

Prospects and Progress of the Jinping Neutrino Experiment (锦屏中微子实验)

Zhe Wang Tsinghua University 29/11/2017

@ CCEPP-2017

Interests in solar, supernova, and geo neutrinos

Solar Neutrino Physics

- 1. Precise solar neutrino flux and spectrum measurement of almost all components
 - Solar neutrino oscillation Jinping sensitivity 0.9 E * mixing parameters solar v_e survival probability 0.8 * oscillation upturn 0.7 E 0.6 - Test standard solar 0.5 model 0.4- New physics 0.3* sterile * NSI 10

neutrino energy/MeV

Solar Neutrino Physics

2. Discover CNO neutrinos

- Missing CNO fusion evidence from the SUN
- CNO cycle main fusion process of other massive stars
- A direct probe of solar core metallicity

* Attack solar high/low metallicity problem, resolve degeneracy, use for standard calibration

* Test homogeneous assumption of primordial star

Geoneutrinos

Diving power

- Initial gravity
- Nuclear power, U, Th, K decay

Knowledge:

- <u>Global heat measurement</u> 47 ± 3 TW
- Theoretical predictions:
 - Low range 10 TW
 - Middle range15-30 TW
 - High range 20 TW
- <u>Geoneutrinos from U, Th:</u>
 <u>10-30 TW</u>

- Still consuming initial gravitational power
- Need more measurement of mantle neutrinos

Supernova relic neutrinos

- Supernova burst neutrino: 1987a supernova neutrinos were observed Rate ~a few/century
- Diffused supernova neutrino background
 Accumulated background from far distance and time
- SRN: A finger print (rate and spectrum) of star formation rate and star evolution mechanism.

Jinping Laboratory

Depth and Muon Flux

Reactor Neutrino Background

Closest reactor 1200 km

Jinping Neutrino Experiment Proposal

Jinping Neutrino Experiment Proposal

With 2 kton fiducial mass for solar neutrino (equivalently 3 kton for geo and supernova relic neutrinos)

- 1. Discover CNO neutrinos
- 2. Solar v oscillation
- 3. Precise geoneutrino flux measurement and U/Th ratio
- 4. Study SRN

Proposal published: Chinese Physics C 41 (2017) 023002, Highlight

Solar Neutrinos

Simulation study with Borexino and Jinping assumptions. O-15 flux precision 10%

Solar Neutrinos

Geoneutrinos

- U geoneutrino spectrum
- Th geoneutrino spectrum
- Th/U ratio $\sim 25\%$
- Geo-reactor

Address mantel contribution

Geoneutrino flux

prediction at Jinping

Phys. Rev. D 95 (2017), 053001 and Sci. Rep. 6, 33034 (2016) 29/11/2017

35

30

SRN with LS Cherenkov Detector

15 kton-year for a discovery with Slow LS

R&D Effort

Slow liquid scintillator

High light yield and Cherenkov separation

Liquid Scintillator Cherenkov Detector

- <u>Distinguish Cherenkov</u> and scintillation light
- <u>Reasonable light yield</u>
 <u>3000 photons/MeV</u>

- <u>Directionality (> 5MeV)</u>
- <u>Particle identification</u> (mainly for electron, muon, proton, minor effect for gamma and positron)

Improve PMT coverage to 100% and improve efficiency

- ► We add two more ideas to the String Method <u>ArXiv:1703.07527</u>
 - 1. Consider the 3D geometry profile of PMT

Geometry acceptance and numbers

90° Cut-off	Photo cathode Coverage	Collection efficiency	N of PMT (m ⁻²)
No reflector	91%	100%	14.73
Modified hexagonal	100%	97%	11.65

Low background SST by smelting process

Analyzed by GDMS (1E-9 g/g), HPGe-groud (Bq/Kg), HPGe-Jinping (mBq/Kg)

- 1. C, Si, MgO sand: have a significant radioactivity
- 2. S, P: harmful to SST
- 3. Mn is not 100% necessary
- 4. Settle down on Fe, Cr, Ni (304L), Mo (316L)
- 5. Small impact from MgO crucible

Our sample has reached a comparable level of Borexino.

