infty} \sum_{I} (2\ell+1) P_{\ell}(\cos\theta) \mathcal{P}_{I}^{ijkl} m_{\ell}^{I}(s,t,u) ,$$

$$s = (p_k - p_1)^2$$
, $t = (p_k - p_2)^2$, $u = (p_k - p_3)^2$,

i, *j*, *k* denote the isospin of the pions, *l* isospin state of the interaction. *K* → πππ amplitude decomposition in terms of three amplitudes of fixed *I* and *l*

$$\mathcal{M}(s,t,u) = \mathcal{M}_0^0(s) + (s-u)\mathcal{M}_1^1(t) + (s-t)\mathcal{M}_1^1(u) + \mathcal{M}_0^2(t) + \mathcal{M}_0^2(u) - \frac{2}{3}\mathcal{M}_0^2(s)$$

 $\mathcal{M}_{K^+ \to \pi^+ \pi^-}(s,t,u) = \mathcal{M}(t,u,s) + \mathcal{M}(u,s,t)$

 $K^+ \to \pi^+ \ell^+ \ell^-$: Dispersive approach (this work) $K^+ \to \pi^+ \pi^+ \pi^-$

• Unitarity relation for $K \rightarrow 3\pi$ in the general form

disc
$$\mathcal{M}_{K \to 3\pi}^{ijk,l}(s,t,u) = i \sum_{n'} (2\pi)^4 \delta^4 \left(p_1 + p_2 + p_3 - p_{n'} \right) \mathcal{T}_{n' \to \pi\pi\pi}^{*abc \cdots, ijk} \mathcal{M}_{K \to n'}^{abc \cdots, l}$$

• Khuri-Treiman integral equations of the Omnès type:

$$\mathcal{M}_{\ell}^{I}(s) = \Omega_{\ell}^{I}(s) \left(P_{\ell}^{I}(s) + \frac{s^{n}}{\pi} \int_{4m_{\pi}^{2}}^{\infty} ds' \frac{\sin \delta_{\ell}^{I}(s') \hat{\mathcal{M}}_{\ell}^{I}(s')}{|\Omega_{\ell}^{I}(s')|(s')^{n}(s'-s)} \right),$$

• Omnès functions $\Omega^I_\ell(s)$:

Order of the subtraction polynomials P^I_{\u03c0}(s): asymptotics of the functions M^I_{\u03c0}(s).

Asymptotic behavior of Ω^I_ℓ(s): assume the phase shift tends to a constant for

 $s \rightarrow \infty$ S.Gonzàlez-Solís

$K^+ \to \pi^+ \pi^+ \pi^-$

Omnès functions

Madrid-Kraków PhysRevD.83.074004

$$\Omega_{0}^{0}(s) = \exp\left\{\frac{s}{\pi}\int_{4m_{\pi}^{2}}^{\infty} ds' \frac{\delta_{0}^{0}(s)}{s'(s'-s)}\right\},$$

$$\lim_{s \to \infty} \delta_{0}^{0}(s) \to \pi, \quad \Omega_{0}^{0}(s) \sim \frac{1}{s}$$

$$\int_{s \to \infty}^{350} \int_{0}^{0} \int_{0}^{1} \int_{0$$

Omnès functions

Madrid-Kraków PhysRevD.83.074004

١

$$\Omega_{1}^{1}(s) = \exp\left\{\frac{s}{\pi}\int_{4m_{\pi}^{2}}^{\infty} ds' \frac{\delta_{1}^{1}(s)}{s'(s'-s)}\right\},$$

$$\lim_{s \to \infty} \delta_{1}^{1}(s) \to \pi, \quad \Omega_{1}^{1}(s) \sim \frac{1}{s}$$

$$\sum_{s \to \infty}^{200} \int_{0}^{0} \int_{0$$

Omnès functions

Madrid-Kraków PhysRevD.83.074004

$$\Omega_{0}^{2}(s) = \exp\left\{\frac{s}{\pi}\int_{4m_{\pi}^{2}}^{\infty} ds' \frac{\delta_{0}^{2}(s)}{s'(s'-s)}\right\},$$

$$\lim_{s \to \infty} \delta_{0}^{2}(s) \to 0, \quad \Omega_{0}^{2}(s) \sim \mathcal{O}(1)$$

$$\stackrel{0}{\underset{s \to \infty}{\overset{0}{\xrightarrow{0}}}} \int_{-10}^{0} \underbrace{\int_{0}^{0} \underbrace{\int_{0}^{0} \int_{0}^{0} \underbrace{\int_{0}^{0} \int_{0}^{0} \int_{0}^{0} \underbrace{\int_{0}^{0} \int_{0}^{0} \underbrace{\int_{0}^{0} \int_{0}^{0} \int_{0}^{0} \underbrace{\int_{0}^{0} \underbrace$$

