CEPC Physics and Detector Conceptual Design Report: Mini-review Introduction

João Guimarães da Costa (IHEP, Chinese Academy of Sciences) Mini-review of the CEPC Physics and Detector CDR **10 November 2017**

Institute of High Energy Physics Chinese Academy of Sciences

Conceptual Design Report (CDR) – Status

Pre-CDR completed in 2015

- No show-stoppers 0
- Technical challenges identified \rightarrow R&D issues

- This week: Draft-0 preliminary chapters available for discussion Chapter 3: Detector concepts (partial)
- Chapter 4: Vertex detector
- * Chapter 5: Tracking system (TPC, silicon tracker, silicon-only concept, drift chamber) ***** Chapter 6: Calorimeter (PFA and DR calorimeter options)
- * Chapter 7: Magnet system
- ***** Chapter 8: Muon system
- * Chapter 10: MDI, beam background and luminosity measurement Chapter 11: Physics performance (partial)

(http://cepc.ihep.ac.cn/preCDR/volume.html)

- **Detector and Physics Conceptual Design Report (CDR)**
 - Goal: A working concept on paper, including alternatives

Conceptual Design Report (CDR) – Status

- No show-stoppers 0
- Technical challenges identified \rightarrow R&D issues

- Spring 2018: Planned release date **Soon** after CEPC accelerator CDR is released
- From this week's workshop till publication: Plenty of opportunities for everyone to contribute ***** Lots of room to make a serious impact

Nov 10-11: Informal CDR Mini-review http://indico.ihep.ac.cn/event/7384/

More definite schedule available towards end of November

Pre-CDR completed in 2015

(http://cepc.ihep.ac.cn/preCDR/volume.html)

- **Detector and Physics Conceptual Design Report (CDR)**
 - **Goal: A working concept on paper, including alternatives**

CDR Conceptual Designs

Baseline detector for CDR ILD-like (similar to pre-CDR)

Low magnetic field concept

Final two detectors likely to be a mix and match of different options

Full silicon tracker concept

Current CDR Status

Conceptual Design Report

Volume I - Physics & Detector

The CEPC Study Group

Spring 2018

IHEP-CEPC-DR-2018-XX

IHEP-EP-2018-XX

IHEP-TH-2018-XX

CEPC

Acknowledgments

Introduction 1

- The CEPC-SPPC Study Group and the CDR 1.1
- The Case for the CEPC-SppC in China 1.2
- The Science in the CDR 1.3
- 1.4 The Accelerator and the Experiment

Overview of the Physics Case for CEPC-SppC 2

2.1 First theory subsection

Experimental conditions and detector concepts 3

- **Experimental conditions** 3.1
- The CEPC detector requirements 3.2
- 3.3 Detector concepts
 - 3.3.1 The baseline concept
 - An alternative low-field concept 3.3.2

6

111

4 Vertex

- 4.1 Performance Requirements and Detector Challenges
- 4.2 Baseline design
- 4.3 Detector performance studies
 - 4.3.1 Performance of the Baseline Configurations
 - 4.3.2 Material Budget
 - 4.3.3 Dependence on Single-Point Resolution
 - 4.3.4 Distance to IP
- 4.4 Beam-induced Background in the Vertex Detector
- 4.5 Sensor Technology Options
- 4.6 Mechanics and Integration
- 4.7 Critical R&D
 - 4.7.1 Current R&D activities
 - 4.7.2 Future R&D
- 4.8 Summary

7

5 Tracking system

- 5.1 TPC tracker detector
 - 5.1.1 Baseline design and mechani
 - 5.1.2 Simulation and estimation fo
 - 5.1.3 Feasibility study of TPC dete
 - 5.1.4 Conclusion
- 5.2 Silicon tracker detector
 - 5.2.1 Baseline design
 - 5.2.2 Sensor technologies
 - 5.2.3 Front-End electronics
 - 5.2.4 Powering and cooling
 - 5.2.5 Mechanics and integration
 - 5.2.6 Tracking performance
 - 5.2.7 Critical R&D
- 5.3 Full-silicon tracker detector
 - 5.3.1 Full silicon tracker layout
 - 5.3.2 Toy simulation
 - 5.3.3 Detector simulation and reco
 - 5.3.4 Tracking performance
 - 5.3.5 Conclusion

