On the Soft of the CEPC: Detector design - optimization, Reconstruction & Physics Reaches

Manqi Ruan (Manqi ruan@ihep.ac.cn) On behavior of the CEPC Study Group

CCEPP@IHEP

Science at CEPC-SPPC

- Tunnel ~ 100 km
- CEPC (90 250 GeV)
 - Higgs factory: 1M Higgs boson
 - Absolute measurements of Higgs boson width and couplings
 - Searching for exotic Higgs decay modes (New Physics)
 - Z & W factory: 10B Z boson Medium Energy Booster(4.5Km)

Booster(50Km

- Precision test of the SM Low Ene
 - Low Energy Booster(0.4Km)

IP₂

e+ e- Linac (240m)

IP4

- Rare decay
- Flavor factory: b, c, tau and QCD studies
- SPPC (~ 100 TeV)
 - Direct search for new physics
 - Complementary Higgs measurements to CEPC g(HHH), g(Htt)
- Heavy ion, e-p collision... 01/12/2017

Complementary

CCEPP@IHEP

IP3

Key SOFT ingredients

Requirements & Detector reference

- **Requirements:**
 - Be adequate
 - **High Hermetic**
 - **Objects**
 - Excellent Lepton ID
 - Charged Kaon ID
 - High Eff/Precision Photon Reco
 - **Excellent Tau Performance**
 - Good Jet(MET) Reconstruction •
 - Flavor Tagging (b, c, light, gluon) •
- **Reference Detector**
 - CEPC_v1, designed for PreCDR

Modified from ILD geometry (L*, Yoke, etc) CCEPP@IHEP

Arbor Reconstruction

2

Lepton Kaon Photon Tau JET

Lepton

BDT method using 4 classes of 24 input discrimination variables.

Test performance at: Electron = E_likeness > 0.5 ; Muon = Mu_likeness > 0.5 Single charged reconstructed particle, for E > 2 GeV: lepton efficiency > 99.5% && Pion mis id rate ~ 1%

6

Highly appreciated in flavor physics @ CEPC Z pole TPC dEdx + ToF of 50 ps

At inclusive Z pole sample:

Conservative estimation: efficiency/purity of **91%/94%** (2-20 GeV, 50% degrading +50 ps ToF) Could be improved to **96%/96%** at 20% degrading + 50 ps ToF

01/12/2017

More detail in S. Porell's Talk: http://indico.ihep.ac.cn/event/6618/session/10/contribution/85/material/slides/0.pdf

Photon

 $\delta(Br \times \sigma)/Br \times \sigma vs \delta E/E$

Inhomogeneity degrades the resolution significantly.

Physics requirement: constant term < 1%

Detector geometry defects degrades the mass resolution to 2.2% (after correction);

CCEPP@IHEP

Tau

- Two catalogues:
 - Leptonic environments: i.e, IITT(ZZ/ZH), vvTT(ZZ/ZH/WW), $Z \rightarrow TT$;
 - Jet environments: i.e, $ZZ/ZH \rightarrow qq\tau\tau$, $WW \rightarrow qq\tau\tau$;

See Dan's presentation for more details https://agenda.linearcollider.org/event/7645/contributions/40070/ ⁹

g(Hтт) measurement: preliminary

- $ZH \rightarrow \mu\mu\tau\tau$
- Extremely Efficient Event Selection
- Signal efficiency of 93% entire SM background reduced by 5 orders of magnitude
 01/12/2017 VTX system,

- ZH→qqтт
- Cone based tau finding algorithm, Compromise the efficiency & purity
- Signal efficiency of 51%

VTX system, and the understanding of background, 10 is also crucial for this measurement

Jets

- Boson Mass Resolution (BMR): Separate W, Z and Higgs in hadronic decays
 - Essential for Higgs measurement
 - Separate Higgs from Z/W (relatively easy)
 - Separate $H \rightarrow ZZ/WW$ events (challenging)
 - Appreciated in Triplet Gauge Boson Coupling measurements
 - Separate WW (Signal) from ZZ, ISR return Z, etc.

- ...