 $K^+ \to \pi^+ \ell^+ \ell^-$: Dispersive approach (this work) $K^+ \to \pi^+ \pi^+ \pi^-$

 Assuming M(s,t,u) satisfies the Froissart-Martin bound: polynomial part of the amplitude grows, at most, linearly in s,t,u

$$\mathcal{M}_0^0(s) \sim \mathcal{M}_0^2(s) \sim s$$
, $\mathcal{M}_1^1(s) \sim constant$,

• the subtraction polynomial is of the form

 $P_0^0(s) = \alpha_0 + \beta_0 s + \gamma_0 s^2, \quad P_1^1(s) = \alpha_1 + \beta_1 s, \quad P_0^2(s) = \alpha_2 + \beta_2 s.$

 the number of subtraction constants can be reduced because of the isospin decomposition is not unique.

$$\mathcal{M}_{0}^{0}(s) = \Omega_{0}^{0}(s) \left(\alpha_{0} + \beta_{0}s + \gamma_{0}s^{2} + \frac{s^{2}}{\pi} \int_{4m_{\pi}^{2}}^{\infty} ds' \frac{\sin \delta_{0}^{0}(s') \hat{\mathcal{M}}_{0}^{0}(s')}{|\Omega_{0}^{0}(s')|(s')^{2}(s'-s)} \right),$$

$$\mathcal{M}_{1}^{1}(s) = \Omega_{1}^{1}(s) \left(\beta_{1}s + \frac{s}{\pi} \int_{4m_{\pi}^{2}}^{\infty} ds' \frac{\sin \delta_{1}^{1}(s') \hat{\mathcal{M}}_{1}^{1}(s')}{|\Omega_{1}^{1}(s')|s'(s'-s)} \right),$$

$$\mathcal{M}_0^2(s) = \Omega_0^2(s) \frac{s^2}{\pi} \int_{4m_\pi^2}^{\infty} ds' \frac{\sin \delta_0^2(s') \hat{\mathcal{M}}_0^2(s')}{|\Omega_0^2(s')|(s')^2(s'-s)|}$$

Solution to the dispersive integrals

• The solution of the integral equations is linear in the subtractions constants and can be represented by a linear combination

 $\mathcal{M}(s,t,u) = \alpha_0 \mathcal{M}_{\alpha_0}(s,t,u) + \beta_0 \mathcal{M}_{\beta_0}(s,t,u) + \gamma_0 \mathcal{M}_{\gamma_0}(s,t,u) + \beta_1 \mathcal{M}_{\beta_1}(s,t,u),$

$$\begin{aligned} \mathcal{M}_{\alpha_0}(s,t,u) &= \mathcal{M}(s,t,u)|_{\alpha_0=1,\beta_0=0,\gamma_0=0,\beta_1=0} \,, \\ \mathcal{M}_{\beta_0}(s,t,u) &= \mathcal{M}(s,t,u)|_{\alpha_0=0,\beta_0=1,\gamma_0=0,\beta_1=0} \,, \\ \mathcal{M}_{\gamma_0}(s,t,u) &= \mathcal{M}(s,t,u)|_{\alpha_0=0,\beta_0=0,\gamma_0=1,\beta_1=0} \,, \\ \mathcal{M}_{\beta_1}(s,t,u) &= \mathcal{M}(s,t,u)|_{\alpha_0=0,\beta_0=0,\gamma_0=0,\beta_1=1} \,, \end{aligned}$$

each of the basis functions fulfill the reconstruction theorem

$$\begin{aligned} \mathcal{M}_{\alpha_0}(s,t,u) &= \mathcal{M}_0^0(s)|_{\alpha_0=1,\beta_0=0,\gamma_0=0,\beta_1=0} + (s-u)\mathcal{M}_1^1(t)|_{\alpha_0=1,\beta_0=0,\gamma_0=0,\beta_1=0} \\ &+ (s-t)\mathcal{M}_1^1(u)|_{\alpha_0=1,\beta_0=0,\gamma_0=0,\beta_1=0} + \mathcal{M}_0^2(t)|_{\alpha_0=1,\beta_0=0,\gamma_0=0,\beta_1=0} \\ &+ \mathcal{M}_0^2(u)|_{\alpha_0=1,\beta_0=0,\gamma_0=0,\beta_1=0} - \frac{2}{3}\mathcal{M}_0^2(s)|_{\alpha_0=1,\beta_0=0,\gamma_0=0,\beta_1=0} \,, \end{aligned}$$

• Perform an iteration procedure for each of the basis function separately and fix the subtraction constants after the iteration converges.