	23
	23
ics	24
or the key issues	29
ector module and calibration system	31
	34
	34
	35
	37
	37
	38
	38
	38
	41
	41
	42
	42
onstruction	44
	47
	48

5.4 Drift chamber tracker detector

5.4.1 Introduction Physics Requirements and Perf 5.4.2 5.4.3 Overview Mechanical Design 5.4.4 5.4.5 **Cluster Counting/Timing Techn** 5.4.6 Front-end electronics Drift chamber material budget 5.4.7 Expected performance 5.4.8 5.4.9 Simulation and Reconstruction **Predicted Performance** 5.4.10 Conclusion 5.4.11

	49
	49
formance Goal	49
	52
	52
niques	55
	59
	59
	59
]	60
	60
	60

Calorimetry 6

Calo	orimetry		63
6.1	Introdu	uction to calorimeters	63
6.2	Electro	Electromagnetic Calorimeter for Particle Flow Approach	
	6.2.1	Silicon-Tungsten Sandwich Electromagnetic Calorimeter	66
	6.2.2	Scintillator-Tungsten Sandwich Electromagnetic Calorimeter	72
6.3	Hadro	nic Calorimeter for Particle Flow Approach	80
	6.3.1	Introduction	80
	6.3.2	Semi-Digital Hadronic Calorimeter (SDHCAL)	81
	6.3.3	Analog Hadronic Calorimeter based on Scintillator and SiPM	96
6.4	Dual-re	eadout Calorimetry	105
	6.4.1	Introduction	105
	6.4.2	Dual-Readout Calorimetry	106
	6.4.3	Layout and Mechanics	108
	6.4.4	DREAM/RD52 Prototype Studies	109
	6.4.5	Sensors and Readout Electronics	114
	6.4.6	Monte Carlo Simulations	119
	6.4.7	Final Remarks	121

7 Detector magnet system

- 7.1 General Design Considerations
- 7.2 The Magnetic Field Requirements an
 - 7.2.1 Main parameters
 - 7.2.2 Magnetic field design
 - 7.2.3 Coil mechanical analysis
 - 7.2.4 Preliminary quench analysi
- 7.3 HTS/LTS Superconductor Options
 - 7.3.1 HTS plan background
 - 7.3.2 The latest development of
 - 7.3.3 HTS magnetic design
 - 7.3.4 Future work of HTS plan
- 7.4 Solenoid Coil Design
 - 7.4.1 Solenoid Coil Structure
 - 7.4.2 R&D of Superconducting
 - 7.4.3 Coil fabrication and assem
- 7.5 Magnet Cryogenics Design
 - 7.5.1 Preliminary Simulation of
 - 7.5.2 Preliminary results for 10:1
 - 7.5.3 Experiment of a small-size
 - 7.5.4 Cryogenic System
- 7.6 Quench Protection and Power suppl
 - 7.6.1 power supply
 - 7.6.2 control and safety systems
- 7.7 Iron Yoke Design
 - 7.7.1 The Barrel Yoke
 - 7.7.2 The Endcap Yoke
 - 7.7.3 Yoke assembly
- 7.8 Dual Solenoid Scenario

	127
	127
and Design	128
	128
	128
	129
sis	135
	138
	138
high temperature superconducting cable	141
	143
	144
	145
	145
Conductor	146
ıbly	147
	148
the Thermosyphon Circuit	148
1 scale model	150
ed He thermosiphon	150
	154
ly	154
	154
	154
	155
	157
	157
	157
	158

Muon system 8

8.1	Baselin	Baseline Design	
8.2	The Re	The Resistive Plate Chamber tec	
8.3	Other (Other technoligies	
	8.3.1	The MDT technology	
	8.3.2	The Cathode Strip Chai	
	8.3.3	The Thin Gap Chamer	
	8.3.4	The Micromegas techno	
	8.3.5	The GEM technology	
	8.3.6	The Scintillator Strips t	
	8.3.7	The μ RWell technology	
8.4	Future	R&D	