- Single jet response & Jet Clustering
 - Jet Clustering May dominants the uncertainty in physics analysis, i.e, at Higgs coupling measurement at ZH->4 jets
 - Search for the most suited jet clustering algorithm (Presumably channel dependent) Understand the Corresponding Systematic

BMR

Cleaned: Veto events with heavy flavor jet, visible ISR photon, signifiant neutrino Component generated in jet cascade & jet direction towards beam pile hole (eff at H->gg ~ 65%) 01/12/2017 CCEPP@IHEP

Individual Jet Response & Jet Clustering

Jet Clustering is Mainly responsible for the tails

Jet energy Scale

Amplitude ~ 1% Large JES observed at Leading Jet (Correlated), and at overlap region (Increasing of Splitting) 01/12/2017 CCEPP@IHEP 14

Jet Energy Resolution

CMS Reference: CMS-JME-13-004,

Jet energy scale and resolution in the CMS experiment in pp collisions at 8 TeV

CCEPP@IHEP

Flavor Tagging

- LCFIPlus Package
- Typical Performance at Z pole sample:
 - B-tagging: eff/purity = 80%/90%
 - C-tagging:
 eff/purity = 60%/60%
- Geometry Dependence of the Performance evaluated

See G. Li's presentation for more details https://agenda.linearcollider.org/event/7645/contributions/40124/

PFA Oriented Reconstruction

Example Working Points & Performance for Object identification (Preliminary)

	Efficiency	Purity	Mis-id Probability from Main Background
Leptons	99.5 - 99.9%	99.5 – 99.9% at Higgs Runs(c.m.s = 240 GeV), Energy dependent	$P(\pi^{\pm} \rightarrow leptons) < 1\%$
Photons*	99.3 - 99.9%	99.5 – 99.9% at Higgs Runs Energy Dependent	$P(\text{Neutron} \rightarrow \gamma) = 1-5\%$
Charged Kaons**	86 - 99%	90 – 99% at Z pole Runs (c.m.s = 91.2GeV, Track Momentum 2- 20 GeV)	$\mathrm{P}(\pi^{\pm} \rightarrow K^{\pm}) = 0.3 - 1.1\%$
b-jets	80%	90% at Z pole runs $(Z \rightarrow qq)$	$P(uds \rightarrow b) = 1\%$ $P(c \rightarrow b) = 10\%$
c-jets	60%	60% at Z pole runs	$P(uds \rightarrow c) = 5\%$ $P(b \rightarrow c) = 15\%$

Photon*: only considering neutron background and using ToF information Kaon**: Performance Highly depend on DAQ & Geometry

CCEPP@IHEP

CEPC Higgs Analyses

Higgs Physics @ CEPC-v1: event rate measurements almost fully covered (mostly with old reconstruction...)

Higgs measurement at e+e- & pp

	Yield	efficiency	Comments
LHC	Run 1: 10 ⁶ Run 2/HL: 10 ⁷⁻⁸	~ o(10⁻³)	High Productivity & High background, Relative Measurements, Limited access to width, exotic ratio, etc, Direct access to g(ttH), and even g(HHH)
CEPC	10 ⁶	~o(1)	Clean environment & Absolute measurement, Percentage level accuracy of Higgs width & Couplings

TPC Radius & B-Field

- TPC is Feasible at CEPC Z pole operation (2017 JINST 12 P07005)
- Detector cost is sensitive to tracker radius, recommended Value >= 1.8m:
 - Better separation & JER
 - Better (H->di muon) measurement

JER VS B-Field & NLayer

3.5T & 48 Layers

3T & 40 Layers

3T & 48 Layers

- Marginal Impact on JER (from 3.5T -> 3T)
- 3 Tesla even turns out to be better than 3.5 Tesla (~only 1 sigma)

Br(H→WW) Vs Cell size

Br(H→WW) via vvH, H→WW*→lvqq

No lose in the object level efficiency: JER degraded, ~ 5/10% at 10/20 mm

Over all: event reco. efficiency varies ~1% 01/12/2017 CCEPP@IHEP

Z->tau tau @ Z pole VS Cell Size

 $5 \rightarrow 20$ mm: May severe degrade Tau physics performance $CCEPP@IHEP \rightarrow to be investigated$

Optimized Parameters

	CEPC_v1 (~ ILD)	Optimized (Preliminary)	Comments
Track Radius	1.8 m	>= 1.8 m	Requested by Br(H->di muon) measurement
B Field	3.5 T	3 T	Requested by MDI
ToF	-	50 ps	Requested by pi-Kaon separation at Z pole
ECAL Thickness	84 mm	84 mm	84 mm is optimized on Br(H->di photon) at 250 GeV; 90mm for bhabha event at 350 GeV
ECAL Cell Size	5 mm	10 (5) mm	Passive cooling request ~ 20 mm. < 10 mm is appreciated for EW measurements – need further evaluation
ECAL NLayer	30	30 (20)	Depends on the Silicon Sensor thickness
HCAL Thickness	1.3 m	1 m	-
HCAL NLayer	48	40	Optimized on Higgs event at 250 GeV; Margin might be reserved for 350 GeV.

