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Conceptual Design Report (CDR) - Status

• Goal:	A	working	concept	on	paper,	including	alterna6ves
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This week: Draft-0 preliminary chapters available for discussion 

Chapter 3: Detector concepts (partial) 
Chapter 4: Vertex detector 
Chapter 5: Tracking system (TPC, silicon tracker, silicon-only concept, drift chamber) 
Chapter 6: Calorimeter (PFA and DR calorimeter options) 
Chapter 7: Magnet system 

Chapter 8: Muon system 

Chapter 10: MDI, beam background and luminosity measurement 
Chapter 11: Physics performance (partial)

（h:p://cepc.ihep.ac.cn/preCDR/volume.html）

Pre-CDR	completed	in	2015

Detector	and	Physics	-	Conceptual	Design	Report	(CDR)

• No	show-stoppers	
• Technical	challenges	iden6fied	→	R&D	issues
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http://cepc.ihep.ac.cn/preCDR/volume.html


Conceptual Design Report (CDR) - Status

• Goal:	A	working	concept	on	paper,	including	alterna6ves
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Spring 2018: Planned release date 

 Soon after CEPC accelerator CDR is released 

From this week’s workshop till publication: 
Plenty of opportunities for everyone to contribute 

Lots of room to make a serious impact 

Nov 10-11: Informal CDR Mini-review 

http://indico.ihep.ac.cn/event/7384/

（h:p://cepc.ihep.ac.cn/preCDR/volume.html）

Pre-CDR	completed	in	2015

Detector	and	Physics	-	Conceptual	Design	Report	(CDR)

• No	show-stoppers	
• Technical	challenges	iden6fied	→	R&D	issues

More definite schedule available towards end of November 

http://cepc.ihep.ac.cn/preCDR/volume.html
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Baseline detector for CDR
ILD-like

(similar to pre-CDR)

Final two detectors likely to be a mix and match of different options
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8 EXPERIMENTAL CONDITIONS AND DETECTOR REQUIREMENTS

Figure 3.2: Schematic layout of the IDEA detector. Sub-detectors are outlined in different colors :
vertex detector (red), drift chamber (green), pre-shower (orange), magnet (gray), calorimeter (blue),
magnet yoke and muon system (violet).

pixel technology as well as profit from the electronic and mechanical work of the ALICE
ITS.

Outside the vertex detector we find a 4 m long cylindrical drift chamber starting from
a radius of ⇠30 cm and extending until 2 m. The chamber can be made extremely light,
with low mass wires and operation on 90% helium gas; less than 1% X0 is considered
feasible for 90� tracks. Additional features of this chamber, which is described in detail in
section 6.3, are a good spatial resolution, <100 µm, dE/dx resolution at the 2% level and
a maximum drift time of only 150 nsec. Track momentum resolution of about 0.5% for
100 GeV tracks is expected when vertex detector and pre-shower information is included
in the track fit. It is worth noting that the design of this chamber is the evolution of work
done over many years on two existing chambers, that of the KLOE detector [12] and that
of the recent MEG experiment upgrade [13]; major R&D work was done also for the 4th
concept at ILC [14] and then for the Mu2E tracker [15].

A pre-shower is located between the drift chamber and the magnet in the barrel region
and between the drift chamber and the end-cap calorimeter in the forward region. This
detector consists of a ⇠1 X0 = 0.5 cm of lead followed by a layer of silicon micro-strip
detectors. A second layer of MPGD chambers is located between the magnet and the
calorimeter in the barrel region, while in the end-cap region an additional layer of lead
is placed between the silicon and the chambers. This way about 75% of the ⇡0’s can be
tagged by having both �’s from their decay identified by the pre-shower. The silicon layer,
besides increasing the tracking resolution, provides a very precise acceptance determina-
tion for both charged particles and �’s. The optimization of pre-shower thickness and
calorimeter resolution is still in progress.

A solenoidal magnet surrounds the tracking system and the first pre-shower layer.
Presently planned dimensions are 6 m of length and 4.2 m inner diameter. The relatively
low two Tesla field and the small dimensions have important implications on the overall
magnet package thickness, that can be kept at the 30-40 cm level, and on the size of the

Low
magnetic field

concept

FULL-SILICON TRACKER DETECTOR 43
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Figure 5.16: The R-Z view of the full silicon tracker proposed for CEPC (left) and the enlarged version
of SID design (right).
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Outcome

• Charge:  
• Informal discussion on different topics. Feel free to be controversial 
and provide input in the content, format and text 

• Some chapters clearly more polished than others 

• No need to provide english corrections on text that is clearly incomplete 

• Outcome: 
• Short summary with comments from individual people 

• No need for a common report

15



CEPC baseline detector: ILD-like

16

CEPC detector  (1)  
• ILD-like design with some modification for circular collider  

• No Power-pulsing 
• Tracking system (Vertex detector, TPC detector , 3.5T magnet) 

• Expected Impact parameter resolution: less than 5μm 
• Expected Tracking resolution : δ(1/Pt) ~ 2*10-5(GeV-1) 

• Calorimeters: Concept of Particle Flow Algorithm (PFA) based 
• Expected jet energy resolution : σE/E ~ 0.3/√E 

 
 

3 
Magnetic Field: 3 Tesla — changed from preCDR  

• Impact parameter resolution: less than 5 μm 
• Tracking resolution: δ(1/Pt) ~ 2×10-5 (GeV-1) 
• Jet energy resolution: σE/E ~ 0.3/√E 

