

大亚湾实验液闪置换

于泽源高能所 代表江门液闪组、大亚湾合作组 粒子物理卓越中心 2017年12月1日

液体闪烁体和中微子实验

- 中微子实验最常用三种探测方法
 - •液体闪烁体:反应堆中微子、太阳中微子等
 - •水切仑科夫探测器:大气中微子、加速器中微子等
 - ·稀有气体探测器(Ar、Xe):加速器中微子、Ovββ实验等
- ·液体闪烁体是探测反应堆v。的"黄金"介质
 - 反beta衰变: $\overline{v}_e + p \rightarrow e^+ + n$, 时间、空间和能量的关联信号

Reines and Cowan, discovery of neutrino

2000s: KamLAND θ_{12} , δm^2

2010s: Daya Bay, θ_{13}

江门中微子实验

• 物理目标

- 确定中微子质量顺序
- 精确测量中微子振荡参数等
- 探测器较目前国际最好水平
 - 液闪体积增大20倍(靶质量)
 - 难点:探测器尺寸,液闪透明度
 - 光产额增大三倍(能量分辨率)
 - 难点:液闪光产额,光电倍增管
- 为解决液闪相关的难点
 - 在大亚湾地下5号厅建设了20吨液闪生产、
 纯化设备
 - 将大亚湾AD1中掺钆液闪置换为该设备 生产的液闪

光产额:探测器中心1MeV电子对应的 PMT观测到的总光电子数

液闪探测器核心问题1

- •最大化光产额
 - •去除溶剂中光学杂质:降低吸收
 - 优化发光物质配比
 - 尚无可靠实验结果给出光产额随液闪配方的变化
 - 可靠的光学过程模拟
 - 尚无经过数据检验的液闪三分量光学模型

世界首次对液闪发光模型的精确研究

4

液闪探测器核心问题 2

- •能量响应模型误差小于1%
- 正电子的能量模型的建立
 - •大亚湾实验基于γ刻度源和¹²Bβ谱建 立模型,误差大于1%
 - 国际上同类实验均使用类似方法,精 度低于大亚湾
- 能否在液闪中掺入β核素,直接测量低能端电子非线性?
 - 液闪置换实验前,将⁴⁰K混入大亚湾 掺钆液闪,获得了⁴⁰Kβ能谱
 - 首次实施此类探测器刻度

液闪探测器核心问题 3

- 液闪的天然放射性纯度
 - JUNO液闪不掺钆, 天然放射性更容易形成偶然符合本底
- 需要足够灵敏的探测器检验放射性是否达标
 - ·实验室小实验受限于液闪质量和本底,测量灵敏度仅为10-12 g/g
 - Borexino实验开始前,先做了CTF实验检验液闪放射性纯度
 - •大亚湾探测器有20吨液闪质量和足够厚的屏蔽层,运行10天可达10-15 g/g

实验	液闪质量	²³⁸ U含量	²³² Th含量
Borexino	约600吨	$< 10^{-17} { m g/g}$	$< 10^{-17} \text{ g/g}$
KamLAND	约1000吨	$< 10^{-16} \text{ g/g}$	$< 10^{-16} \text{ g/g}$
Daya Bay	160吨普通液闪	2*10 ⁻¹⁴ g/g	4*10 ⁻¹⁴ g/g
JUNO	20,000 吨	要求小于10-15 g/g	要求小于10-15 g/g

大亚湾实验液闪置换

- •针对液闪探测器的三个核心问题,15年提出了液闪置换实验
- ·将大亚湾AD1中的20吨掺钆液闪置换为江门液闪
 - AD1退出大亚湾物理取数,但对 θ_{13} 灵敏度影响可以忽略
 - •16年分别通过了大亚湾国际合作组的物理评审和工程评审
 - •17年2月完成置换,前后进行了四次实验

液闪核心问题	大亚湾液闪置换实验
光产额优化和光学模型建立	分步增加PPO和bis-MSB含量,测量光 产额并调节模拟
能量非线性误差小于1%	掺40K以研究1 MeV区间电子的非线性
天然放射性纯度	检验液闪纯化设备效果

液闪纯化

- 在大亚湾实验五号厅搭建了 20吨液闪生产纯化设备
 - 100 L/h生产速度
- Al₂O₃过滤塔
 - 有效去除光学杂质
- 烷基苯蒸馏 (意大利)
 - 移除放射性杂质

• 水萃

- 移除金属离子
- 蒸汽剥离 (意大利)
 - 移除²²²Rn

9

置换系统

- 在EH1搭建了液闪置换系统
 - •将掺钆液闪置换为高纯水,将水置换为纯化后液闪
 - 真空检漏: 漏率小于10-6 mbar*L/s
- •为江门液闪在线纯化做预研

JUNO

- •2016年
 - 20吨液闪生产和纯化设备安装调试
- •2017年1月
 - 置换系统和AD接口安装调试
- •2017年2月起
 - 掺⁴⁰K液闪混入大亚湾GdLS: 能量非线性模型
 - 大亚湾GdLS置换为新液闪(LAB + 0.5 g/L PPO): 天然放射性本底测量
 - · 逐步增加PPO和bis-MSB含量:光产额测量和光学模型调节
 - ²²²Rn检漏:积累极低本底实验的经验
 - 蒸汽剥离效率研究: 在线纯化技术研究