Benchmark detector for CDR: APODIS (A PFA Oriented Detector for HIggS factory. a.k.a CEPC v4)

Todo: from conceptual to engineering

- Software Team: Common Sample & Software Services
- Benchmark analyses at APODIS
- Novel Reco. & Pattern Recognition Algorithms
- Systematic control study
 - Sub-detector digitizers, test beam - validation
 - Requirement analyses
 - In-situ Monitoring
 - Data driven methods
- DAQ design & further optimization
- Global Integration

$\leftarrow \rightarrow \mathbb{C}$ (i) cepcsoft.ihe	p.ac.cn/docs/
CEPC Soft	Ware Documents Releases Packages Github
Introduction CEPC Software Simulation	CEPC Software Documentation
Tracking PFA CEPC Package Development Guide About Web SandBox	Documentation Contents Introduction Quick Start Installation Usage CEPC Software Software Architecture Software Framework
	 Event Display Simulation demo1 demo2 Tracking

Publications, Notes & International cooperations @ 2017

- Documentation
 - 3 Papers (JINST, EPJC, JPhysG)
 - ~o(10) CEPC Notes
- Talks at International Conference
 - 4 Talks at CHEF (Calorimeter for High Energy Frontier), Lyon, France
 - 4 Talks at LCWS (Linear Collider Workshop), Strasburg, France
 - 1 Invited talk at FCAL Workshop, Vinca, Serbia
 - 1 Talk at DPF, Fermi Lab, US
 - 1 Talk at CALICE Workshop
 - ~10 talks at CEPC Workshop
- Visiting & Cooperation with KEK, Vinca, In2p3, Iowa, Michigan, etc

困难 & 解决方案

- 人力和计算资源方面的巨大缺口
- 人力
 - 课题的深度和难度大为增加
 - 已有学生、博士后较为稚嫩,难以独立 承担科研课题。能够独立完成科研任务 的博士后,Staff级别人力急缺
 - 以学生为主的,在 PreCDR 阶段训练成 熟的分析队伍人员流失严重
- 计算资源 ~ 400 CPU
 - Massive Production 的产额仅仅达到最低要求(单探测器、单重建版本下的一份 SM 样本)的 1/10。已成为制约我们国际合作的瓶颈
 - 需支持探测器整体优化、重建算法优化 调试、子探测器模拟和 Digitization 开 发、物理分析等繁多工作

• 加大投入

- 人力
 - 寻找优秀博士、博士后
 - 招募百人 / 青千级的 Staff
 - 加强合作
 - 整理清晰我们的软件、样本服务, 减低合作者合作的技术难度
 - 制定明晰的合作课题和合作计划
 - 鼓励高能所员工参加
 - 给予足够的 Credit
- 计算资源
 - 强烈建议建立一个 1k CPU 量级 的、CEPC 计算资源池

Conclusion

- PFA oriented detector + Arbor: **Decent performance fulfills the requirements**
 - High efficiency & purity for Lepton, Kaon, Photon reconstruction
 - The Jet energy resolution
 - BMR: efficiently separate W, Z & Higgs
 - Jet level: |JES| < 1%, JER ~ 3-6% (Jet Clustering has significant impact)
 - Well established Higgs Signal in Physics benchmarks

• **APODIS**: Benchmark Geometry for CDR

- Similar Higgs performance w.r.t CEPC_v1 (degrading < 1% anticipated)
- Adequate to CEPC Collision environment
- ECAL #Channel reduced to 1/4 (1/6); HCAL Size/#Channel reduced to 80%
- Many interesting/important topics to be explored