Subtraction constants

- Matching strategy adopted: Dalit-plot parameters associated to $K \rightarrow 3\pi$ agree with our dispersive representation
- These are defined by the $K \rightarrow 3\pi$ decay amplitude squared expansion

$$\left|\frac{A(s_1, s_2, s_3)}{A(s_0, s_0, s_0)}\right|^2 = 1 + gY + hY^2 + kX^2,$$

• Dalitz-plot parameters obtained in ChPT at NLO

Parameter	set 1 (Bijnens EPJC 39, 347 (2005))	set 2 (Bijnens EPJC 40, 383 (2005))
g	-0.201	-0.215
h	0.008	0.012
k	-0.0037	-0.0034
$ A(s_0, s_0, s_0) ^2$	$4.14 \cdot 10^{-12}$	_
$\Gamma(K \rightarrow 3\pi)$ [GeV]	—	$2.971 \cdot 10^{-18}$

 $K^+ \to \pi^+ \ell^+ \ell^-$: Dispersive approach (this work) $K^+ \to \pi^+ \pi^+ \pi^-$

- Matching approach:
 - No rescattering limit $\delta^I_\ell \to 0$ implying $\Omega^I_\ell \to 1$ and $\hat{\mathcal{M}}^I_\ell \to 0$
 - Two-body rescattering effects $(\hat{\mathcal{M}}_{\ell}^{I} = 0)$
 - Three-body effects $(\hat{\mathcal{M}}_{\ell}^{I} \neq 0)$
- (preliminary) parameters resulting from the matching:

Source	Type of matching	$\alpha_0 \times 10^7$	$\beta_0 \times 10^6$	$\gamma_0 \times 10^6$	$\beta_1 \times 10^6$
	No rescattering	1.2 + i0.7	-14.0 - i1.7	21.4 + i2.7	-2.4
set 1	Two-body ($\hat{\mathcal{M}}^{I}_{\ell} = 0$)	0.3 - i1.7	-9.3 + i2.0	26.1 + i7.3	-1.5 + i0.1
	Three-body $(\hat{\mathcal{M}}_{\ell}^{I} \neq 0)$				in progress
	No rescattering	0.7 + i0.4	-12.6 - i1.0	15.4 + i1.5	-5.6
set 2	Two-body ($\hat{\mathcal{M}}_{\ell}^{I} = 0$)	0.01 - i1.66	-8.7 + i1.9	23.1 + i7.8	-3.5 + i0.1
	Three-body $(\hat{\mathcal{M}}_{\ell}^{I} \neq 0)$				in progress

Pion vector Form Factor

Omnès

$$F_{\pi}^{V}(s) = \left(1 + \alpha_{V}s + \kappa \frac{s}{m_{\omega}^{2} - s - im_{\omega}\Gamma_{\omega}}\right) \exp\left\{\frac{s}{\pi} \int_{4m_{\pi}^{2}}^{\infty} ds' \frac{\delta_{1}^{1}(s)}{s'(s'-s)}\right\}$$

Fits to $K^+ \rightarrow \pi^+ \ell^+ \ell^-$ experimental data (preliminary)

- Fit A: *a*₊ and *b*₊ allowed to float
- Fit B: $b_+ = 0$ to check stability of a_+
- Fit C: LFU $a^{ee}_{+} = a^{\mu\mu}_{+}$ and $b^{ee}_{+} = b^{\mu\mu}_{+}$
- Fit D: lattice predictions on a_+ and b_+ as an external restriction

$p_1 = 2$	-								
Mode	Parameter	Fit A		Fit B		Fit C		Fit D	
		2-body	3-body	2-body	3-body	2-body	3-body	2-body	Γ
e^+e^-	a_{+}^{ee}	-0.593(12)		-0.484(5)		-0.592(11)		-0.593(12)	Γ
	$b_{+}^{\dot{e}e}$	-0.734(55)		= 0	= 0	-0.748(48)		-0.730(55)	
	χ^2_{dof}	1.53		6.45		1.17		2.01	
$\mu^+\mu^-$	$a^{\mu\mu}_{\pm}$	-0.603(40)		-0.458(9)		$= a_{+}^{ee}$	$= a_{+}^{ee}$	-0.608(39)	Γ
	$b_{+}^{\mu\mu}$	-0.728(146)		= 0	= 0	$= b_{+}^{\dot{e}e}$	$= b_{+}^{\dot{e}e}$	-0.707(143)	
	χ^2_{dof}	0.82		1.67				1.50	

