${\cal K}^+\Lambda$ photoproduction in a dynamical coupled-channel approach

Deborah Rönchen HISKP, Bonn University

In collaboration with M. Döring, U.-G. Meißner, J. Haidenbauer, H. Haberzettl, K. Nakayama

PWA10/ATHOS5 July 2018, Beijing, China

Supported by DFG, NSFC HPC support by Jülich Supercomputing Centre

Introduction: Baryon spectrum in experiment and theory

• Theoretical predictions: lattice calculations and quark models

Lattice calculation (single hadron approximation):

[Edwards et al., Phys.Rev. D84 (2011)]

 above 1.8 GeV much more states are predicted than observed,

"Missing resonance problem"

• PDG listing: Until recently major part of the information from πN elastic

Experimental studies: Photoproduction: e.g. from JLab, ELSA, MAMI, GRAAL, SPring-8

source: ELSA; data: ELSA, JLab, MAMI

•

- enlarged data base with high quality for different final states
- (double) polarization observables

 → alternative source of information besides πN → X, e.g. γp → KΛ

Introduction: Baryon spectrum in experiment and theory

• Theoretical predictions: lattice calculations and quark models

Relativistic quark model:

Löring et al. EPJ A 10, 395 (2001), experimental spectrum: PDG 2000

 above 1.8 GeV much more states are predicted than observed,

"Missing resonance problem"

• PDG listing: Until recently major part of the information from πN elastic

• Experimental studies: Photoproduction: e.g. from JLab, ELSA, MAMI, GRAAL, SPring-8

source: ELSA; data: ELSA, JLab, MAMI

- enlarged data base with high quality for different final states
- (double) polarization observables

 → alternative source of information besides πN → X, e.g. γp → KΛ

KY final states

- certain (missing) resonances might couple predominantly to strangeness channels
- measurement of recoil polarization easier due to self-analyzing weak decay of hyperons
 - ightarrow more recoil and beam-recoil data, which are needed for a complete experiment
- Photoproduction of pseudoscalar mesons:

⇒ 16 polarization observables: asymmetries composed of beam, target and recoil polarization measurements

⇒ Complete Experiment: unambiguous determination of the amplitude 8 carefully selected observables Chiang and Tabakin, PRC 55, 2054 (1997) e.g. { σ , Σ , T, P, E, G, C_x , C_z }

(unambiguous up to an overall phase and experimental uncertainties)

Different analyses frameworks: a few examples

- GWU/SAID approach: PWA based on Chew-Mandelstam K-matrix parameterization
- unitary isobar models: unitary amplitudes + Breit-Wigner resonances

MAID, Yerevan/JLab, KSU

- multi-channel K-matrix: BnGa (mostly phenomenological Bgd, N/D approach), Gießen (microscopic Bgd)
- dynamical coupled-channel (DCC): 3-dim scattering eq., off-shell intermediate states

ANL-Osaka (EBAC), Dubna-Mainz-Taipeh, Jülich-Bonn

Different analyses frameworks: a few examples

- GWU/SAID approach: PWA based on Chew-Mandelstam K-matrix parameterization
- unitary isobar models: unitary amplitudes + Breit-Wigner resonances

MAID, Yerevan/JLab, KSU

- multi-channel K-matrix: BnGa (mostly phenomenological Bgd, N/D approach), Gießen (microscopic Bgd)
- dynamical coupled-channel (DCC): 3-dim scattering eq., off-shell intermediate states

ANL-Osaka (EBAC), Dubna-Mainz-Taipeh, Jülich-Bonn

The Jülich-Bonn DCC approach

Dynamical coupled-channels (DCC): simultaneous analysis of different reactions

The scattering equation in partial-wave basis

$$\langle L'S'p'|T^{IJ}_{\mu\nu}|LSp\rangle = \langle L'S'p'|V^{IJ}_{\mu\nu}|LSp\rangle + \sum_{\gamma,L''S''} \int_{0}^{\infty} dq \quad q^{2} \quad \langle L'S'p'|V^{IJ}_{\mu\gamma}|L''S''q\rangle \frac{1}{E - E_{\gamma}(q) + i\epsilon} \langle L''S''q|T^{JJ}_{\gamma\nu}|LSp\rangle$$