A 1-ton prototype at Jinping

- 1. Measure fast neutron background
- 2. Test detection material: water, LS, and slow LS
- 3. A low bkg. facility
- 4. Reconstruction

Thirty 8" PMTs FADC 10 bit 1GS/s Transparent acrylic vessel => Inside: 1ton for LS => Water outside Whole detector: lead shielding

Design and installation

A 1-ton prototype at Jinping

Since May 10, 2017, taking data with pure water inside. Now taking data with a liquid scintillator sample.

One-ton prototype at CJPL-I

More wild idea about geo neutrino detection

Volatile elements on the Earh

- from McDonough & Sun, 1995
- Need more measurement of <u>K40</u> geoneutrinos to finish the picture

Suppression of solar neutrino background

With Te>0.8, solar and geo neutrinos are in different groups. Liquid Scintillator Cherenkov Detector may play an interesting role ArXiv:1709.03743

Distinguish K-40 neutrinos

Mantle and crust neutrinos

Distinguish mantle from crust components by spectrum fitting.

Next step

- A ~10-ton prototype will be build next for testing the final plan for PMT, liquid scintillator, structure etc.
- 2. More studies on Jinping neutrino physics.
- 3. kton detector is in the future

Workshop and research group

2015, 2017 two international workshops

2015 Workshop of Jinping Neutrino Program

- Basic questions for solar, geo, and supernova relic neutrino detections are unsolved.
- CJPL is ideal for these studies. Jinping Neutrino Experiment proposal
- Many R&D efforts: Reflector, low background SST, 1-ton prototype, liquid Cherenkov scintillator (acrylic strength, Electro-magnetic function, etc. not mentioned
- More thoughts on SRN and geo neutrinos
- A 10-ton prototype is in plan

More details can be found at http://jinping.hep.tsinghua.edu.cn/

Thank you for your attention. Thank for the support.

CJPL-IAC "strongly" support this "compelling" project.

- 1. Fueling mechanism: pp chain CNO cycle (mainly in high mass stars)
- 2. Energy transmission: Radiation (opacity) inner convection outer
- **3. Equation: Balance of the gravity, radiation, and particle pressure**
- 4. Initial conditions

Abundance of H, He, metal elements Radius, age, mass ... <u>Assume: Initial metal fraction =</u> <u>surface fraction = core fraction</u>

Solar Modal and Neutrino Components

Helioseismology and conflict

Helioseismology: Solar surface vibration with T=~5 min, v=~0.5 km/s, A=~100 km

New (better) calculation of Solar model conflicts with helioseismology measurement: sound speed differ by ~40%

29/11/2017

Neutrino oscillation upturn

29/11/2017

energy

 $P_{ee}^{\odot} = \cos^4 \theta_{13} \left(\frac{1}{2} + \frac{1}{2}\cos 2\theta_{12}^M \cos 2\theta_{12}\right)$ * If going through the Earth, the survival

probability will change ~3%

Outside: vacuum mixing angle θ_{12}

The mechanism of solar evolution

- CNO neutrinos not discovered
 1% in the Sun, but major fueling process for high temperature stars
- CNO neutrinos: a direct probe of the core of the Sun Study solar metal element fraction, resolve the conflict
- Understand our closest star
- Neutrino oscillation
- Solar neutrino oscillation
 Transition from vacuum to matter oscillation
- Precise measurement and new physics

Supernova relic neutrino distribution

 $\frac{d\phi(E)}{dE} =$

$$\int R_{\rm ccSN}(z) \frac{dN(E')}{dE'} (1+z) \left| \frac{dt}{dz} \right| dz$$

1. R_{ccSN} – Rate of core collapse supernova (optical observation)

2. dN/dE['] – Neutrino energy spectrum (Supernova temperature)

3. Other constants: redshift

 SRN: A finger print of star formation rate and star evolution mechanism.

China Jinping Underground Laboratory

Flight: Beijing (Shanghai, Guangzhou) - Xichang Car: Xichang - Jinping (2 hours)

Design of CJPL-II

CJPL Current status

CDEX pit and PandaX pit done

29/11/2017

Solar neutrino detection

The electron is selected and its energy is measured with liquid scintillator and is related to original neutrino

Geo and SRN neutrino detection

The positron and neutron are selected and positron energy is measured with liquid scintillator.