$\beta_1 = -1.5 + i0.1$

 $\beta_1 = -2.4$

Mode	Parameter	Fit A		Fit B		Fit C		Fit D	
		2-body	3-body	2-body	3-body	2-body	3-body	2-body	
e^+e^-	a_{+}^{ee}	-0.573(12)		-0.591(5)		-0.571(11)		-0.574(12)	
	b_{\pm}^{ee}	-0.912(55)		= 0	= 0	-0.930(48)		-0.907(55)	
	χ^2_{dof}	1.34		1.40		1.07		1.87	
$\mu^{+}\mu^{-}$	$a_{+}^{\mu\mu}$	-0.563(40)		-0.603(9)		= a_+^{ee}	= a_{+}^{ee}	-0.571(39)	
	$b_{+}^{\mu\mu}$	-0.974(146)		= 0	= 0	$= b_{\pm}^{\dot{e}e}$	$= b_{+}^{\dot{e}e}$	-0.945(144)	
	$\chi^2_{ m dof}$	0.83		0.85		·		1.55	

Fits to $K^+ \rightarrow \pi^+ \ell^+ \ell^-$ experimental data

• Call for low-energy bin points in $K^+ \rightarrow \pi^+ e^+ e^-$

Fits to $K^+ \rightarrow \pi^+ \ell^+ \ell^-$ experimental data

- Call for low-energy bin points in $K^+ \rightarrow \pi^+ e^+ e^-$
- Region of the $\pi\pi$ threshold $(z \sim 0.32)$ slightly improved

Outlook

- $K^+ \rightarrow \pi^+ \ell^+ \ell^-$ well suited to gain information on the *B*-anomalies
- Dispersion relations allow to treat the most important rescattering effects properly
- The $\pi\pi$ phase shift is (almost) all what we need
- Preliminary results shows that LFU holds well...
- ...work in progress
- Other applications

Motivation

Non- Rare versus Rare Decays

BR > 10 ⁻⁵					
Decay	BR				
$K^+ \to \pi^+ \nu_\mu$	0.6355 (11)				
$K^+ \to \pi^0 \mu^+ \nu_\mu$	0.03353 (34)				
$K_L \to \pi^{\pm} e^{\mp} \nu_e$	0.4055 (12)				
$K^+ \to \pi^+ \pi^0$	0.2066 (8)				
$K^+ \to \pi^+ \pi^+ \pi^-$	0.0559 (4)				
$K_S \to \pi^0 \pi^0$	0.3069 (5)				
$K_S \to \pi^+ \pi^-$	0.6920 (5)				
$K_L \to \pi^0 \pi^0 \pi^0$	0.1952 (12)				
$K_L \to \pi^+ \pi^- \pi^0$	0.1254 (5)				
$K^+ \to \pi^+ \pi^0 \gamma$	2.75 (15) x 10 ⁻⁴				
$K_L \to \gamma \gamma$	5.47 (4) x 10 ⁻⁴				
$K_L \to \pi^+ \pi^- \gamma$	4.15 (15) x 10 ⁻⁵				
$K_S \to \pi^+ \pi^- \gamma$	1.79 (5) x 10 ⁻³				

BR < 10 ⁻⁵				
Decay	BR x 10 ⁵			
$K^+ \to \pi^+ \gamma \gamma$	0.1003 (56)			
$K^+ \to \pi^+ e^+ e^- \gamma$	1.19 (13) x 10 ⁻³			
$K^+ \to \pi^+ e^+ e^-$	0.0300 (9)			
$K_S \to \gamma \gamma$	0.263 (17)			
$K_S \to \pi^0 \mu^+ \mu^-$	2.9 (1.5) x 10 ⁻⁴			
$K_S \rightarrow \mu^+ \mu^-$	< 9 x 10 ⁻⁴ (90% C.L.)			
$K_L \to \pi^0 \gamma \gamma$	0.1274 (34)			
$K_L \to e^+ e^-$	9 (⁺⁶ ₋₄) x 10 ⁻⁷	>		
$K_L \to \pi^+ \pi^- e^+ e^-$	0.0311 (19)			
$K_L \rightarrow \mu^+ \mu^- e^+ e^-$	2.69 (27) x 10 ⁻⁴			
$K_L \to \pi^0 \mu^+ \mu^-$	< 3.8 x 10 ⁻⁵ (90% C.L.)			
$K^+ \to \pi^+ \nu \overline{\nu}$	1.7 (1.1) x 10 ⁻⁵			
$K_L \to \pi^0 \nu \overline{\nu}$	< 6.7 x 10 ⁻³ (90% C.L.)			

