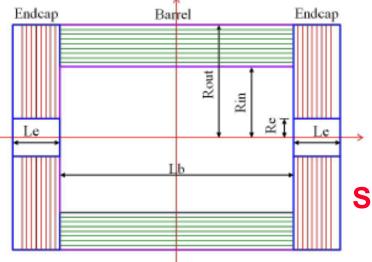
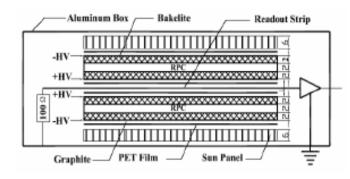
CEPC Detector CDR Mini-review

Muon Chapter

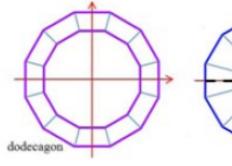

Liang Li, Jifeng Hu, Paolo Giacomelli


Muon Chapter

8 Muon system

- 8.1 Baseline Design
- 8.2 The Resistive Plate Chamber technology
- 8.3 The μRWell technology
 - 8.3.1 Large size µRWell detectors
 - 8.3.2 Applications for a Muon detection system for a CepC experiment
- 8.4 Other technoligies
 - 8.4.1 The MDT technology
 - 8.4.2 The Micromegas technology
 - 8.4.3 The GEM technology
 - 8.4.4 The Scintillator Strips technology
- 8.5 Future R&D

Muon System Overview


Structure:

- Between magnet iron yoke, outside HCAL
- Cylindrical barrel & two endcap system
- Solid angle coverage: 0.98 * 4π

Technology:

dodecagon

- Bakelite/glass RPC as baseline
- Many other options in consideration
 - µRWell
 - Micromegas, GEM
 - MDT, Scintillator Strip

Baseline Design

Resistive Plate Chamber (RPC)

Normal

Developing

Streamer

Streamer

Avalanche

Bakelite

 1.2×2.4

< 500

1.36

1.0

Tough

10K

< 0.8

100@92% [97]

Graphite coating on the outer surfaces of glass

 $10^{10} \sim 10^{12}$

Glass

 $> 10^{12}$

 1.0×1.2

 $2.4 \sim 2.8$

Fragile

0.05 [99]

Two 2 mm thick float Glass Separated by 2 mm spacer

100@95% [98]

Pickup strips

< 100

0.2

 $10^8 \sim 10^9$

Parameters

Bulk resistivity $[\Omega \cdot cm]$

Min board thickness [mm] Mechanical performance

Rate capability [Hz/cm²]

Noise rate [Hz/cm²]

2 mm thick spacer

Glass plates

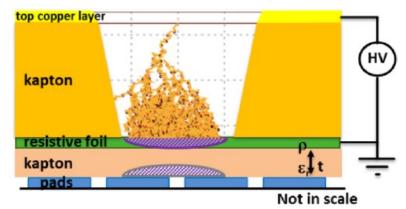
Complete RPC

Surface flatness [nm]

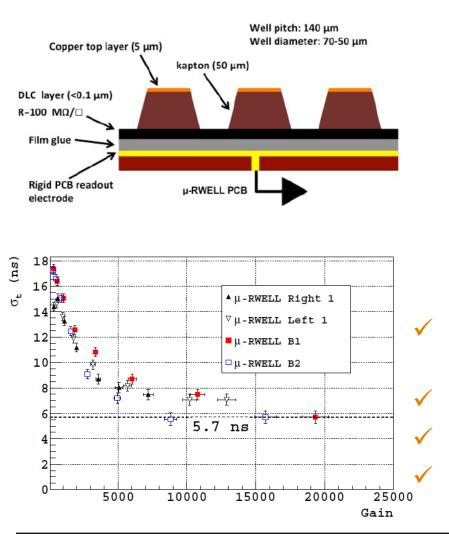
Density [g/cm³]

Max unit size (2 mm thick) [m]

