Introductory remarks

João Guimarães da Costa

October 25, 2017

Institute of High Energy Physics Chinese Academy of Sciences

November Workshop

- <u>http://indico.ihep.ac.cn/event/6618/overview</u>
 - 6-8 November 2017 at IHEP
 - Monday: plenary + parallel sessions
 - Tuesday: parallel sessions
 - Wednesday: plenary sessions
 - Detector plenaries:

中国科学院高能物理研究所

- Nov 6: CEPC detector status Joao
- Not 8: Detector and Physics summary & plan TBD
- Number of attendees registered: ~220
 - ~44% from international institutions
 - Might have to close registrations soon
- Program is almost finalized

Nov 6th, 08:30 - 10:30 Plenary Session I: CEPC-SppC Overview

- 1) Opening Address 10' Yifang Wang
- 2) CEPC-SppC Overview & Objectives 25' Xinchou Lou
- 3) CEPC Physics status 20' Liantao Wang
- CEPC accelerator CDR status 25' Jie Gao
- CEPC Detector status 20' Joao
- 6) SppC status 20' Jingyu Tang

Workshop Detector Agenda

November 6th

Parallel I: 16:30-18:30			Detector Concepts and System Aspects	Conveners: Massimo Caccia, Joao Guimaraes	
Talk 1	16:30	0:20	Full silicon detector CEPC detector concept	Weiming Yao	
Talk 2	16:50	0:20	CMS experience with HGCAL	Alberto Belloni	
Talk 3	17:10	0:20	Status of the CEPC magnet R&D	Zian Zhu	
Talk 4	17:30	0:20	A second detector proposal for CEPC	Franco Bedeschi	
Talk 5	17:50	0:20	Advanced DAQ systems for current and future colliders	Zhenan Liu	
Talk 6	18:10	0:20	The CLIC-inspired FCCee detector	Oleksandr Viazlo	

November 7th

	Day II: 10/7 - Parallel Sessions					
Parallel II: 8:00-10:00			Silicon Vertex and Tracker	Conveners: Wang Meng, Daniela Bortolleto		
Talk 1	8:00	0:20	Status report from Vertex Detector group (15+5 min)	OUYANG Qun		
Talk 2	8:20	0:20	Alpide and other developments	Walter Snoeys		
Talk 3	8:40	0:20	Depleted CMOS detectors for HEP experiments	Sebastian Grinstein		
Talk 4	9:00	0:20	Tracking in four dimensions	Amedeo Staiano		
Talk 5	9:20	0:20	Overview of SOI development	LU Yunpeng		
Talk 6	9:40	0:20	CMOS Pixel Sensors for ILC Related Vertexing & Tracking Device	Christine HU		

Parallel III: 8:00-10:00			Gas Detectors (Tracker, TPC and muons)	Conveners: Charlie Young, Soeren Prell, Yuanning Gao
Talk 1	8:00	0:30	CEPC TPC R&D and design	Huirong Qi
Talk 2	8:30	0:30	TPC experience from LCTPC	Invited by C: Jochen Kaminski
Talk 3	9:00	0:20	An ultra-light drift chamber with particle identification capabilities	Franco Grancagnolo
Talk 4	9:20	0:20	Muon detector options for CEPC	Li Liang
Talk 5	9:40	0:20	MPGD overview	Atsuhiko Ochi

Managenda Workshop Detector Agenda

Parallel IV: 10:30-12:30			Calorimeters	Conveners: Imad, Roberto, Jianbei
Talk 1	10:30	0:20	CEPC ECAL R&D Status	Yunlong Zhang
Talk 2	10:50	0:20	CEPC HCAL R&D Status	Boxiang Yu
Talk 3	11:10	0:20	CALICE SiW status	Jean-Claude Brient
Talk 4	11:30	0:20	CALICE SDHCAL status	Haijun Yang
Talk 5	11:50	0:20	Dual Readout Calorimeter at the CEPC	Roberto Ferrari
Talk 6	12:10	0:20	Dual readout calorimeter external vision	Tianchi
Parallel V: 14:00-16:00			Physics and Simulation	Conveners: Sasha, Patrizia, Yaquan and Manqi
Talk 1	14:00	0:20	Fast Simulation for CEPC	LI Gang
Talk 2	14:20	0:20	Jet energy scale and resolution	Peizhu
Talk 3	14:40	0:20	Beam energy monitoring via Compton Scattering	Guangy
Talk 4	15:00	0:20	Computing at CEPC	Tian Yan
Talk 5	15:20	0:20	Deep Learning at CEPC	Fan Yang
Talk 6	15:40	0:20	New method form measure Higgs boson mass at e+e-	Junping Tian
Parallel VI: 16:30-18:15			Physics and Simulation (Joint with Theory)	Conveners: Sasha, Patrizia, Yaquan and Manqi
Talk 1	16:30	0:20	HI-LHC & challenge for CEPC - Higgs	Nicola De Filippis
Talk 2	16:50	0:20	HL-LHC & challenge for CEPC - EWK	Paolo Azzurri
Talk 3	17:10	0:20	Study of BR(H→gamma gamma)	Zhenyu Whu
Talk 4	17:30	0:20	Combination of CEPC Higgs precision measurement	Kaili Zhang
Talk 5	17:50	0:25	Long lived particles	John Beacham