• Isospin decomposition of the $\pi^{+,0}\pi^{+,0}\pi^{-,+}$ state: $|I_{(12)};I_{(123)},I_3\rangle$

$$|0;1,1\rangle = \frac{1}{\sqrt{3}} \left(|\pi^+\pi^-\pi^+\rangle + |\pi^-\pi^+\pi^+\rangle - |\pi^0\pi^0\pi^+\rangle \right),$$

$$|1;1,1\rangle \quad = \quad \frac{1}{2} \left(|\pi^+\pi^0\pi^0\rangle - |\pi^0\pi^+\pi^0\rangle - |\pi^+\pi^-\pi^+\rangle + |\pi^-\pi^+\pi^+\rangle \right) \,,$$

$$|2;1,1\rangle = \frac{1}{2\sqrt{15}} \Big(|\pi^+\pi^-\pi^+\rangle + |\pi^-\pi^+\pi^+\rangle + 2|\pi^0\pi^0\pi^+\rangle - 3|\pi^+\pi^0\pi^0\rangle - 3|\pi^0\pi^+\pi^0\rangle + 6|\pi^+\pi^+\pi^-\rangle \Big),$$

$$|1;2,1\rangle \quad = \quad \frac{1}{2} \left(|\pi^+\pi^0\pi^0\rangle - |\pi^0\pi^+\pi^0\rangle + |\pi^+\pi^-\pi^+\rangle - |\pi^-\pi^+\pi^+\rangle \right) \,,$$

$$|2;2,1\rangle = \frac{1}{2\sqrt{3}} \Big(2|\pi^+\pi^+\pi^-\rangle - 2|\pi^0\pi^0\pi^+\rangle + |\pi^+\pi^0\pi^0\rangle + |\pi^0\pi^+\pi^0\rangle - |\pi^+\pi^-\pi^+\rangle - |\pi^-\pi^+\pi^+\rangle \Big),$$

$$|2;3,1\rangle = \frac{1}{\sqrt{15}} \Big(2|\pi^+\pi^0\pi^0\rangle + 2|\pi^0\pi^+\pi^0\rangle + 2|\pi^0\pi^0\pi^+\rangle + |\pi^+\pi^-\pi^+\rangle + |\pi^-\pi^+\pi^+\rangle + |\pi^+\pi^+\pi^-\rangle \Big),$$

$$|S;1,1\rangle = \frac{1}{\sqrt{15}} \Big(2|\pi^+\pi^-\pi^-\rangle + 2|\pi^-\pi^+\pi^+\rangle + 2|\pi^+\pi^+\pi^-\rangle - |\pi^0\pi^0\pi^+\rangle - |\pi^+\pi^0\pi^0\rangle - |\pi^0\pi^+\pi^0\rangle \Big),$$

$$|3\pi\rangle$$
 = $\alpha|2;3,1\rangle + \beta|S;1,1\rangle$

$$R = \frac{\Gamma(K^+ \to \pi^+ \pi^0 \pi^0)}{\Gamma(K^+ \to \pi^+ \pi^+ \pi^-)} \sim \left| \frac{2\alpha - \beta}{\alpha + 2\beta} \right|^2 \sim 0.29 \Rightarrow I_{(123)} = 1 \text{ dominates }, \Delta I = 1/2 \text{ rule}$$

• We define the $K \rightarrow 3\pi$ decay amplitude according to

 $\langle \pi^{i}(p_{1})\pi^{j}(p_{2})\pi^{k}(p_{3})|iT|K(p_{k})\rangle = i\delta^{4}(p_{k}-p_{1}-p_{2}-p_{3})\mathcal{M}_{K\to 3\pi}^{ijk,l}(s,t,u),$

i, j, k denote the isospin of the pions, l isospin state of the interaction.

The invariant amplitude has the isospin decomposition

$$\mathcal{M}_{K\to 3\pi}^{ijk,l}(s,t,u) = \mathcal{M}_1(s,t,u)\delta^{jk}\delta^{il} + \mathcal{M}_2(s,t,u)\delta^{jl}\delta^{ik} + \mathcal{M}_3(s,t,u)\delta^{ij}\delta^{kl},$$

where the amplitudes are functions of the Mandelstam variables

$$s = (p_k - p_1)^2$$
, $t = (p_k - p_2)^2$, $u = (p_k - p_3)^2$,

which fulfill the relation

$$s + t + u = m_K^2 + 3m_\pi^2 = \Sigma$$
.