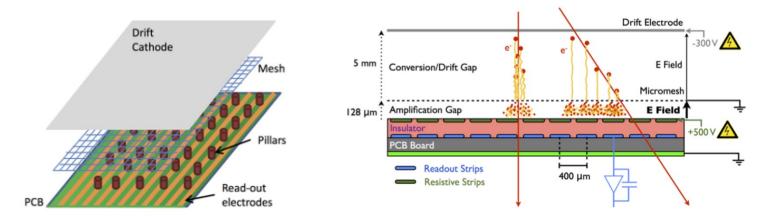
Parameter	Possible range	Baseline
Lb/2 [m]	3.6 - 5.6	4.0
Rin [m]	3.5 - 5.0	4.4
Rout [m]	5.5 – 7.2	7.0
Le [m]	2.0 - 3.0	2.6
Re [m]	0.6 - 1.0	0.8
Segmentation	8/10/12	12
Number of layers	6 – 10	8
Total thickness of iron	$6 - 10\lambda \ (\lambda = 16.77 \text{ cm})$	8λ (136 cm)
		(8/8/12/12/16/16/20/20/24) cm
Solid angle coverage	$(0.94 - 0.98) \times 4\pi$	0.98
Position resolution [cm]	$\sigma_{r\phi}: 1.5 - 2.5$ $\sigma_z: 1 - 2$	2
	$\sigma_z: 1-2$	1.5
Detection efficiency	92% - 99%	95%
$(E_{\mu} > 5 \text{ GeV})$		
Fake $(\pi \rightarrow \mu)@30$ GeV	0.5% – 3%	< 1%
Rate capability [Hz/cm ²]	50 - 100	~ 60
	RPC	RPC (super module, 1
Technology	μRWell	layer readout, 2 layers of
	Micromegas	RPC)
	GEM	
	(s)TGC	
-	MDT	
-	Scintillating strip	
	Barrel	~4450
Total area [m ²]	Endcap	~4150
-	Total	~8660


Signal efficiency > 95% for muon pT > 4 GeV with 8 layers

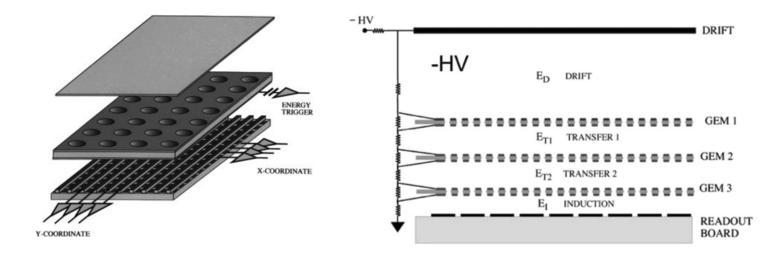
✓ Low cost, easy construction
✓ Position resolution: 5-10 mm
✓ Time resolution: ~1 ns


Micro-RWell technology

 Amplification stage couples directly with readout: low/high rate option


Much simpler than many other MPGDs, such as GEMs or MicroMegas Rate capability: a few tens of KHz/cm² Position resolution: ~60 µm Time resolution: 5-6 ns

Drift cathode PCB


Micro Mesh Gaseous Structure (Micromegas)

- A planar drift electrode, a gas gap of a few millimeters thickness as conversion and drift region, and a thin metallic mesh typically 100–150 µm distance from the readout electrode as the amplification region.
- Good spatial resolution < 100 μm, time resolution ~ 10ns
- High rate capability: ~10MHz/cm²
- Vulnerability to sparking
- Large active area (10⁴m²) Micromegas still under development

Gas Electron Multiplier (GEM) technology

- Gaseous ionization detector using copper-clad Kapton foil (50-70 μm thick) with etched holes (30-50 μm diameter) for gas amplification.
- Very good spatial resolution ~ diameter, time resolution ~10-20ns
- High rate capability: ~10MHz/cm²
- Vulnerability to sparking
- Complexity of assembly procedure: stretching and gluing GEM foils

Monitored Drift Tube (MDT) technology

- Wire chamber: an anode wire at center of tube and a metallic cathode (aluminum) with gas in between
- Good spatial resolution ~ 80µm, good time resolution ~10ns
- Rate capability: ~500Hz/cm²

Scintillator Strips technology

- Plastic scintillator material can be extruded into strips longer than 5 m. Use wave-length shifting (WLS) fibers to shift the light spectrum to match the response of Si photo-diodes (SiPM) or multi pixel photo counters (MPPC)
- Construct compact and rigid modules with 1-D or 2D readout strip arrays
- Spatial resolution ~ 3 cm, time resolution < 1 ns

Ongoing Studies

Muon system as an add-on

- Simulation study with built-in calorimeter / TCMT geometry, also integrated with yoke and magnet system
- Complementary to Calorimeter
 - Effect as a tail catcher / muon tracker (TCMT)
 - JER with/wo TCMT
 - Preliminary test with fast simulation: the level of improvement depends on the energy deposited in the muon detector, ranging from 1% (energy compensation ~ 1GeV) to 8% (energy compensation ~ 10GeV or more)

Non-isolated muon efficiency

- Simulation study using LICH (PFA) muon ID algorithm
- Check muons inside jets

Future R&D

- Long-lived particles optimization: explore new physics scenario of long-lived particles and exotic decays. Optimize detector parameters and technologies.
- Layout and geometry optimization: detailed studies on the structure of the segments and modules. The geometry and dimensions need to be optimized together with the inner detectors, in particular the ECAL and the HCAL.
- Gas detectors: Study aging effects, improve long-term reliability and stability.
- ✓ All detectors: Improve massive and large area production procedures and readout technologies.