"粒子物理前沿卓越创新中心"

考评答辩

张仁友 近代物理系,中国科学技术大学

W/Z physics

- Higgs Physics
- Bc meson and doubly heavy baryon
- New Physics

1. W/Z physics

- WWW (PRD 95, 073005, 2017)
- ZZγ (JPG 44, 085002, 2017), (EPJC 76, 76, 2016)
- ZZjet (PRD 94, 013011, 2016)
- ZZZ (JPG 43, 115001, 2016)
- Wwjet (PRD 92, 033005, 2015)
- WZZ (JHEP 10, 186, 2015)
- WWγ (EPJC 74, 3166, 2014)
- **ZZW** (MPLA 31, 1450153, 2014)
- Ζ Υ Υ (ΕΡJC 74, 2739, 2014)

LHC: Precision measurements will be possible in Run2

ZZ+jet: A useful background process for Higgs-boson production.

ZZ+ γ : Help for the determination of quartic gauge boson coupling.

VV'V''	$d\sigma$ (V decays) @ NLO QCD	$d\sigma(V \text{ decays})$		
		@ NLO QCD + NLO EW		
VV' + j	$d\sigma$ (V decays) @ NLO QCD	$d\sigma(V \text{ decays})$		
		@ NLO QCD + NLO EW		
VV' + jj	$d\sigma(V \text{ decays}) @ \text{NLO QCD}$	$d\sigma(V \text{ decays})$		
		@ NLO QCD + NLO EW		
$\gamma\gamma$	$d\sigma @ NNLO QCD + NLO EW$	q_T resummation at NNLL matched to NNLO		

Les Houches 2013: Physics at TeV Colliders Standard Model Working Group Report

Wishlist part 3 – Electroweak Gauge Bosons (V = W, Z)

Les Houches 2015: Physics at TeV Colliders Standard Model Working Group Report

High-precision prediction !

$pp \rightarrow V + j$	$\mathrm{d}\sigma$	$\rm N^2 LO_{QCD}$	$\mathrm{d}\sigma$	$N^2LO_{QCD} + NLO_{EW} + decays$
$nn \rightarrow V \pm 2i$	$\mathrm{d}\sigma$	$\rm NLO_{QCD}+$ decays	da	$N^2 I O_2 = + N I O_{} + doorwa$
$pp \rightarrow v + 2j$	$\mathrm{d}\sigma$	$\rm NLO_{EW}+$ decays	u <i>o</i>	$N \ LOQCD + NLOEW + decays$
$pp \rightarrow VV' + 1.2i$	$\mathrm{d}\sigma$	$NLO_{QCD} + decays$	da	NI Occep + NI Orus + decays
$pp \neq v \neq 1, 2j$	$\mathrm{d}\sigma$	NLO _{EW}	uo	INDOQUD + INDOEW + decays
$pp \rightarrow V V' V''$	$\mathrm{d}\sigma$	NLO _{QCD}	da	NI Operati NI Operati docesto
$pp \rightarrow v v v$	$\mathrm{d}\sigma$	NLO _{EW}	ŭØ	NLOQCD+ NLOEW+ decays
$pp \rightarrow \gamma \gamma$	$\mathrm{d}\sigma$	$\rm N^2 LO_{QCD}$	$\mathrm{d}\sigma$	$N^2 LO_{QCD} + NLO_{EW}$
$pp \to \gamma \gamma + j$	$\mathrm{d}\sigma$	$\rm NLO_{QCD}$	$\mathrm{d}\sigma$	$N^2 LO_{QCD} + NLO_{EW}$

Precision wish list: vector boson final states. V = W, Z and $V', V'' = W, Z, \gamma_{\text{Go to PC setting}}^{\text{Activate Wi}}$

Corrections of NLO QCD could be large (typically at O(10%))!
 Necessary to reduce the scale dependence !

 $\mathfrak{o}(\alpha_{\rm ew}) \sim \mathfrak{o}(\alpha_{\rm s}^2)$ The **NLO EW** correction becomes mandatory !

Integrated cross section: $\sigma^{LO}(pp \rightarrow ZZ + jet/\gamma) = \sum_{a,b} \int dx_1 dx_2 f_{a/p}(x_1) f_{b/p}(x_2) \hat{\sigma}^{LO}_{ab \rightarrow ZZ + jet/\gamma}$

1. Phase space

Loop amplitudes tensor reduction:

$$T_{\mu_{1}...,\mu_{M}}^{N} = \frac{(2\pi\mu)^{4-D}}{i\pi^{2}} \int d^{D}q \, \frac{q_{\mu_{1}}...q_{\mu_{M}}}{D_{1}...D_{N-1}} \quad \text{with } D_{i} = \left[\left(q + p_{i} \right)^{2} - m_{i}^{2} \right]$$

$$N = 5: \text{Reduced to 4-point integrals based on approach raised by Denner- Dittmaier.}$$

$$N \leq 4: \text{Standered PV dimensional tensor reduction.}$$

2. IR singularity

II. Dipole subtraction method

$$\sigma_{NLO} = \sigma_{LO} + \int_{m} \left[d\sigma_{virt} + \int_{1} d\sigma_{dipole} \right] + \int_{m+1} [d\sigma_{real} - d\sigma_{dipole}]$$
IR divergence canceled approximates the divergent behavior of