Bose statistics: the amplitude remains invariant under the exchange of pions

$$p_{2} \leftrightarrow p_{3} \ (t \leftrightarrow u \text{ and } j \leftrightarrow k) \Rightarrow \mathcal{M}_{1}(s, t, u) = \mathcal{M}_{1}(s, u, t),$$

$$p_{1} \leftrightarrow p_{2} \ (s \leftrightarrow t \text{ and } i \leftrightarrow j) \Rightarrow \mathcal{M}_{2}(s, t, u) = \mathcal{M}_{1}(t, s, u) = \mathcal{M}_{1}(t, u, s),$$

$$p_{1} \leftrightarrow p_{3} \ (s \leftrightarrow u \text{ and } i \leftrightarrow k) \Rightarrow \mathcal{M}_{3}(s, t, u) = \mathcal{M}_{1}(u, t, s) = \mathcal{M}_{1}(u, s, t),$$

• The amplitude is expressed in terms of $\mathcal{M}(s,t,u) \equiv \mathcal{M}_1(s,t,u)$

$$\mathcal{M}_{K\to3\pi}^{ijk,l}(s,t,u) = \mathcal{M}(s,t,u)\delta^{jk}\delta^{il} + \mathcal{M}(t,u,s)\delta^{jl}\delta^{ik} + \mathcal{M}(u,s,t)\delta^{ij}\delta^{kl}$$

In terms of the physical pions

S.Gor

$$\begin{split} \mathcal{M}_{K^{+} \to \pi^{+} \pi^{+} \pi^{-}}(s,t,u) &= \mathcal{M}(t,u,s) + \mathcal{M}(u,s,t) \,, \\ \mathcal{M}_{K^{+} \to \pi^{0} \pi^{0} \pi^{+}}(s,t,u) &= \mathcal{M}(s,t,u) \,, \\ \mathcal{M}_{K^{0} \to \pi^{+} \pi^{-} \pi^{0}}(s,t,u) &= \mathcal{M}(s,t,u) \,, \\ \mathcal{M}_{K^{0} \to \pi^{0} \pi^{0} \pi^{0}}(s,t,u) &= \mathcal{M}(s,t,u) + \mathcal{M}(t,u,s) + \mathcal{M}(u,s,t) \,. \\ \end{split}$$
Zález-Solis

$K \rightarrow 3\pi$ kinematics

• In the CMS of particles 2 and 3 we find

$$t(s,\cos\theta_s) = \frac{1}{2}\left(\Sigma - s + \kappa_{\pi\pi}(s)\cos\theta_s\right), \quad u(s,\cos\theta_s) = \frac{1}{2}\left(\Sigma - s - \kappa_{\pi\pi}(s)\cos\theta_s\right),$$

$$\cos\theta_s = \frac{t-u}{\kappa_{\pi\pi}(s)}, \quad \kappa_{\pi\pi}(s) = \lambda^{1/2}(s, m_K^2, m_\pi^2)\sigma_\pi(s),$$

In the CMS of particles 1 and 3 one has

$$s(t,\cos\theta_t) = \frac{1}{2} \left(\Sigma - t + \kappa_{\pi\pi}(t)\cos\theta_t \right), \quad u(t,\cos\theta_t) = \frac{1}{2} \left(\Sigma - t - \kappa_{\pi\pi}(t)\cos\theta_t \right),$$

$$\cos\theta_t=\frac{s-u}{\kappa_{\pi\pi}(t)}\,.$$

• In the CMS of particles 1 and 2 one finds $s(u, \cos \theta_u) = \frac{1}{2} (\Sigma - u - \kappa_{\pi\pi}(u) \cos \theta_u), \quad t(u, \cos \theta_u) = \frac{1}{2} (\Sigma - u + \kappa_{\pi\pi}(u) \cos \theta_u),$

$$\cos\theta_u = \frac{t-s}{\kappa_{\pi\pi}(u)} \,.$$

The reconstruction theorem

• Write *n*-times subtracted dispersion relation at fixed t

$$\mathcal{M}(s,t,u) = P_{n-1}^{t}(s,t,u) + \frac{s^{n}}{2\pi i} \int_{s_{\rm th}}^{\infty} ds' \frac{\operatorname{disc}\mathcal{M}(s',t,u(s'))}{(s')^{n}(s'-s)} + \frac{u^{n}}{2\pi i} \int_{u_{\rm th}}^{\infty} du' \frac{\operatorname{disc}\mathcal{M}(s(u'),t,u')}{(u')^{n}(u'-u)},$$