Posters

	Number
Vertex	
Silicon Tracker	
TPC	
Electromagnetic Calorimeter	2
Hadronic Calorimeter	2
Dual Readout Calorimeter	
Magnet System	
Muon System	
MDI	
LumiCal	
Physics and Performance	
	Lorenzo Pezzotti, Massimiliano Antonello

Will check with people that submitted abstracts if they want to present a poster instead

CDR News

IHEP-CEPC-DR-2018-XX IHEP-EP-2018-XX IHEP-TH-2018-XX

CEPC-SPPC

Conceptual Design Report

Volume I - Physics & Detector

The CEPC-SPPC Study Group

March 2018

- Text slowly growing
 - Document is about 192 pages now
 - Still, lots of parts missing and lots of editing work needed
- Share your text using GIT repository:
 - <u>http://cepcgit.ihep.ac.cn/cepcdoc/CDR/</u> <u>tree/master/CDR_draft</u>
 - You are free to continue editing the text once you submit it to the repository
 - So, I would encourage you to start adding it now

CONTENTS

	10 11 10 0	gments		111
1	Intro	duction		1
	1.1	The CE	PC-SPPC Study Group and the CDR	1
	1.2	The Cas	e for the CEPC-SppC in China	1
	1.3	The Scie	ence in the CDR	1
	1.4	The Acc	celerator and the Experiment	1
2	Ove	rview of t	he Physics Case for CEPC-SppC	3
	2.1	New Co	lliders for a New Frontier	4
3	Exp	erimental	conditions and detector requirements	5
	3.1	New Co	lliders for a New Frontier	6
4	Vert	ex		7
	4.1	Perform	ance Requirements and Detector Challenges	7
	4.2	Baseline	e design	8
	4.3	Detector	r performance studies	8
		4.3.1	Performance of the Baseline Configurations	9
		4.3.2	Material Budget	9
		4.3.3	Dependence on Single-Point Resolution	9
		4.3.4	Distance to IP	11
	4.4	Beam-ir	nduced Background in the Vertex Detector	11
	4.5	Sensor 7	Fechnology Options	11
	46	Mechan	ics and Integration	13
	 0			
	4.7	Critical	R&D	15

vi CONTENTS

v

		4.7.2	Future R&D	15						
	4.8	Summa	ary	16						
5	The	silicon t	racker	19						
	5.1	Baselir	ne design	19						
	5.2	Sensor	technologies	21						
	5.3	Front-I	End electronics	21						
	5.4	Poweri	ng and cooling	22						
	5.5	Mecha	nics and integration	22						
	5.6	trackin	g performance	22						
	5.7	Critial	R&D	22						
6	Trac	kina sve	stem	25						
Č	(1	TDC		25						
	6.1	IPC tr	acker detector	25						
		6.1.1	Baseline design and mechanics	26						
		6.1.2	Simulation and estimation for the key issues	29						
		6.1.3	feasibility study of the TPC detector module and calibration system	31						
	6.2	Full-sil	licon tracker detector	32						
		6.2.1	Full silicon tracker layout	33						
		6.2.2	Toy simulation	34						
		6.2.3	Detector simulation and reconstruction	35						
		6.2.4	Tracking performance	38						
		6.2.5	Conclusion	43						
	6.3	Drift cl	hamber tracker detector	43						
7	Calo	rimetry		45						
	7.1	Introdu	action to calorimeters	45						
	7.2	Electro	magnetic Calorimeter for Particle Flow Approach	47						
		7.2.1	Silicon-Tungsten Sandwich Electromagnetic Calorimeter	48						
		7.2.2	Scintillator-Tungsten Sandwich Electromagnetic Calorimeter	54						
	7.3	Hadror	nic Calorimeter for Particle Flow Approach	54						
		7.3.1	Introduction	54						
		7.3.2	Semi-Digital Hadronic Calorimeter (SDHCAL)	55						
		7.3.3	Analog Hadronic Calorimeter based on Scintillator and SiPM	63						
	7.4	Dual-re	eadout Calorimetry	74						
		7.4.1	Introduction	74						
		7.4.2	Dual-Readout Calorimetry	75						
		7.4.3	Layout and Mechanics	76						
		7.4.4	DREAM/RD52 Prototype Studies	77						
		7.4.5	Sensors and Readout Electronics	85						
		7.4.6	Monte Carlo Simulations	88						
		7.4.7	Final Remarks	90						
				~ ~						
8	Dete	ctor ma	gnet system	95						
	8.1	Genera	l Design Considerations	95						
	8.2	The M	agnetic Field Requirements and Design	96						
		8.2.1	Main parameters	96						
		8.2.2	Magnetic field design	96						