Backup

Systematics requirements

- Luminosity
 - 10⁻³ for Higgs Run
 - 10⁻⁴ for Z pole operation
- Beam energy measurement
 - o(1-10) MeV for Higgs
 - o(0.1 1) MeV for Z
- Detector Requirements
 - Alignments
 - ~o(micrometer) accuracy for LumiCal
 - Homogeneity
 - ~o(10%) for Scintillator Calorimeter
 - Stability

Common topics

- Beam energy monitoring
 - 1 MeV accuracy is conditionally accessible (Very demanding) Needs more careful study
- Deep learning in Flavor Tagging
 - Significant Impact observed
 - At Z pole: B-tagging purity improved from 89%->93% (eff = 80%)
 - At Higgs Sample: C-tagging purity improved by ~50% (eff = 60%)
 - Much to be explore
- Computing:
 - Appreciation to Dirac, IHEPCC, BES, QMUL, IPAS...
 - Short in Computing Power: Only covers 1/10 of SM Background in 1 geometry set
- DAQ By giving some of the present examples, I am trying to give a hint on how the future DAQ system would move, but it is hard to predict new technology more than 10 year ahead
 - We need our own thoughts like xTCA
 - We need development from Industry
 New FPGA, high IO
 - Powerful CPUs, PPUs
 - 8/11/2017 We should not wait, but keep working/improving

Material:

Slides 📆

33

To Machine

16:30 - 18:15 MDI (joint detector and accelerator) I: Parallel Session V & PMT Conveners: Dr. Suen Hou (SINICA), Prof. Michael Sullivan (SLAC National Accelerator Location: C305 Electron 16:30 Introduction (interaction region, magnets, etc.) 25' beam Speaker: Mr. Chenghui Yu (Institute of High Energy Physics) Material: Slides 🔛 16:55 **Radiation backgrounds at CEPC 20'** Speaker: Dr. Hongbo ZHU (IHEP) Material: Slides 🗾 USB MVD USB 17:15 Telescope MDI at SuperKEKB 20' Speaker: Mr. Peter Lewis (Hawaii U.) Material: Slides 📆 Trigger USB Logic Unit DAO PC 17:35 **Overview of LC FCAL 20'** AD9522-1 PLL LKOUT Speaker: Prof. Ivanka Bozovic (VINCA) Revolution Cloc USB CLKD Evaluation Board Material: Slides 💏 17:55 LumiCal at CEPC 20' Speaker: Dr. Suen Hou (SINICA) 1. Luminosity of Bhabha counting is demanded to $\delta L/L \sim 0.1\%$ Material: Slides 📆 A "floating LumiCal" has unknown systematics on r_{inner}

MDI: Challenges everywhere!

wtih Si Strip to reach r_{inner} to resolution <10 μm

Telescope planes

Scintillators

& PMT

By adding electron tracking to calibrate "mean of r_{inner} " to $1 \ \mu m \rightarrow to reach \ \delta L/L \sim 0.01\%$

X-Y Table

Scintillators

Detector module

Converter

DESY II

Conceptual Detector for PreCDR Study: CEPC_v1

155 Reserve most of the ILD geometry, but has very different MDI region (L* reduced from 3.5 m to 1.5 m)

近期目标&愿景

- 建立完整、专业的 CEPC 软件队伍,提供相关服务
 - Manual, Feedback, Webpage, Documentation
 - Validation & Release
 - Test sample & Full SM Samples
 - 对人力的需求极大(至少2名FTE)
- 继续进行子探测器性能研究和模拟
 - 目前的基线探测器中电磁量能器采用了 Si-W 方案,而国内的硬件研究集中 在闪烁体方案中。后者的应用、性能评估、建模尚处于早期阶段。严格说 来,对于后者的适用性和优化还有大量重要问题需要回答。
- 完善基线探测器下的物理模拟、分析:填补 EW 分析性能的空白
- 深入研究探测器的整合问题(Integration)
- 深入国际合作

Key performance: Separation

Separation power/Crucial Distance:

- ~ 2*Cell with Cell Size <= Moliere Radius;
- ~ 1 Cell with Cell Size > 1 Moliere Radius.

Validation: Arbor Branch Length

Arbor: successfully tag sub-shower structure

Samples: Particle gun event at ILD HCAL (readout granularity 1cm² & layer thickness 2.65cm) Length:

Charged MCParticle: spatial distance between generation/end points Arbor branch: sum of distance between neighbor hits

CCEPP@IHEP