$$s(u') = m_K^2 + 3m_\pi^2 - t - u' = s + u - u',$$

$$u(s') = m_K^2 + 3m_\pi^2 - t - s' = s + u - s'.$$

• Express the *s*-and *u*-channel in terms of the *p*-*w* of definite isospin

$$disc\mathcal{M}(s',t,u(s')) \equiv disc\mathcal{M}_{1}(s',t,u(s')) = \frac{1}{3} \left[m_{0}^{0}(s',t,u(s')) - m_{0}^{2}(s',t,u(s')) \right]$$
$$= \frac{1}{3} \left[m_{0}^{0}(s') - m_{0}^{2}(s') \right],$$
$$disc\mathcal{M}(s(u'),t,u') \equiv disc\mathcal{M}_{3}(s(u'),t,u') = \frac{1}{2} \left[m_{0}^{2}(s(u'),t,u') - m_{1}^{1}(s(u'),t,u') \right]$$
$$= \frac{1}{2} \left[m_{0}^{2}(u') - 3\cos\theta_{u} m_{1}^{1}(u') \right].$$

The reconstruction theorem

• Using the expression for $\cos \theta_u = \frac{t-s}{\kappa_{\pi\pi}(u)}$

$$\begin{aligned} \mathcal{M}(s,t,u) &= P_{n-1}^{t}(s,t,u) \\ &+ \frac{1}{3} \frac{s^{n}}{2\pi i} \int_{s_{\rm th}}^{\infty} ds' \frac{\operatorname{disc} m_{0}^{0}(s')}{(s')^{n}(s'-s)} - \frac{1}{3} \frac{s^{n}}{2\pi i} \int_{s_{\rm th}}^{\infty} ds' \frac{\operatorname{disc} m_{0}^{2}(s')}{(s')^{n}(s'-s)} \\ &+ \frac{1}{2} \frac{u^{n}}{2\pi i} \int_{u_{\rm th}}^{\infty} du' \frac{\operatorname{disc} m_{0}^{2}(u')}{(u')^{n}(u'-u)} - \frac{3}{2} \frac{u^{n}}{2\pi i} \int_{u_{\rm th}}^{\infty} du' \frac{(t-s(u'))\operatorname{disc} m_{1}^{1}(u')}{k_{\pi\pi}(u')(u')^{n}(u'-u)} \end{aligned}$$

• The integral over the $\pi\pi P$ -wave can be simplified using s(u')

$$\frac{3}{2} \frac{u^n}{2\pi i} \int_{u_{\rm th}}^{\infty} du' \frac{(t-s(u'))\operatorname{disc} \mathbf{m}_1^1(u')}{k_{\pi\pi}(u')(u')^n(u'-u)} = \frac{3}{2} \frac{u^n}{2\pi i} \int_{u_{\rm th}}^{\infty} du' \frac{(t-s-u+u')\operatorname{disc} \mathbf{m}_1^1(u')}{k_{\pi\pi}(u')(u')^n(u'-u)}$$
$$= \frac{3}{2} \frac{u^n}{2\pi i} \int_{u_{\rm th}}^{\infty} du' \frac{\operatorname{disc} \mathbf{m}_1^1(u')}{k_{\pi\pi}(u')(u')^n} + \frac{3}{2} (t-s) \frac{u^n}{2\pi i} \int_{u_{\rm th}}^{\infty} du' \frac{\operatorname{disc} \mathbf{m}_1^1(u')}{k_{\pi\pi}(u')(u')^n(u'-u)},$$

The reconstruction theorem

We are thus left with

$$\mathcal{M}(s,t,u) = P_{n-1}^{t}(s,t,u) + \frac{1}{3} \frac{s^{n}}{2\pi i} \int_{s_{\rm th}}^{\infty} ds' \frac{\operatorname{disc} m_{0}^{0}(s')}{(s')^{n}(s'-s)} - \frac{1}{3} \frac{s^{n}}{2\pi i} \int_{s_{\rm th}}^{\infty} ds' \frac{\operatorname{disc} m_{0}^{2}(s')}{(s')^{n}(s'-s)} + \frac{1}{2} \frac{u^{n}}{2\pi i} \int_{u_{\rm th}}^{\infty} du' \frac{\operatorname{disc} m_{0}^{2}(u')}{(u')^{n}(u'-u)} - \frac{3}{2} (t-s) \frac{u^{n}}{2\pi i} \int_{u_{\rm th}}^{\infty} du' \frac{\operatorname{disc} m_{1}^{1}(u')}{k_{\pi\pi}(u')(u')^{n}(u'-u)}$$

• Similarly, one can perform the same exercise at fixed *u*.