Readout electronics and data acquisition 9

New Colliders for a New Frontier 9.1

- chnology
- mber technology
- technology
- ology
 - technology
 - У

161
163
164
164
165
165
165
165
165
165
170
173
174

CEPC interaction region and detector integration 10 175 Interaction region layout 175 10.1 Final focusing magnets 176 10.2 Detector backgrounds 10.3 177 Synchrotron radiation 177 10.3.1 Radiative Bhabha scattering 10.3.2 177 **Beam-beam interactions** 10.3.3 178 Beam-gas interactions 179 10.3.4 Summary on detector backgrounds 181 10.3.5 Luminosity instrumentation 181 10.4 Technological and design options 181 10.4.1 Systematic effects 10.5 182 10.5.1 Summary on LumiCal 184 185 Detector integration 10.6

11 Physics performance

- 11.1 Introduction
 - 11.1.1 The physics requirement a
- 11.2 Simulation Geometry & Samples
- 11.3 Arbor Algorithm & Strategy to the o
- 11.4 Leptons
- 11.5 Kaon Identification
- 11.6 Photons
- 11.7 Taus
- 11.8 Jet-clustering
- 11.9 Jet flavor tagging
 - 11.9.1 Base line
 - 11.9.2 Other machine learning app
 - 11.9.3 Gluon identification
 - 11.9.4 Conclusion

12 Futrue plans and R&D prospects

12.1 New Colliders for a New Frontier

	187
	187
nd detector design at the CEPC	187
	189
object reconstruction	189
	192
	194
	195
	196
	198
	202
	202
proaches	203
	206
	206
	207
	208
	14

Outcome

• Charge:

- Informal discussion on different topics. Feel free to be controversial and provide input in the content, format and text
- Some chapters clearly more polished than others
 - No need to provide english corrections on text that is clearly incomplete

• Outcome:

- Short summary with comments from individual people
- No need for a common report

CEPC baseline detector: ILD-like

Magnetic Field: 3 Tesla — changed from preCDR

• Impact parameter resolution: less than 5 µm • Tracking resolution: $\delta(1/Pt) \sim 2 \times 10^{-5}$ (GeV-1) • Jet energy resolution: $\sigma_F/E \sim 0.3/\sqrt{E}$

- m /-1)
- Flavor tagging
- BR(Higgs → µµ)
- W/Z dijet mass separation

CEPC baseline detector: ILD-like: Design Considerations

Major concerns being addressed

MDI region highly constrained L* increased to 2.2 m **Compensating magnets**

TPC as tracker in high-luminosity Z-pole scenario

ECAL/HCAL granularity needs Passive versus active cooling

Magnetic Field: 3 Tesla — changed from preCDR

•Impact parameter resolution: less than 5 µm • Tracking resolution: $\delta(1/Pt) \sim 2 \times 10^{-5}$ (GeV-1)

• Jet energy resolution: $\sigma_F/E \sim 0.3/\sqrt{E}$

- **Flavor tagging**
- BR(Higgs $\rightarrow \mu\mu$)
- W/Z dijet mass separation

Low magnetic field detector concept

Proposed by INFN, Italy colleagues

Magnet: 2 Tesla, 2.1 m radius

Thin (~ 30 cm), low-mass (~ $0.8 X_0$)

- Beam pipe: radius 1.5 cm
- **Vertex:** Similar to CEPC default
- Drift chamber: 4 m long; Radius ~30-200 cm
- **Preshower:** ~1 X₀
- **Dual-readout calorimeter: 2 m/8 λ_{int}**
- (yoke) muon chambers

Integrated into Conceptual Design Report **Dual readout calorimeter: Chapter 6 Talk: Session IV - Roberto Ferrari**

> **Drift chamber: Chapter 5** Talk: Session II - Franco Gancagnolo

Muon detector (µRwell): Chapter 8 Talk: Session IV - Paolo Giacomelli

Full silicon tracker concept

Replace TPC with additional

CEPC-SID:

6 barrel double strip layers 5 endcap double strip layers

Drawbacks: higher material density, less redundancy and limited particle identification (dE/dx)

SIDB: SiD optimized 5 barrel single strip layers 5 endcap double strip layers

CDR: Section 5.3