$$\mathbf{V} = \underbrace{\begin{pmatrix} \pi & \Delta \\ N & \alpha \end{pmatrix}}_{\mathbf{N}} + \underbrace{\begin{pmatrix} \pi & \Delta \\ N & \alpha \end{pmatrix}}_{\mathbf{N}} + \underbrace{\begin{pmatrix} \Delta & \pi \\ N & \alpha \end{pmatrix}}_{\mathbf{N}} + \underbrace{\begin{pmatrix} \Delta & \pi \\ N & \alpha \end{pmatrix}}_{\mathbf{N}} + \underbrace{\begin{pmatrix} \Delta & \pi \\ N & \alpha \end{pmatrix}}_{\mathbf{N}} + \underbrace{\begin{pmatrix} \Delta & \pi \\ N & \alpha \end{pmatrix}}_{\mathbf{N}} + \underbrace{\begin{pmatrix} \Delta & \pi \\ N & \alpha \end{pmatrix}}_{\mathbf{N}} + \underbrace{\begin{pmatrix} \Delta & \pi \\ N & \alpha \end{pmatrix}}_{\mathbf{N}} + \underbrace{\begin{pmatrix} \Delta & \pi \\ N & \alpha \end{pmatrix}}_{\mathbf{N}} + \underbrace{\begin{pmatrix} \Delta & \pi \\ N & \alpha \end{pmatrix}}_{\mathbf{N}} + \underbrace{\begin{pmatrix} \Delta & \pi \\ N & \alpha \end{pmatrix}}_{\mathbf{N}} + \underbrace{\begin{pmatrix} \Delta & \pi \\ N & \alpha \end{pmatrix}}_{\mathbf{N}} + \underbrace{\begin{pmatrix} \Delta & \pi \\ N & \alpha \end{pmatrix}}_{\mathbf{N}} + \underbrace{\begin{pmatrix} \Delta & \pi \\ N & \alpha \end{pmatrix}}_{\mathbf{N}} + \underbrace{\begin{pmatrix} \Delta & \pi \\ N & \alpha \end{pmatrix}}_{\mathbf{N}} + \underbrace{\begin{pmatrix} \Delta & \pi \\ N & \alpha \end{pmatrix}}_{\mathbf{N}} + \underbrace{\begin{pmatrix} \Delta & \pi \\ N & \alpha \end{pmatrix}}_{\mathbf{N}} + \underbrace{\begin{pmatrix} \Delta & \pi \\ N & \alpha \end{pmatrix}}_{\mathbf{N}} + \underbrace{\begin{pmatrix} \Delta & \pi \\ N & \alpha \end{pmatrix}}_{\mathbf{N}} + \underbrace{\begin{pmatrix} \Delta & \pi \\ N & \alpha \end{pmatrix}}_{\mathbf{N}} + \underbrace{\begin{pmatrix} \Delta & \pi \\ N & \alpha \end{pmatrix}}_{\mathbf{N}} + \underbrace{\begin{pmatrix} \Delta & \pi \\ N & \alpha \end{pmatrix}}_{\mathbf{N}} + \underbrace{\begin{pmatrix} \Delta & \pi \\ N & \alpha \end{pmatrix}}_{\mathbf{N}} + \underbrace{\begin{pmatrix} \Delta & \pi \\ N & \alpha \end{pmatrix}}_{\mathbf{N}} + \underbrace{\begin{pmatrix} \Delta & \pi \\ N & \alpha \end{pmatrix}}_{\mathbf{N}} + \underbrace{\begin{pmatrix} \Delta & \pi \\ N & \alpha \end{pmatrix}}_{\mathbf{N}} + \underbrace{\begin{pmatrix} \Delta & \pi \\ N & \alpha \end{pmatrix}}_{\mathbf{N}} + \underbrace{\begin{pmatrix} \Delta & \pi \\ N & \alpha \end{pmatrix}}_{\mathbf{N}} + \underbrace{\begin{pmatrix} \Delta & \pi \\ N & \alpha \end{pmatrix}}_{\mathbf{N}} + \underbrace{\begin{pmatrix} \Delta & \pi \\ N & \alpha \end{pmatrix}}_{\mathbf{N}} + \underbrace{\begin{pmatrix} \Delta & \pi \\ N & \alpha \end{pmatrix}}_{\mathbf{N}} + \underbrace{\begin{pmatrix} \Delta & \pi \\ N & \alpha \end{pmatrix}}_{\mathbf{N}} + \underbrace{\begin{pmatrix} \Delta & \pi \\ N & \alpha \end{pmatrix}}_{\mathbf{N}} + \underbrace{\begin{pmatrix} \Delta & \pi \\ N & \alpha \end{pmatrix}}_{\mathbf{N}} + \underbrace{\begin{pmatrix} \Delta & \pi \\ N & \alpha \end{pmatrix}}_{\mathbf{N}} + \underbrace{\begin{pmatrix} \Delta & \pi \\ N & \alpha \end{pmatrix}}_{\mathbf{N}} + \underbrace{\begin{pmatrix} \Delta & \pi \\ N & \alpha \end{pmatrix}}_{\mathbf{N}} + \underbrace{\begin{pmatrix} \Delta & \pi \\ N & \alpha \end{pmatrix}}_{\mathbf{N}} + \underbrace{\begin{pmatrix} \Delta & \pi \\ N & \alpha \end{pmatrix}}_{\mathbf{N}} + \underbrace{\begin{pmatrix} \Delta & \pi \\ N & \alpha \end{pmatrix}}_{\mathbf{N}} + \underbrace{\begin{pmatrix} \Delta & \pi \\ N & \alpha \end{pmatrix}}_{\mathbf{N}} + \underbrace{\begin{pmatrix} \Delta & \pi \\ N & \alpha \end{pmatrix}}_{\mathbf{N}} + \underbrace{\begin{pmatrix} \Delta & \pi \\ N & \alpha \end{pmatrix}}_{\mathbf{N}} + \underbrace{\begin{pmatrix} \Delta & \pi \\ N & \alpha \end{pmatrix}}_{\mathbf{N}} + \underbrace{\begin{pmatrix} \Delta & \pi \\ N & \alpha \end{pmatrix}}_{\mathbf{N}} + \underbrace{\begin{pmatrix} \Delta & \pi \\ N & \alpha \end{pmatrix}}_{\mathbf{N}} + \underbrace{\begin{pmatrix} \Delta & \pi \\ N & \alpha \end{pmatrix}}_{\mathbf{N}} + \underbrace{\begin{pmatrix} \Delta & \pi \\ N & \alpha \end{pmatrix}}_{\mathbf{N}} + \underbrace{\begin{pmatrix} \Delta & \pi \\ N & \alpha \end{pmatrix}}_{\mathbf{N}} + \underbrace{\begin{pmatrix} \Delta & \pi \\ N & \alpha \end{pmatrix}}_{\mathbf{N}} + \underbrace{\begin{pmatrix} \Delta & \pi \\ N & \alpha \end{pmatrix}}_{\mathbf{N}} + \underbrace{\begin{pmatrix} \Delta & \pi \\ N & \alpha \end{pmatrix}}_{\mathbf{N}} + \underbrace{\begin{pmatrix} \Delta & \pi \\ N & \alpha \end{pmatrix}}_{\mathbf{N}} + \underbrace{\begin{pmatrix} \Delta & \pi \\ N & \alpha \end{pmatrix}}_{\mathbf{N}} + \underbrace{\begin{pmatrix} \Delta & \pi \\ N & \alpha \end{pmatrix}}_{\mathbf{N}} + \underbrace{\begin{pmatrix} \Delta & \pi \\ N & \alpha \end{pmatrix}}_{\mathbf{N}} + \underbrace{\begin{pmatrix} \Delta & \pi \\ N & \alpha \end{pmatrix}}_{\mathbf{N}} + \underbrace{\begin{pmatrix} \Delta & \pi \\ N & \alpha \end{pmatrix}}_{\mathbf{N}} + \underbrace{\begin{pmatrix} \Delta & \pi \\ N & \alpha \end{pmatrix}}_{\mathbf{N}} + \underbrace{\begin{pmatrix} \Delta & \pi \\ N & \alpha \end{pmatrix}}_{\mathbf{N}} + \underbrace{\begin{pmatrix} \Delta & \pi \\ N &$$

v

G

partial waves strongly correlated

contact terms

The Jülich-Bonn DCC approach

Resonance states: Poles in the *T*-matrix on the 2nd Riemann sheet

 $Re(E_0) = "mass", -2Im(E_0) = "width"$

- (2-body) unitarity and analyticity respected
- 3-body $\pi\pi N$ channel:
 - parameterized effectively as $\pi\Delta$, σN , ho N
 - $\pi N/\pi\pi$ subsystems fit the respective phase shifts
 - ↓ branch points move into complex plane