 $d\sigma_{real}$ in all soft/collinear regions

The dipole terms are only needed in the singular region

Parameter $\pmb{\alpha}$:distinct regions neighboring a singularity and regions without need of a subtraction

 Mapping of momentum between the dipole terms and real emission matrix
 Higher stability of numerical integration

3. Fine structure constant scheme

$\alpha(0) \rightarrow \alpha_{G_{\mu}} = \frac{\sqrt{2}}{\pi}$					
for collinear photon emission					
	$\alpha_{G_{\mu}} = \alpha_0 (1 + \Delta r) + \Delta \alpha^3$				
	absorb high order universal effects due to Δr				
	LO	NLO QCD	NLO EW		
pp→ZZ + jet	$\alpha_{G_{\mu}}^2 \alpha_s$	$\alpha_{G_{\mu}}^2 \alpha_s^2$	$\alpha_{G_{\mu}}^{3}\alpha_{s}$		
$pp \rightarrow ZZ + \gamma$	$\alpha_{G_{\mu}}^{2}\alpha_{0}$	$\alpha_s \alpha_{G_{\mu}}^2 \alpha_0$	$\alpha_{G_{\mu}}^{3}\alpha_{0}$		

4. Event identification

ZZ+ jet ? $ZZ+\gamma$?

Method A:

$$p_{T,jet} > \chi(\delta), \qquad \chi(\delta) = E_{T,\gamma} \epsilon_{\gamma} (\frac{1 - \cos(\delta)}{1 - \cos(\delta_0)})^n$$

S. Frixione, Phys. Lett. B 429 396 (1998)

Method B:

$$\mathcal{D}_{q \to \gamma}(z_{\gamma}) = -\frac{Q_{q}^{2}\alpha}{2\pi} \frac{1}{\epsilon} \frac{1}{\Gamma(1-\epsilon)} \left(\frac{4\pi\mu_{r}^{2}}{\delta_{c}\hat{s}}\right)^{\epsilon} [z_{\gamma}(1-z_{\gamma})]^{-\epsilon} [P_{\gamma q}(z_{\gamma}) - \epsilon z_{\gamma}] + D_{q \to \gamma}^{\text{bare}}(z_{\gamma}).$$

$$D_{q \to \gamma}^{\text{bare}}(z_{\gamma}) = \frac{Q_{q}^{2}\alpha}{2\pi} \frac{1}{\epsilon} \frac{1}{\Gamma(1-\epsilon)} \left(\frac{4\pi\mu_{r}^{2}}{\mu_{f}^{2}}\right)^{\epsilon} P_{\gamma q}(z_{\gamma}) + D_{q \to \gamma}(z_{\gamma}, \mu_{f}).$$

 $\frac{E_{jet}}{E_{jet}+E_{\gamma}} > 0.7$

E.W.N. Glover and A.G. Morgan, Z. Phys. C 62. 311(1994)

2. Higgs Physics

VBF Higgs pair (PRD 96, 055006, 2017) (PRD 89, 075011, 2014) (PRD 89, 073001, 2014) HZ in LHT at NLO+NLL accuracy (PRD 94, 074020, 2016) HH in RS (PRD 92, 116005, 2015) ttH (PLB 738, 1, 2014) H5h in GM (submitted) Higgs production channel !
Higgs self coupling !

Method A: Structure function

Method A: Effective theory

Structure function :

$$\begin{split} F_i^Z(x,Q^2) &= 2f_i(x) \int_0^1 dy \int_0^1 dz \delta(x-yz) \sum_{j=1}^{n_f} \left(v_j^2 + a_j^2 \right) \\ &\times \left[q_{\mathrm{ns},j}^+(y,\mu_f) C_{i,\mathrm{ns}}^+(z,Q,\mu_r,\mu_f) + q_{\mathrm{s}}(y,\mu_f) C_{i,\mathrm{q}}(z,Q,\mu_r,\mu_f) + g(y,\mu_f) C_{i,\mathrm{g}}(z,Q,\mu_r,\mu_f) \right], \\ F_3^Z(x,Q^2) &= 2f_3(x) \int_0^1 dy \int_0^1 dz \delta(x-yz) \sum_{j=1}^{n_f} 2v_j a_j \\ &\times \left[q_{\mathrm{ns},j}^-(y,\mu_f) C_{3,\mathrm{ns}}^-(z,Q,\mu_r,\mu_f) + q_{\mathrm{ns}}^\mathrm{v}(y,\mu_f) C_{3,\mathrm{ns}}^\mathrm{v}(z,Q,\mu_r,\mu_f) \right], \end{split}$$