Flavor tagging
BR(Higgs → μμ)
W/Z dijet mass separation



CEPC baseline detector: ILD-like: Design Considerations
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CEPC detector  (1)  
• ILD-like design with some modification for circular collider  

• No Power-pulsing 
• Tracking system (Vertex detector, TPC detector , 3.5T magnet) 

• Expected Impact parameter resolution: less than 5μm 
• Expected Tracking resolution : δ(1/Pt) ~ 2*10-5(GeV-1) 

• Calorimeters: Concept of Particle Flow Algorithm (PFA) based 
• Expected jet energy resolution : σE/E ~ 0.3/√E 

 
 

3 
Magnetic Field: 3 Tesla — changed from preCDR  

• Impact parameter resolution: less than 5 μm 
• Tracking resolution: δ(1/Pt) ~ 2×10-5 (GeV-1) 
• Jet energy resolution: σE/E ~ 0.3/√E 

Flavor tagging
BR(Higgs → μμ)
W/Z dijet mass separation

Major concerns being addressed

MDI region highly constrained
L* increased to 2.2 m

Compensating magnets

TPC as tracker in high-luminosity
Z-pole scenario

ECAL/HCAL granularity needs
Passive versus active cooling
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Integrated into Conceptual Design Report
Dual readout calorimeter: Chapter 6

Talk: Session IV - Roberto Ferrari

Drift chamber: Chapter 5
Talk: Session II - Franco Gancagnolo

Muon detector (μRwell): Chapter 8
Talk: Session IV - Paolo Giacomelli

Beam pipe: radius 1.5 cm

Vertex: Similar to CEPC default 
Drift chamber: 4 m long; Radius ~30-200 cm 
Preshower: ~1 X0

Dual-readout calorimeter: 2 m/8 λint 
(yoke) muon chambers 

Proposed by INFN, Italy colleagues

Session I: Franco Bedeschi
CDR: Section 3.3

Magnet: 2 Tesla, 2.1 m radius

    Thin (~ 30 cm), low-mass (~0.8 X0)
DR

AF
T-

0

8 EXPERIMENTAL CONDITIONS AND DETECTOR REQUIREMENTS

Figure 3.2: Schematic layout of the IDEA detector. Sub-detectors are outlined in different colors :
vertex detector (red), drift chamber (green), pre-shower (orange), magnet (gray), calorimeter (blue),
magnet yoke and muon system (violet).

pixel technology as well as profit from the electronic and mechanical work of the ALICE
ITS.

Outside the vertex detector we find a 4 m long cylindrical drift chamber starting from
a radius of ⇠30 cm and extending until 2 m. The chamber can be made extremely light,
with low mass wires and operation on 90% helium gas; less than 1% X0 is considered
feasible for 90� tracks. Additional features of this chamber, which is described in detail in
section 6.3, are a good spatial resolution, <100 µm, dE/dx resolution at the 2% level and
a maximum drift time of only 150 nsec. Track momentum resolution of about 0.5% for
100 GeV tracks is expected when vertex detector and pre-shower information is included
in the track fit. It is worth noting that the design of this chamber is the evolution of work
done over many years on two existing chambers, that of the KLOE detector [12] and that
of the recent MEG experiment upgrade [13]; major R&D work was done also for the 4th
concept at ILC [14] and then for the Mu2E tracker [15].

A pre-shower is located between the drift chamber and the magnet in the barrel region
and between the drift chamber and the end-cap calorimeter in the forward region. This
detector consists of a ⇠1 X0 = 0.5 cm of lead followed by a layer of silicon micro-strip
detectors. A second layer of MPGD chambers is located between the magnet and the
calorimeter in the barrel region, while in the end-cap region an additional layer of lead
is placed between the silicon and the chambers. This way about 75% of the ⇡0’s can be
tagged by having both �’s from their decay identified by the pre-shower. The silicon layer,
besides increasing the tracking resolution, provides a very precise acceptance determina-
tion for both charged particles and �’s. The optimization of pre-shower thickness and
calorimeter resolution is still in progress.

A solenoidal magnet surrounds the tracking system and the first pre-shower layer.
Presently planned dimensions are 6 m of length and 4.2 m inner diameter. The relatively
low two Tesla field and the small dimensions have important implications on the overall
magnet package thickness, that can be kept at the 30-40 cm level, and on the size of the

r~2.1 m



FULL-SILICON TRACKER DETECTOR 43

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5

0.
0

0.
5

1.
0

1.
5

2.
0

CEPCSIDV6 geometry

z (m)

r (
m

)

eta = 0.0 eta = 1.0

eta = 2.0

eta = 3.0

eta = 4.0

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5

0.
0

0.
5

1.
0

1.
5

2.
0

SIDB geometry

z (m)

r (
m

)

eta = 0.0 eta = 1.0

eta = 2.0

eta = 3.0

eta = 4.0

Figure 5.16: The R-Z view of the full silicon tracker proposed for CEPC (left) and the enlarged version
of SID design (right).
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Figure 5.17: The number of expected hits are shown as function of track pesuro-rapadity.
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Replace TPC with additional silicon layers

Rad length up to 7% 

Session I: Weiming Yao
CDR: Section 5.3

CEPC-SID: 
6 barrel double strip layers

5 endcap double strip layers
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Figure 5.16: The R-Z view of the full silicon tracker proposed for CEPC (left) and the enlarged version
of SID design (right).
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Figure 5.17: The number of expected hits are shown as function of track pesuro-rapadity.

SIDB: SiD optimized 
5 barrel single strip layers

5 endcap double strip layers

Drawbacks: higher material density, less redundancy and limited particle identification (dE/dx)


