

MDI: Background Estimation

Hongbo Zhu (IHEP)

CEPC Detector Mini-Review, 10 November 207

CDR

CHAPTER 10

CEPC INTERACTION REGION AND DETECTOR INTEGRATION

The machine-detector interface (MDI) represents one of the most challenging topics for the CEPC projects. It shall cover common issues related to both machine and detector designs. Topics described in this chapter include the interaction region layout, detector backgrounds, luminosity instrumentation, and concerns regarding machine and detector integration. Comprehensive understandings are necessary to address properly relevant issues and achieve optimal, along with compromises, overall performance of the machine and detector combined.

10.1 Interaction region layout

The interaction region (IR) receives several updates to cope with the recent double-ring design of the machine. It features an increased focal lengthen ($L^* = 1.5 \text{ m} \rightarrow 2.2 \text{ m}$), defined as the distance between the final focusing magnet (QDO) and the interaction point (IP). This allows enlarged separation between to the two single apertures of the QDO. Compensating magnets, possitioned in front of the QDO and surrounding both QDO and OF1 and constructed with superconducting coils, are introduced to cancel out the impacts of the detector solenoid on the beam. The outer radius of the magnets defines the detector acceptance of $[\cos \theta] \le 0.93$ in the forward region. The luminosity colorimeter ("Lumi-Cal"), located in front of the compensating magnet, is designed to measure the integrated luminosity to a precision of 10⁻³. The tracking disks in the forward region are re-located to cope with the limited space and shall be re-optimized with more studies.

By Copyright © 2017 HEP Community

175

Interaction Region Layout

- **Opening issues**
 - Forward tracking optimization (geometry + cable routing) ٠
 - Central Beryllium beam pipe extension •

Studies required but can be done

- LumiCal integration
- **Detector shielding**
- Beam monitor

More ...

Refer to the SuperKEKB scheme "remote connection" but with additional constraints

Concepts to be added/described

Radiation Backgrounds, H. Zhu

Radiation Backgrounds

Beam induced backgrounds

- Beamstrahlung
- Pair production
- Hadronic background

Machine induced backgrounds

- Synchrotron radiation
- Radiative Bhabha scattering
- Beamstrahlung
- Beam-gas interaction
- Beam injection
- Beam dumps
- ... and more

Beamstrahlung

Beamstrahlung

- Charged particles deflected by the strong field of the opposite bunch will emit radiation → beamstrahlung
- Keep machine/detector components far away from the kinematic-edge formed by particles from pair production

Helical trajectories formed charged particles from the pair edge

Constraints (+ solenoid) on beam pipe to be added

Pair Production

W. Xu and X. Wang

 Beamstrahlung and pair production simulated with the Guinea-Pig program; interfaced to detector simulation

Radiative Bhabha Scattering

W. Xu, X. Wang and S. Bai

 Beam lost particles (radiative Bhabha scattering, beamstrahlung, beam gas interaction ...) might get lost in the IR and cause particle shower if hitting machine/detector components → dominant background for Belle II

Description of collimator design and its principle to be added;CollimatorsZ results remain questionable, not working lattice

• Collimators introduced to suppress effectively the detector backgrounds (without disturbing the beam).

	Position	Distance to IP/m	Beta function/m	Horizontal Dispersion/m	Phase	BSC/2/m	Range of half width allowed/mm
APTX1	D1I.1884	2206.08	108.35	0.24	348.62	0.010242	1~10
APTX2	D1I.1909	1713.85	104.60	0.24	350.37	0.010115	1~10
APTY1	D1I.1897	1956.16	116.81	0.12	349.32	0.004128	1~4.1
APTY2	D1I.1908	1745.21	125.22	0.16	350.07	0.004168	1~4.1

Significant reduction in hit density and TID
Effective (not shown) to suppress backgrounds from beam lost particle due to beamstrahlung

Combined Results

 Radiative Bhabha scattering and pair production combined yield 2.5 hits/cm²·BX, annual TID ~ 2.5 MRad and NIEL ~10¹² n_{ed}/cm² ← safety factors of 10 applied

Results to be updated

NIEL Distributions

10 November, 2017

Synchrotron Radiation

Special and crucial background at circular machines

Central Region

• Direct and back-scattered SR photons should be avoided as much as possible.

SR Photon Suppression

Updated numbers since workshop, to be cross-checked with BDSim

Effectiveness of Mask Tips

Surface	Where (m)	Watts	Incident Photons	Scattered fraction	CP SA fraction	Est. hits on CP
А	0.7-2.2	37.25	1.27e10	.03	4.7e-5	1.8e4
В	2.2-3.93	2.07	7.06e8	.03	1.04e-5	220
С	3.93-4.43	41.03	1.40e10	.03	0.0	0.0
D	4.43-5.91	2.55	8.71e8	.03	3.7e-6	97

Surface	Where	Watts	Incident photons	Scattered fraction	CP SA fraction	Est. hits on CP
А	0.7-2.2					
В	2.2-3.93	0.0	0.0	0.0	0.0	0.0
С	3.93-4.43	41.03	1.40e10	.03	0.0	0.0
D	4.43-5.91	2.55	8.71e8	.03	3.7e-6	~97
Mask 2.1	1.5 mm	11.16	3.81e9		0.0	0.0
Tip at 1.4	500 um	4.56	1.56e9			56
Tip at 2.1	500 um	4.56	1.56e9			25
Tip at 3.93	500 um	4.27	1.46e9			~6.5

Validation with BDSim

K. Li

- Detailed beam pipe structure being implemented
- Mask tips to be implemented and their effectiveness to be verified
- Backgrounds in detectors to be estimated

Summary

- Have studied detector backgrounds due to beamstrahlung (pair production), radiative Bhabha scattering and synchrotron radiation (partly) ...
- Need to complete calculation of detector backgrounds from "the other sources"
- To propose preliminary designs of collimators, masks and detector shielding ... repeat all the calculation