- pole position E₀ is the same in all channels
- residues→ branching ratios

Photoproduction

Multipole amplitude

$$\mathcal{M}^{IJ}_{\mu\gamma} = \mathcal{V}^{IJ}_{\mu\gamma} + \sum_{\kappa} T^{IJ}_{\mu\kappa} G_{\kappa} \mathcal{V}^{IJ}_{\kappa\gamma}$$
(partial wave basis)

 $m = \pi, \eta, K, B = N, \Delta, \Lambda$

 $T_{\mu\kappa}$: Jülich hadronic *T*-matrix \rightarrow Watson's theorem fulfilled by construction \rightarrow analyticity of T: extraction of resonance parameters

Photoproduction potential: approximated by energy-dependent polynomials

 $\tilde{\gamma}^{a}_{\mu}, \gamma^{a}_{\mu;i}$: hadronic vertices \rightarrow correct threshold behaviour, cancellation of singularity at $E = m^{b}_{i}$ $\rightarrow \gamma^{a}_{\mu;i}$ affects pion- and photon-induced production of final state mB

i: resonance number per multipole; μ : channels πN , ηN , $\pi \Delta$, KY

Polynomials

Data analysis and fit results

Combined analysis of pion- and photon-induced reactions

Simultaneous fit

Fit parameters:

• $\pi N \rightarrow \pi N$ $\pi^- p \rightarrow \eta n, \ K^0 \Lambda, \ K^0 \Sigma^0, \ K^+ \Sigma^ \pi^+ p \rightarrow \ K^+ \Sigma^+$

 \Rightarrow 134 free parameters

11 N^* resonances \times (1 m_{bare} + couplings to πN , ρN , ηN , $\pi \Delta$, $K\Lambda$, $K\Sigma$)

- + 10 Δ resonances \times (1 m_{bare} + couplings to πN , ρN , $\pi \Delta$, $K\Sigma$)
- contact terms: one per partial wave, couplings to πN , ηN , $(\pi \Delta)$, $K\Lambda$, $K\Sigma \Rightarrow 61$ free parameters
- $\gamma p \to \pi^0 p, \pi^+ n, \eta p, K^+ \Lambda$: couplings of the polynomials \Rightarrow 566 free parameters

 \Rightarrow 761 in total, calculations on the JURECA supercomputer [Jülich Supercomputing Centre, JURECA: General-purpose supercomputer at Jülich Supercomputing Centre, Journal of Large-scale research facilities, 2, A62 (2016)]

• t- & u-channel parameters: fixed to values of hadronic DCC analysis (JüBo 2013)

Combined analysis of pion- and photon-induced reactions Data base

Reaction	Observables (# data points)	p./channel
$\pi N \to \pi N$	PWA GW-SAID WI08 (ED solution)	3,760
$\pi^- p \to \eta n$	$d\sigma/d\Omega$ (676), P (79)	755
$\pi^- p \to K^0 \Lambda$	$d\sigma/d\Omega$ (814), P (472), β (72)	1,358
$\pi^- p \to K^0 \Sigma^0$	$d\sigma/d\Omega$ (470), P (120)	590
$\pi^- p \to K^+ \Sigma^-$	$d\sigma/d\Omega$ (150)	150
$\pi^+ p \to K^+ \Sigma^+$	$d\sigma/d\Omega$ (1124), P (551) , eta (7)	1,682
$\gamma p \to \pi^0 p$	$d\sigma/d\Omega$ (10743), Σ (2927), P (768), T (1404), $\Delta\sigma_{31}$ (140),	
	G (393), H (225), E (467), F (397), C _{x1} (74), C _{z1} (26)	17,564
$\gamma p ightarrow \pi^+ n$	$d\sigma/d\Omega$ (5961), Σ (1456), P (265), T (718), $\Delta\sigma_{31}$ (231),	
	G (86), H (128), E (903)	9,748
$\gamma p ightarrow \eta p$	$d\sigma/d\Omega$ (5680), Σ (403), P (7), T (144), F (144), E (129)	6,507
$\gamma p o K^+ \Lambda$	$d\sigma/d\Omega$ (2478), P (1612), Σ (459), T (383),	
	$C_{x'}$ (121), $C_{z'}$ (123), $O_{x'}$ (66), $O_{z'}$ (66), O_x (314), O_z (314),	5,936
	in total	48,050

Combined analysis of pion- and photon-induced reactions Data base

Reaction	Observables (# data points)	p./channel
$\pi N \to \pi N$	PWA GW-SAID WI08 (ED solution)	3,760
$\pi^- p \to \eta n$	$d\sigma/d\Omega$ (676), P (79)	755
$\pi^- p \to K^0 \Lambda$	$d\sigma/d\Omega$ (814), P (472), β (72)	1,358
$\pi^- p \to K^0 \Sigma^0$	$d\sigma/d\Omega$ (470), P (120)	590
$\pi^- p \to K^+ \Sigma^-$	$d\sigma/d\Omega$ (150)	150
$\pi^+ p \to K^+ \Sigma^+$	$d\sigma/d\Omega$ (1124), P (551) , eta (7)	1,682
$\gamma p \to \pi^0 p$	$d\sigma/d\Omega$ (10743), Σ (2927), <i>P</i> (768), <i>T</i> (1404), $\Delta\sigma_{31}$ (140),	
	G (393), H (225), E (467), F (397), C _{x'} (74), C _{z'} (26)	17,564
$\gamma p ightarrow \pi^+ n$	$d\sigma/d\Omega$ (5961), Σ (1456), P (265), T (718), $\Delta\sigma_{31}$ (231),	
	G (86), H (128), E (903)	9,748
$\gamma p ightarrow \eta p$	$d\sigma/d\Omega$ (5680), Σ (403), P (7), T (144), F (144), E (129)	6,507
$\gamma p o K^+ \Lambda$	$d\sigma/d\Omega$ (2478), P (1612), Σ (459), T (383),	
	$C_{x'}$ (121), $C_{z'}$ (123), $O_{x'}$ (66), $O_{z'}$ (66), O_x (314), O_z (314),	5,936
	in total	48,050