$$C_{i,\mathrm{ns}}^{\pm} = \delta(1-x) + a_s \left[c_{i,\mathrm{ns}}^{(1),\pm} + L_M P_{\mathrm{ns}}^{(0),\pm} \right] + a_s^2 \left[c_{i,\mathrm{ns}}^{(2),\pm} + L_M \left(P_{\mathrm{ns}}^{(1),\pm} + c_{i,\mathrm{ns}}^{(1),\pm} \otimes (P_{\mathrm{ns}}^{(0),\pm} - \beta_0) \right) + L_M^2 \left(\frac{1}{2} P_{\mathrm{ns}}^{(0),\pm} \otimes (P_{\mathrm{ns}}^{(0),\pm} - \beta_0) \right) + \beta_0 L_R \left(c_{i,\mathrm{ns}}^{(1),\pm} + L_M P_{\mathrm{ns}}^{(0),\pm} \right) \right], \qquad (i = 1, 2, 3),$$

$$\begin{aligned} C_{i,q} &= \delta(1-x) + a_s \left[c_{i,q}^{(1)} + L_M P_{qq}^{(0)} \right] \\ &+ a_s^2 \left[c_{i,q}^{(2)} + L_M \left(P_{qq}^{(1)} + c_{i,q}^{(1)} \otimes (P_{qq}^{(0)} - \beta_0) + c_{i,g}^{(1)} \otimes P_{gq}^{(0)} \right) \right. \\ &+ L_M^2 \left(\frac{1}{2} P_{qq}^{(0)} \otimes (P_{qq}^{(0)} - \beta_0) + \frac{1}{2} P_{qg}^{(0)} \otimes P_{gq}^{(0)} \right) \\ &+ \beta_0 L_R \left(c_{i,q}^{(1)} + L_M P_{qq}^{(0)} \right) \right], \end{aligned}$$

Wilson coefficients can be determined by the PDFs !

GM model: Higgs real triplet, complex triplet, doublet

$$\Phi = \begin{pmatrix} \phi^{0*} & \phi^+ \\ -\phi^{+*} & \phi^0 \end{pmatrix}, \qquad \Delta = \begin{pmatrix} \chi^{0*} & \xi^+ & \chi^{++} \\ -\chi^{+*} & \xi^0 & \chi^+ \\ \chi^{++*} & -\xi^{+*} & \chi^0 \end{pmatrix}$$

K factor :

benchmark point	A B		С	D
(m_5, v_Δ) (GeV)	(200, 24)	(200, 17)	(300, 24)	(300, 17)

benchmark point	\sqrt{S} (TeV)	LO (fb)	NLO QCD (fb)	K
Δ	14	$0.2208^{+6.5\%}_{-5.9\%}$	$0.2649^{+1.8\%}_{-2.1\%}$	1.20
А	70	$2.726^{+0.3\%}_{-0.4\%}$	$2.803^{+3.2\%}_{-2.8\%}$	1.03
в	14	$0.1095^{+6.5\%}_{-6.0\%}$	$0.1320^{+1.7\%}_{-2.1\%}$	1.20
Б	70	$1.349^{+0.3\%}_{-0.4\%}$	$1.386^{+3.2\%}_{-2.8\%}$	1.03
C	14	$0.1105^{+7.1\%}_{-6.3\%}$	$0.1337^{+2.2\%}_{-2.4\%}$	1.21
Ũ	70	$1.593^{+0.2\%}_{-0.1\%}$	$1.672^{+3.1\%}_{-2.5\%}$	1.05
D	14	$0.05504^{+7.2\%}_{-6.4\%}$	$0.06675^{+2.2\%}_{-2.5\%}$	1.21
D	70	$0.7900^{+0.23\%}_{-0.02\%}$	$0.8276^{+3.1\%}_{-2.6\%}$	1.05

3. Bc meson and doubly heavy baryon

Bc* (PRD 95, 034019, 2017)

Bc** (arXiv:1710.11508)

doubly heavy baryon (PRD 95, 074020, 2017)

GM-VFN scheme ! PDF, b-quark mass and scale uncertainties.

4. New physics

Tau to muon+γ (EPJC 76, 421, 2016) T-odd quark pair production (MPLA 25, 1550125, 2015) DM+Z (EPJC 74, 3219, 2014) DM+W (JHEP 09, 069, 2014)

.....

LHT model:

Precise calculation for heavy gauge boson production in the LHT model

Journal of Physics : Conference Series 523 (2014) 012054

Tau to muon + photon:

Constrains parameter space of leptoquark model:

DM search at colliders :

100

10

1

0.1

0.01

1E-3

1E-4

1E-5

σ (pb)

 $\bar{\chi}$

 χ

目前在主持及参加的科研项目:

11375171,基金委面上项目:"含奇异希格斯多重态的新物理理论的高精度现象学研究",2014.1-2017.12(主持)

11775211,基金委面上项目:"标准模型希格斯粒子性质及TeV新物理理论中希格斯部分结构的唯象研究",2018.1-2011.12(主持)

11535002,基金委重点项目: "标准模型及新物理中的精密计算", 2016.1-2020.12(参加)