$$disc\mathcal{M}(s(t'), t', u) \equiv disc\mathcal{M}_2(s(t'), t', u) = \frac{1}{2} \left[m_0^2(s(t'), t', u) + m_1^1(s(t'), t', u) \right]$$
$$= \frac{1}{2} \left[m_0^2(t') + 3\cos\theta_t m_1^1(t') \right],$$

$$\begin{aligned} \mathcal{M}(s,t,u) &= P_{n-1}^{u}(s,t,u) + \frac{1}{3} \frac{s^{n}}{2\pi i} \int_{s_{\rm th}}^{\infty} ds' \frac{\operatorname{disc} m_{0}^{0}(s')}{(s')^{n}(s'-s)} - \frac{1}{3} \frac{s^{n}}{2\pi i} \int_{s_{\rm th}}^{\infty} ds' \frac{\operatorname{disc} m_{0}^{2}(s')}{(s')^{n}(s'-s)} \\ &+ \frac{1}{2} \frac{t^{n}}{2\pi i} \int_{t_{\rm th}}^{\infty} dt' \frac{\operatorname{disc} m_{0}^{2}(t')}{(t')^{n}(t'-t)} - \frac{3}{2} (u-s) \frac{t^{n}}{2\pi i} \int_{t_{\rm th}}^{\infty} dt' \frac{\operatorname{disc} m_{1}^{1}(t')}{k_{\pi\pi}(t')(t')^{n}(t'-t)} \,, \end{aligned}$$

Inserting the reconstruction theorem on both sides we obtain

$$\begin{split} \operatorname{disc} \mathcal{M}_{0}^{0}(s) &= 2i \Big\{ \mathcal{M}_{0}^{0}(s) + \hat{\mathcal{M}}_{0}^{0}(s) \Big\} \sin \delta_{0}^{0}(s) e^{-i\delta_{0}^{0}(s)} \,, \\ \operatorname{disc} \mathcal{M}_{1}^{1}(s) &= 2i \Big\{ \mathcal{M}_{1}^{1}(s) + \hat{\mathcal{M}}_{1}^{1}(s) \Big\} \sin \delta_{1}^{1}(s) e^{-i\delta_{1}^{1}(s)} \,, \\ \operatorname{disc} \mathcal{M}_{0}^{2}(s) &= 2i \Big\{ \mathcal{M}_{0}^{2}(s) + \hat{\mathcal{M}}_{0}^{2}(s) \Big\} \sin \delta_{0}^{2}(s) e^{-i\delta_{0}^{2}(s)} \,, \end{split}$$

• The inhomogeneities $\hat{\mathcal{M}}^I_\ell$ are given by

$$\hat{\mathcal{M}}_{0}^{0}(s) = \frac{2}{3} \langle \mathcal{M}_{0}^{0} \rangle + 2(s - \Sigma) \langle \mathcal{M}_{1}^{1} \rangle + \frac{2}{3} \kappa_{\pi\pi}(s) \langle z \mathcal{M}_{1}^{1} \rangle + \frac{20}{9} \langle \mathcal{M}_{0}^{2} \rangle,$$

$$\hat{\mathcal{M}}_{1}^{1}(s) = \frac{1}{\kappa_{\pi\pi}(s)} \Big\{ 3 \langle z \mathcal{M}_{0}^{0} \rangle + \frac{9}{2} (s - \Sigma) \langle z \mathcal{M}_{1}^{1} \rangle + \frac{3}{2} \kappa_{\pi\pi}(s) \langle z^{2} \mathcal{M}_{1}^{1} \rangle - 5 \langle z \mathcal{M}_{0}^{2} \rangle \Big\},$$

$$\hat{\mathcal{M}}_0^2(s) = \langle \mathcal{M}_0^0 \rangle - \frac{3}{2} (s - \Sigma) \langle \mathcal{M}_1^1 \rangle - \frac{1}{2} \kappa_{\pi\pi}(s) \langle z \mathcal{M}_1^1 \rangle + \frac{1}{3} \langle \mathcal{M}_0^2 \rangle$$

where have used the relation

$$\int d\Omega_s z^n \mathcal{M}_{\ell}^{I}(t'_s) = (-1)^n \int d\Omega_s z^n \mathcal{M}_{\ell}^{I}(u'_s),$$
$$\langle z^n \mathcal{M}_{\ell}^{I} \rangle = \frac{1}{2} \int_{-1}^{1} dz z^n \mathcal{M}_{\ell}^{I} \left(\frac{\Sigma - s + \kappa_{\pi\pi}(s)z}{2} \right).$$

S.Gonzàlez-Solís

PWAATHOS 2018

20 july 2018 35 / 35