Combined analysis of pion- and photon-induced reactions Data base

Reaction	Observables (# data points)	p./channel
$\pi N \to \pi N$	PWA GW-SAID WI08 (ED solution)	3,760
$\pi^- p \to \eta n$	$d\sigma/d\Omega$ (676), P (79)	755
$\pi^- p \to K^0 \Lambda$	$d\sigma/d\Omega$ (814), P (472), β (72)	1,358
$\pi^- p \to K^0 \Sigma^0$	$d\sigma/d\Omega$ (470), P (120)	590
$\pi^- p \to K^+ \Sigma^-$	$d\sigma/d\Omega$ (150)	150
$\pi^+ p \to K^+ \Sigma^+$	$d\sigma/d\Omega$ (1124), P (551) , eta (7)	1,682
$\gamma p \to \pi^0 p$	$d\sigma/d\Omega$ (10743), Σ (2927), P (768), T (1404), $\Delta\sigma_{31}$ (140),	
	G (393), H (225), E (467), F (397), C _{x1} (74), C _{z1} (26)	17,564
$\gamma p \to \pi^+ n$	$d\sigma/d\Omega$ (5961), Σ (1456), P (265), T (718), $\Delta\sigma_{31}$ (231),	
	G (86), H (128), E (903)	9,748
$\gamma p ightarrow \eta p$	$d\sigma/d\Omega$ (5680), Σ (403), P (7), T (144), F (144), E (129)	6,507
$\gamma p o K^+ \Lambda$	$d\sigma/d\Omega$ (2478), P (1612), Σ (459), T (383),	
	$C_{x'}$ (121), $C_{z'}$ (123), $O_{x'}$ (66), $O_{z'}$ (66), O_x (314), O_z (314),	5,936
	[– beam-target obs. missing –]	
	in total	48,050

 $\gamma p \to K^+ \Lambda$:

Differential cross section E__=1651 MeV 2345 MeV 0.4 da/dΩ [µb/sr] MC10 0.2 0.3 JU14 0.2 0.1 0.1 30 60 90 120 150 180 0 30 60 90 120 150 180 0 0 [dea] θ [deg]

JU14: Jude PLB 735 (2014), MC10: McCracken PRC 81 (2010)

Beam asymmetry

LL07: Lleres EPJA 31 (2007), ZE03: Zegers PRL (2003)

Recoil polarization

MC04: McNabb PRC 69 (2004), MC10: McCracken PRC 81 (2010)

LL09: Lleres EPJA 39 (2009)

LL09: Lleres EPJA 39 (2009)

• Fit of new CLAS data (Paterson et al. Phys. Rev. C 93, 065201 (2016)):

• Fit of new CLAS data (Paterson et al. Phys. Rev. C 93, 065201 (2016)):

• Fit of new CLAS data (Paterson et al. Phys. Rev. C 93, 065201 (2016)):

• Fit of new CLAS data (Paterson et al. Phys. Rev. C 93, 065201 (2016)):

17

The resonance spectrum

Resonance spectrum

Resonance states: Poles in the *T*-matrix on the 2nd Riemann sheet

- Re(*E*₀) = "mass", -2Im(*E*₀) = "width"
- elastic πN residue $(|r_{\pi N}|, \theta_{\pi N \to \pi N})$, normalized residues for inelastic channels $(\sqrt{\Gamma_{\pi N}\Gamma_{\mu}}/\Gamma_{\text{tot}}, \theta_{\pi N \to \mu})$

• photocouplings at the pole: $\tilde{A}^{h}_{pole} = A^{h}_{pole}e^{i\vartheta^{h}}$, h = 1/2, 3/2

$$\tilde{A}^{h}_{pole} = I_{F} \sqrt{\frac{q_{p}}{k_{p}} \frac{2\pi (2J+1) \mathbf{E}_{0}}{m_{N} \mathbf{r}_{\pi N}}} \operatorname{Res} A^{h}_{L\pm} \qquad \qquad I_{F}: \operatorname{isospin factor}_{q_{p}} \left(k_{p} \right): \operatorname{mson}(photon) \operatorname{momentum} at the pole \\ J = L \pm 1/2 \text{ total angular momentum} \\ E_{0}: pole position \\ r_{\pi N}: \text{ elastic } \pi N \text{ residue} \\ A^{h}_{L+}: \operatorname{helicity multipole}$$

In the present analysis:

- all 4-star N and Δ states up to J = 9/2 are seen (exception: $N(1895)1/2^{-}$) + some states rated with less than 4 stars
- one additional s-channel diagram included: N(1900)3/2+
- hints for new dynamically generated poles

Uncertainties of extracted resonance parameters

Challenges in determining resonance uncertainties, e.g.:

- elastic πN channel: not data but GWU SAID PWA
 - \rightarrow correlated χ^2 fit including the covariance matrix $\hat{\Sigma}$ (available on SAID webpage!) PRC 93, 065205 (2016)

$$\chi^{2}(A) = \chi^{2}(\hat{A}) + (A - \hat{A})^{T}\hat{\Sigma}^{-1}(A - \hat{A})$$

 $A \sim {\rm vector}$ of fitted PWs, $\hat{A} \sim {\rm vector}$ of SAID SE PWs

ightarrow same χ^2 as fitting to data up to nonlinear and normalization corrections

- error propagation data → fit parameters → derived quantities: bootstrap method: generate pseudo data around actual data, repeat fit
- model selection, significance of resonance signals: determine minimal resonance content using Bayesian evidence [PRL 108, 182002; PRC 86, 015212 (2012)]

or the LASSO method [PRC 95, 015203 (2017); J. R. Stat. Soc. B 58, 267 (1996)]:

$$\chi_T^2 = \chi^2 + \lambda \sum_{i=1}^{i_{max}} |a_i|$$

 $\lambda \sim$ penalty factor, $a_i \sim$ fit parameter

↓ talk by R. Molina on Wednesday

In JüBo framework: such methods are numerically challenging, but planned for the (near) future

Estimation of uncertainties of extracted resonance parameters in the present study:

- from 9 re-fits to re-weighted data sets
- individually increase the weight in each reaction channel
- extract resonance parameters from refits
- maximal deviation of resonance parameters of the refits = "error"
- only a qualitative estimation of relative uncertainties, absolute size not well determined