40K探测器刻度

- 正电子能量模型需要低能电子刻度数据
 - •1 MeV以下液闪非线性最大
 - · 直接测量电子非线性,降低γ到电子转换模型的影响
- 液闪置换前,将1升KLS混入GdLS,精 确测量了低能电子响应
 - 进一步降低了能量模型误差
 - 提高反应堆中微子能谱测量精度
 - 精确测量的⁴⁰K对原子核物理 有额外帮助(唯一的第三 禁戒跃迁核素)

掺⁴⁰K 液闪

液闪光产额研究

- 光产额(能量分辨率)是江门达到设
 计灵敏度的关键
- 在新液闪中逐步添加发光物质,精确 测量光产额和探测器响应的变化
 - 深入理解液闪发光和光传播过程
 - 构建三分量液闪的可靠光学模拟

NO.	PPO g/L	Bis-MSB mg/L
Raw	0.5	0
1	1	0
2	2	0
3	2	0.1
4	2	1
5	2	4
6	2	7
7	2.5	7
8	3	7
9	3.5	7
10	4	7
11	4	10
12	4	13

液闪光产额研究

• 2017年5月18日至7月27日完 成光产额实验

- 考虑PMT增益、探测器环境 等影响,每个测量点误差约 为0.15%
- 多种途径监测发光物质在探测器内均匀度
- 光产额随PPO、bis-MSB浓 度的增加均达到平台
 - 从HitPattern等其他方面观察 到发光物质自吸收随浓度的 增大

液闪光学模型研究

- •大亚湾实验结果不能直接推广到江门
 - 探测器尺度相差10倍, 液闪对光子的吸收相差五倍以上
- •建立了三分量液闪光学模型,并使用大亚湾数据检验光学参数
 - 新模型完整描述了三分量液闪各个成分的发光、吸收和重发射过程
 - 模拟结果显示江门应采用2.5 g/L的PPO和1.0 mg/L的bis-MSB
 - •和直接使用大亚湾液闪配方相比,总光电子数提高了5%
 - ·基于此结果,确定了PPO采购总量

过程	大亚湾光学模拟	新光学模型	
闪烁光发光	bis-MSB发射	PPO发射	P 2.7
光子吸收	只有bis-MSB吸收	LAB、PPO和bis-MSB按 吸收长度成比例的吸收光 子	¹⁰⁰ 2.6 2.55 2.55 2.5 2.45 MC
重发射	只有bis-MSB重发射	LAB吸收的光子无重发射; PPO、bis-MSB吸收的光 子按照各自QE重发射	2.4 2.35 2.30 2.3 2.3 2.3 2.3 0 1 2 3 4 5 6 7 bis-MSB concentration (mg/

天然放射性杂质测量

- •江门实验要求液闪中238U、232Th含量均小于10-15 g/g
 - 纯化系统设计了蒸馏、水萃和蒸汽剥离三个装置
- •新液闪灌入大亚湾AD1后,测量结果为
 - $^{238}U = (5.5 + -1.1) * 10^{-15} \text{ g/g}, ^{232}\text{Th} = (2.3 + -0.8) * 10^{-15} \text{ g/g}$ (0.5 g/L PPO)
 - $^{238}U = (2.7 + -0.3) * 10^{-14} \text{ g/g}$ (4.0 g/L PPO + 13 mg/L bis-MSB)

- 放射性超标可能原因:
 - PPO带入的放射性
 - ²²²Rn污染
 - 大亚湾GdLS残留(约20L)

氡污染

- •发现探测器中²²²Rn本底和循环 系统开机正相关
 - ²²²Rn是²³⁸U的一个子核,是低本 底实验天敌
 - •实验结果说明循环系统或AD气体 覆盖有漏
- 目前结果倾向于AD气体覆盖
 - 建造有机玻璃房保护置换系统
 - 氮封所有气体管路接口
 - 为江门实验积累了丰富的氡防护
 经验。。

氡污染

使用1cm厚有机玻璃将整个置换系统罩住,氮气保护

气动泵改氮气加压

在线循环纯化

- •蒸汽剥离设备可以有效移除222Rn但效率未知
- •11月23日开始,在探测器取数的同时,以100 L/h的速率循环和纯 化液闪
- •实验结果表明:
 - 在线纯化是可行的, 可以推广到江门实验
 - 蒸汽剥离对²²²Rn的 去除效率大于90%

总结

- •针对液闪探测器的三个核心问题,开展了大亚湾液闪置换实验
 - •能量非线性:掺40K液闪刻度
 - •光产额优化:不同发光物质配比下光产额测量和光学模型研究
 - 放射性纯度:液闪纯化,在线循环纯化,222Rn检漏等
- 通过置换实验,积累了液闪生产、纯化的宝贵经验
- •世界上对液闪光学和能量响应最深入的研究
- 多篇技术文章准备中

Backup