Resonance spectrum: selected results I = 1/2, $J^P = 3/2^+$

N(1900) 3/2 ⁺	Re E ₀	$-2 \text{Im } E_0$	$ r_{\pi N} $	$\theta_{\pi N \to \pi N}$		
* * **	[MeV]	[MeV]	[MeV]	[deg]		
2017	1923(2)	217(23)	1.6(1.2)	-61(121)		
PDG 2018	1920 ± 20	150 ± 50	4 ± 2	-20 ± 30		
	$\frac{\Gamma_{\pi N}^{1/2} \Gamma_{\eta N}^{1/2}}{\Gamma_{\text{tot}}} [\%]$	$\theta_{\pi N \to \eta N}$	$\frac{\Gamma_{\pi N}^{1/2} \Gamma_{K\Lambda}^{1/2}}{\Gamma_{tot}} [\%]$	$\theta_{\pi N \to K \Lambda}$	$\frac{\Gamma_{\pi N}^{1/2} \Gamma_{K\Sigma}^{1/2}}{\Gamma_{tot}} [\%]$	$\theta_{\pi N \to K\Sigma}$
2017	1.1(0.7)	-10(79)	2.1(1.4)	1.7(86)	10(7)	-34(74)
PDG (BnGa)	5 ± 2	70 ± 60	3 ± 2	90 ± 40	4 ± 2	110 ± 30

		a. =	L			
N(1720) 3/2⊤	Re E ₀	$-2\text{Im }E_0$	$ r_{\pi N} $	$\theta_{\pi N \to \pi N}$		
* * **	[MeV]	[MeV]	[MeV]	[deg]		
2017	1689(4)	191(3)	2.3(1.5)	-57(22)		
2015-B	1710	219	4.2	-47		
PDG 2018	1675 ± 15	250^{+150}_{-100}	15^{+10}_{-5}	-130 ± 30		
	$\frac{\Gamma_{\pi N}^{1/2} \Gamma_{\eta N}^{1/2}}{\Gamma_{\text{tot}}} [\%]$	$\theta_{\pi N \to \eta N}$	$\frac{\Gamma_{\pi N}^{1/2} \Gamma_{K\Lambda}^{1/2}}{\Gamma_{tot}} [\%]$	$\theta_{\pi N \to K \Lambda}$	$\frac{\frac{\Gamma_{\pi N}^{1/2} \Gamma_{K\Sigma}^{1/2}}{\Gamma_{\text{tot}}} [\%]$	$\theta_{\pi N \to K\Sigma}$
2017	0.3(0.2)	139(35)	1.5(0.9)	-66(30)	0.6(0.4)	26(58)
2015-B	0.7	106	1.1	-70	0.2	79
PDG (BnGa)	3 ± 2	_	6 ± 4	-150 ± 45	—	_

Resonance spectrum: selected results I = 1/2, $J^P = 3/2^+$

N(1900) 3/2 ⁺	Re E ₀	$-2 \text{Im } E_0$	$ r_{\pi N} $	$\theta_{\pi N \to \pi N}$		
* * **	[MeV]	[MeV]	[MeV]	[deg]		
2017	1923(2)	217(23)	1.6(1.2)	-61(121)		
PDG 2018	1920 ± 20	150 ± 50	4 ± 2	-20 ± 30		
	$\frac{\Gamma_{\pi N}^{1/2} \Gamma_{\eta N}^{1/2}}{\Gamma_{\text{tot}}} [\%]$	$\theta_{\pi N \to \eta N}$	$\frac{\Gamma_{\pi N}^{1/2} \Gamma_{K\Lambda}^{1/2}}{\Gamma_{tot}} [\%]$	$\theta_{\pi N \to K \Lambda}$	$\frac{\frac{\Gamma_{\pi N}^{1/2} \Gamma_{K\Sigma}^{1/2}}{\Gamma_{tot}} [\%]$	$\theta_{\pi N \to K\Sigma}$
2017	1.1(0.7)	-10(79)	2.1(1.4)	1.7(86)	10(7)	-34(74)
PDG (BnGa)	5 ± 2	70 ± 60	3 ± 2	90 ± 40	4 ± 2	110 ± 30

 E_{1+} , M_{1+} multipoles in $\gamma p \rightarrow K^+\Lambda$:

Red lines: JüBo2017

Black (dashed) lines: BnGa2014-02

Gutz et al. EPJ A 50, 74 (2014)

N(1900) 3/2+:

- seen by several other groups
- included ("by hand") to improve fit result for $\gamma \rho \to K^+ \Lambda$

Resonance spectrum: selected results I = 1/2, $J^P = 3/2^+$

N(1900) 3/2 ⁺	Re E ₀	$-2 \text{Im } E_0$	$ r_{\pi N} $	$\theta_{\pi N \to \pi N}$		
* * **	[MeV]	[MeV]	[MeV]	[deg]		
2017	1923(2)	217(23)	1.6(1.2)	-61(121)		
PDG 2018	1920 ± 20	150 ± 50	4 ± 2	-20 ± 30		
	$\frac{\Gamma_{\pi N}^{1/2} \Gamma_{\eta N}^{1/2}}{\Gamma_{\text{tot}}} [\%]$	$\theta_{\pi N \to \eta N}$	$\frac{\Gamma_{\pi N}^{1/2} \Gamma_{K\Lambda}^{1/2}}{\Gamma_{tot}} [\%]$	$\theta_{\pi N \to K \Lambda}$	$\frac{\Gamma_{\pi N}^{1/2} \Gamma_{K\Sigma}^{1/2}}{\Gamma_{\text{tot}}} [\%]$	$\theta_{\pi N \to K\Sigma}$
2017	1.1(0.7)	-10(79)	2.1(1.4)	1.7(86)	10(7)	-34(74)
PDG (BnGa)	5 ± 2	70 ± 60	3 ± 2	90 ± 40	4 ± 2	110 ± 30

Total cross section $\pi^- p \rightarrow K^+ \Sigma^-$

Resonance spectrum: selected results I = 1/2, $J^P = 5/2^-$

N(1675) 5/2 ⁻	Re E ₀	$-2 \text{Im } E_0$	$ r_{\pi N} $	$\theta_{\pi N \to \pi N}$		
* * **	[MeV]	[MeV]	[MeV]	[deg]		
2017	1647(8)	135(9)	28(2)	-22(3)		
2015-B	1646	125	24	-22		
PDG 2018	1660 ± 5	135^{+15}_{-10}	28 ± 5	-25 ± 5		
	$\frac{\frac{\Gamma_{\pi N}^{1/2} \Gamma_{\eta N}^{1/2}}{\Gamma_{\text{tot}}} [\%]$	$\theta_{\pi N \to \eta N}$	$\frac{\frac{\Gamma_{\pi N}^{1/2} \Gamma_{K\Lambda}^{1/2}}{\Gamma_{\text{tot}}} [\%]$	$\theta_{\pi N \to K\Lambda}$	$\frac{\Gamma_{\pi N}^{1/2} \Gamma_{K\Sigma}^{1/2}}{\Gamma_{\text{tot}}} [\%]$	$\theta_{\pi N \to K\Sigma}$
2017	9.1(1.8)	-45(3)	0.7(0.2)	-91(6)	2.3(0.2)	-175(10)
2015-B	4.4	-43	0.1	100	3.1	-175
PDG 2018	—	_	—	_	_	_
					dunamicallu	generated
N(2060) 5/2 ⁻	Re E ₀	$-2 \text{Im } E_0$	$ r_{\pi N} $	$\theta_{\pi N \to \pi N}$		j
* * *	[MeV]	[MeV]	[MeV]	[deg]		
2017	1924(2)	201(3)	0.4(0.1)	172(12)		
PDG 2018	2070^{+60}_{-50}	400^{+30}_{-50}	20^{+10}_{-5}	-110 ± 20		
	$\frac{\Gamma_{\pi N}^{1/2} \Gamma_{\eta N}^{1/2}}{\Gamma_{\text{tot}}} [\%]$	$\theta_{\pi N \to \eta N}$	$\frac{\frac{\Gamma_{\pi N}^{1/2} \Gamma_{K\Lambda}^{1/2}}{\Gamma_{\text{tot}}} [\%]$	$\theta_{\pi N \to K \Lambda}$	$\frac{\Gamma_{\pi N}^{1/2} \Gamma_{K\Sigma}^{1/2}}{\Gamma_{tot}} [\%]$	$\theta_{\pi N \to K \Sigma}$
2017	0.2(0.2)	109(20)	2.2(0.2)	-86(3)	3.1(0.3)	86(3)
PDG (BnGa)	5 ± 3	40 ± 25	1 ± 0.5	_	4 ± 2	-70 ± 30

Resonance spectrum: selected results I = 1/2, $J^P = 5/2^-$

 E_{2+} , M_{2+} multipoles in $\gamma p \rightarrow K^+\Lambda$:

Red lines: JüBo2017 Black (dashed) lines: BnGa2014-02 Gutz et al. EPJ A 50, 74 (2014)

N(2060) 5/2⁻:

- seen by several other groups
- inconclusive indications already in previous JüBo fits (-21m $E_0 > 600$ MeV)

					dynamically o	jenerated
N(2060) 5/2 ⁻	Re E ₀	$-2 \text{Im } E_0$	$ r_{\pi N} $	$\theta_{\pi N \to \pi N}$		
* * *	[MeV]	[MeV]	[MeV]	[deg]		
2017	1924(2)	201(3)	0.4(0.1)	172(12)		
PDG 2018	2070^{+60}_{-50}	400^{+30}_{-50}	20^{+10}_{-5}	-110 ± 20		
	$\frac{\frac{\Gamma_{\pi N}^{1/2} \Gamma_{\eta N}^{1/2}}{\Gamma_{\text{tot}}} [\%]$	$\theta_{\pi N \to \eta N}$	$\frac{\frac{\Gamma_{\pi N}^{1/2} \Gamma_{K\Lambda}^{1/2}}{\Gamma_{\text{tot}}} [\%]$	$\theta_{\pi N \to K \Lambda}$	$\frac{\frac{\Gamma_{\pi N}^{1/2} \Gamma_{K\Sigma}^{1/2}}{\Gamma_{\text{tot}}} [\%]$	$\theta_{\pi N \to K\Sigma}$
2017	0.2(0.2)	109(20)	2.2(0.2)	-86(3)	3.1(0.3)	86(3)
PDG (BnGa)	5 ± 3	40 ± 25	1 ± 0.5	_	4 ± 2	-70 ± 30

Resonance spectrum: Δ states

- $K\Lambda$ pure I = 1/2
- mixed isospin πN , $K\Sigma$ channels \Rightarrow changes in I = 3/2 spectrum
- most of the well established Δ 's similar to previous JüBo results
- in general larger uncertainties than for I = 1/2 (\rightarrow extension to $\gamma N \rightarrow K\Sigma$!)

Example: $\Delta(1600) \ 3/2^+$

$\Delta(1600)$ 3/2 ⁺	Re E ₀	$-2 \text{Im } E_0$	$ r_{\pi N} $	$\theta_{\pi N \to \pi N}$	$\frac{\Gamma_{\pi N}^{1/2} \Gamma_{K\Sigma}^{1/2}}{\Gamma_{\text{tot}}}$	$\theta_{\pi N \to K \Sigma}$
* * **	[MeV]	[MeV]	[MeV]	[deg]	[%]	[deg]
2017	1579(17)	180(30)	11(6)	-162(41)	13(7)	-21(40)
2015-B	1552	350	23	-155	13	-5.6
PDG 2018	1510 ± 50	270 ± 70	25 ± 15	180 ± 30	—	_
	A ^{1/2} _{pole}	$\vartheta^{1/2}$	A ^{3/2} _{pole}	$\vartheta^{3/2}$		
	$[10^{-3} \text{ GeV}^{-\frac{1}{2}}]$	[deg]	$[10^{-3} \text{ GeV}^{-\frac{1}{2}}]$	[deg]		
2017	54(25)	144(31)	46(19)	172(36)		
2015-B	230	138	332	-71		
BnGa [1]	53 ± 10	130 ± 15	55 ± 10	152 ± 15		

dynamically generated

Impact of $K^+\Lambda$ photoproduction on the resonance spectrum in the JüBo DCC approach:

- confirmation of N(1900)3/2⁺ and N(2060)5/2⁻
- many resonances move closer to PDG values
- hints for additional new states

Outlook:

- extension to $K\Sigma$ photoproduction (already in progress)
- include πN covariance matrices in fit
- model selection methods (LASSO): find the minimal model, reduce number of fit parameters

Thank you for your attention!

Polynomials:

$$P_{i}^{\mathsf{P}}(E) = \sum_{j=1}^{n} g_{i,j}^{\mathsf{P}} \left(\frac{E - E_{0}}{m_{N}}\right)^{j} e^{-g_{i,n+1}^{\mathsf{P}}(E - E_{0})}$$
$$P_{\mu}^{\mathsf{NP}}(E) = \sum_{j=0}^{n} g_{\mu,j}^{\mathsf{NP}} \left(\frac{E - E_{0}}{m_{N}}\right)^{j} e^{-g_{\mu,n+1}^{\mathsf{NP}}(E - E_{0})}$$

$$-E_0 = 1077 \text{ MeV}$$

- $g_{i,j}^{\mathsf{P}}, g_{\mu,j}^{\mathsf{NP}}$: fit parameter

-
$$e^{-g(E-E_0)}$$
: appropriate
high energy behavior

-n = 3

1

The scattering potential: s-channel resonances

$$V^{\mathsf{P}} = \sum_{i=0}^{n} \frac{\gamma^{a}_{\mu;i} \gamma^{c}_{\nu;i}}{z - m^{b}_{i}}$$

- i: resonance number per PW
- $\gamma_{\nu;i}^{c}$ ($\gamma_{\mu;i}^{a}$): creation (annihilation) vertex function with **bare coupling** *f* (free parameter)

L

- z: center-of-mass energy
- m^b_i: bare mass (free parameter)

	Vertex	\mathcal{L}_{int}
 J ≤ 3/2: 	$N^*(S_{11})N\pi$	$\frac{f}{m_{\pi}} \bar{\Psi}_{N^*} \gamma^{\mu} \vec{\tau} \partial_{\mu} \vec{\pi} \Psi + \text{h.c.}$
(() from affective ($N^*(S_{11})N\eta$	$rac{f}{m_\pi} ar{\Psi}_{N^*} \gamma^\mu \partial_\mu \eta \Psi + ext{h.c.}$
$\gamma_{ u;i}$ ($\gamma_{\mu;i}$) from effective \mathcal{L}	$N^*(S_{11})N\rho$	$f \bar{\Psi}_{N^*} \gamma^5 \gamma^\mu \vec{\tau} \vec{\rho}_\mu \Psi + \text{h.c.}$
	$N^*(S_{11})\Delta\pi$	$\frac{f}{\pi} \bar{\Psi}_{N^*} \gamma^5 \vec{S} \partial_\mu \vec{\pi} \Delta^\mu + \text{h.c.}$

•
$$5/2 \le J \le 9/2$$
:

correct dependence on L (centrifugal barrier)

$$(\gamma^{a,c})_{\frac{5}{2}} - = \frac{k}{M} (\gamma^{a,c})_{\frac{3}{2}} + \qquad (\gamma^{a,c})_{\frac{5}{2}} + = \frac{k}{M} (\gamma^{a,c})_{\frac{3}{2}} - (\gamma^{a,c})_{\frac{7}{2}} - = \frac{k^2}{M^2} (\gamma^{a,c})_{\frac{3}{2}} - \qquad (\gamma^{a,c})_{\frac{7}{2}} + = \frac{k^2}{M^2} (\gamma^{a,c})_{\frac{3}{2}} + (\gamma^{a,c})_{\frac{9}{2}} - = \frac{k^3}{M^3} (\gamma^{a,c})_{\frac{3}{2}} + \qquad (\gamma^{a,c})_{\frac{9}{2}} + = \frac{k^3}{M^3} (\gamma^{a,c})_{\frac{3}{2}} -$$

	πΝ	ρΝ	ηΝ	$\pi\Delta$	σΝ	KΛ	ΚΣ
πΝ	$\begin{array}{l} \mathrm{N,}\Delta,(\pi\pi)_{\sigma},\\ (\pi\pi)_{\rho} \end{array}$	N, Δ, Ct., π, ω, a ₁	N, a ₀	Ν, Δ, ρ	Ν, π	Σ, Σ*, Κ*	$\begin{array}{l}\Lambda,\Sigma,\Sigma^*,\\K^*\end{array}$
ρΝ		N, Δ, Ct., ρ	-	Ν, π	-	-	-
ηΝ			N, f ₀	-	-	К*, Л	Σ, Σ*, Κ*
$\pi\Delta$				Ν, Δ, ρ	π	-	-
σΝ					Ν, σ	-	-
KΛ						Ξ, Ξ*, f ₀ , ω, φ	Ξ, Ξ*, ρ
ΚΣ							Ξ, Ξ*, f ₀ , ω, φ, ρ

Free parameters: cutoffs Λ in the form factors: $F(q) = \left(\frac{\Lambda^2 - m_\chi^2}{\Lambda^2 + q^2}\right)^n$, n = 1, 2

J. Wess and B. Zumino, Phys. Rev. 163, 1727 (1967); U-G. Meißner, Phys. Rept. 161, 213 (1988); B. Borasoy and U-G. Meißner, Int. J. Mod. Phys. A 11, 5183 (1996).

• consistent with the approximate (broken) chiral $SU(2) \times SU(2)$ symmetry of QCD

Vertex	\mathcal{L}_{int}	Vertex	\mathcal{L}_{int}
$NN\pi$	$-rac{g_{NN\pi}}{m\pi}\Psi\gamma^5\gamma^\muec au\cdot\partial_\muec \pi\Psi$	ΝΝω	$-g_{NN\omega} \bar{\Psi} [\gamma^{\mu} - rac{\kappa_{\omega}}{2m_N} \sigma^{\mu u} \partial_{ u}] \omega_{\mu} \Psi$
$N\Delta\pi$	$\frac{g_{N\Delta\pi}}{m\pi}\bar{\Delta}^{\mu}\vec{S}^{\dagger}\cdot\partial_{\mu}\vec{\pi}\Psi + \text{h.c.}$	$\omega \pi \rho$	$rac{g_{\omega\pi ho}}{m_{\omega}}\epsilon_{lphaeta\mu u}\partial^{lpha}ec{ ho}^{eta}\cdot\partial^{\mu}ec{\pi}\omega^{ u}$
$\rho\pi\pi$	$-g_{ ho\pi\pi}(ec{\pi} imes\partial_\muec{\pi})\cdotec{ ho}^\mu$	$N\Delta\rho$	$-i\frac{g_{N\Delta\rho}}{m_{\rho}}\bar{\Delta}^{\mu}\gamma^{5}\gamma^{\mu}\vec{S}^{\dagger}\cdot\vec{\rho}_{\mu\nu}\Psi + \text{h.c.}$
$NN\rho$	$-g_{NN ho}\Psi[\gamma^{\mu}-rac{\kappa_{ ho}}{2m_{N}}\sigma^{\mu u}\partial_{ u}]ec{ au}\cdotec{ ho}_{\mu}\Psi$	ρρρ	$g_{NN\rho}(\vec{ ho}_{\mu} imes \vec{ ho}_{ u}) \cdot \vec{ ho}^{\mu u}$
$NN\sigma$	$-g_{NN\sigma}ar{\Psi}\Psi\sigma$	ΝΝρρ	$\frac{\kappa_{\rho}g_{NN\rho}^{2}}{2m_{N}}\bar{\Psi}\sigma^{\mu\nu}\vec{\tau}\Psi(\vec{\rho}_{\mu}\times\vec{\rho}_{\nu})$
$\sigma\pi\pi$	$rac{g_{\sigma\pi\pi}}{2m_{\pi}}\partial_{\mu}ec{\pi}\cdot\partial^{\mu}ec{\pi}\sigma$	$\Delta\Delta\pi$	$\tfrac{g_{\Delta\Delta\pi}}{m_{\pi}}\bar{\Delta}_{\mu}\gamma^{5}\gamma^{\nu}\vec{T}\Delta^{\mu}\partial_{\nu}\vec{\pi}$
$\sigma\sigma\sigma$	$-g_{\sigma\sigma\sigma\sigma}m_{\sigma}\sigma\sigma\sigma$	$\Delta\Delta\rho$	$-g_{\Delta\Delta\rho}\bar{\Delta}_{\tau}(\gamma^{\mu}-i\frac{\kappa_{\Delta\Delta\rho}}{2m_{\Delta}}\sigma^{\mu\nu}\partial_{\nu})$
			$\cdot ec{ ho}_{\mu} \cdot ec{T} \Delta^{ au}$
$NN ho\pi$	$rac{g_{NN\pi}}{m_{\pi}} 2g_{NN ho} \bar{\Psi} \gamma^5 \gamma^\mu \vec{\tau} \Psi (\vec{ ho}_\mu imes \vec{\pi})$	$NN\eta$	$-rac{g_{NN\eta}}{m_\pi}ar{\Psi}\gamma^5\gamma^\mu\partial_\mu\eta\Psi$
NNa ₁	$-rac{g_{NN\pi}}{m_\pi}m_{a_1}ar{\Psi}\gamma^5\gamma^\muec{ au}\Psiec{a}_\mu$	NNa ₀	$g_{NNa_0} m_{\pi} \bar{\Psi} \vec{\tau} \Psi \vec{a_0}$
$a_1 \pi \rho$	$-\frac{2g_{\pi a_1\rho}}{m_{a_1}}[\partial_{\mu}\vec{\pi}\times\vec{a}_{\nu}-\partial_{\nu}\vec{\pi}\times\vec{a}_{\mu}]\cdot[\partial^{\mu}\vec{\rho}^{\nu}-\partial^{\nu}\vec{\rho}^{\mu}]$	$\pi\eta a_0$	$g_{\pi\eta a_0} m_{\pi}\eta \vec{\pi} \cdot \vec{a}_0$
	$+\frac{2g_{\pi a_1\rho}}{2m_{a_1}}[\vec{\pi}\times(\partial_{\mu}\vec{\rho}_{\nu}-\partial_{\nu}\vec{\rho}_{\mu})]\cdot[\partial^{\mu}\vec{a}^{\nu}-\partial^{\nu}\vec{a}^{\mu}]$		5

Generalization to SU(3)

• t- and u-channel exchange: T^{NP}

coupling constants fixed from SU(3) symmetry e.g. $g_{\Lambda NK} = -\frac{\sqrt{3}}{3}g_{NN\pi}(1 + 2\alpha_{BBP})$]. J. de Swart, Rev. Mod. Phys. 35, 916 (1963) [Erratum-ibid. 37, 326 (1965)].

New free parameters: cutoffs Λ

• s-channel: resonances

New free parameters: bare couplings g_{N^*KY} and $g_{\Delta^*K\Sigma}$

Theoretical constraints of the S-matrix

Unitarity: probability conservation

- 2-body unitarity
- 3-body unitarity:

discontinuities from t-channel exchanges

→ Meson exchange from requirements of the S-matrix [Aaron, Almado, Young, Phys. Rev. 174, 2022 (1968)]

Analyticity: from unitarity and causality

- correct structure of branch point, right-hand cut (real, dispersive parts)
- to approximate left-hand cut \rightarrow Baryon *u*-channel exchange

The SAID, BnGa and JüBo approaches

All three approaches:

- coupled channel effects
- unitarity (2 body)

SAID PWA

based on Chew-Mandelstam K-matrix

- K-matrix elements parameterized as energy-dependent polynomials
- resonance poles are dynamically generated (except for the $\Delta(1232)$)
- masses, width and hadronic couplings from fits to pion-induced πN and ηN production

Jülich-Bonn (JüBo) DCC model

based on a Lippmann-Schwinger equation formulated in TOPT

- hadronic potential from effective Lagrangians
- photoproduction parameterized by energy-dependent polynomials

 amplitudes are analytic functions of the invariant mass

Bonn-Gatchina (BnGa) PWA

Multi-channel PWA based on K-matrix (N/D)

- mostly phenomenological model
- resonances added by hand
- resonance parameters determined from large experimental data base: pion-, photon-induced reactions, 3-body final states

- resonances as s-channel states (dynamical generation possible)
- resonance parameters determined from pionand photon-induced data

Construction of the multipole amplitude $\mathcal{M}^{IJ}_{\mu\gamma}$

Field theoretical approaches : DMT, ANL-Osaka, Jülich-Athens-Washington, ...

Example: Gauge invariant formulation by Haberzettl, Huang and Nakayama Phys. Rev. C56 (1997), Phys. Rrev. C74 (2006), Phys. Rev. C85 (2012)

- satisfies the generalized off-shell Ward-Takahashi identity
- earlier version of the Jülich-Bonn model as FSI

Strategy: Replace by phenomenological contact term such that the generalized WTI is satisfied

• Alternative gauge invariant chiral unitary method: Borasoy et al., Eur. Phys. J. A 34 (2007) 161