CONTENTS **VII**

		8.2.3	Coil mechanical analysis	97
		8.2.4	Preliminary quench analysis	102
	8.3	HTS/L	TS Superconductor Options	105
		8.3.1	HTS plan background	105
		8.3.2	The latest development of high temperature superconducting cable	109
		8.3.3	HTS magnetic design	111
		8.3.4	Future work of HTS plan	112
	8.4	Soleno	id Coil Design	114
		8.4.1	Solenoid Coil Structure	114
		8.4.2	R&D of Superconducting Conductor	114
		8.4.3	Coil fabrication and assembly	116
	8.5	Magne	t Cryogenics Design	116
		8.5.1	Preliminary Simulation of the Thermosyphon Circuit	116
		8.5.2	Preliminary results for 10:1 scale model	118
		8.5.3	Experiment of a small-sized He thermosiphon	119
		8.5.4	Cryogenic Plant Design	120
	8.6	Quench	n Protection and Power supply	123
		8.6.1	power supply	123
		8.6.2	control and safety systems	123
	8.7	Iron Yo	oke Design	124
		8.7.1	The Barrel Yoke	124
		8.7.2	The Endcap Yoke	124
		8.7.3	Yoke assembly	124
	8.8	Dual S	olenoid Scenario	125
9	Muo	n syster	n	135
	9.1	The μ F	RWell technology	135
		9.1.1	Prototypes performance	137
		9.1.2	Large size μ RWell detectors	138
		9.1.3	μ RWell performances in test beams	138
		9.1.4	The double-resistive layer detector	143
		9.1.5	Applications for a Muon detection system for a CepC experiment	144
	9.2	New C	olliders for a New Frontier	144
10	Read	lout ele	ctronics and data acquisition	147
	10.1	New C	olliders for a New Frontier	148
11	CEP	C intera	ction region and detector integration	149
	11.1	Interac	tion region layout	1/0
	11.1	Final fo	cousing magnets	150
	11.2	Detecto	ar backgrounds	150
	11.3	1131	Beam-beam interactions	150
		11.3.1	Synchrotron radiation	151
		11.3.2	Beam-gas interactions	151
	11.4	Lumino	osity instrumentation	151
		11.4.1	Systematic effects in the luminosity measurement	152
		11.4.2	Luminosity detector options	154
		11.4.3	Tracking of Bhabha electrons to 10^{-4} precision	155

viii	CONTENTS

		11.4.4 Boost by beam-crossing to Bhabha electrons	158
		11.4.5 Shower leakage of LumiCal to tracking volume	158
	11.5	Detector integration	161
12	Phys	ics performance	163
	12.1	Introduction	163
		12.1.1 Higgs discovery and Physics at Post-Higgs era	163
		12.1.2 The physics requirement and detector design at the CEPC	165
	12.2	Simulation Geometry & Samples	166
	12.3	Arbor Algorithm & Strategy to the object reconstruction	167
	12.4	Leptons	170
	12.5	Kaon Identification	171
	12.6	Photons	172
	12.7	Taus	173
	12.8	Jet-clustering	176
	12.9	Jet flavor tagging	180
		12.9.1 Base line	180
		12.9.2 Deep learning	180
		12.9.3 Gluon identification	180
		12.9.4 Geometry scan & recommendations	180
13	Futru	e plans and R&D prospects	183
	13.1	New Colliders for a New Frontier	184

中国科学院高能物理研究所

Outline (last week)

Ack	nowledgments	iii 5	The s	ilicon tracker	19
			5.1	Baseline design	20
1	Introduction	1	5.2	Sensor technologies and readout electronics	20
	1.1 The CEPC-SPPC Study Group and the CDR	1		5.2.1 silicon micro-strip sensors	20
	1.2 The Case for the CEPC-SppC in China	1		5.2.2 silicon pixel sensors	20
	1.3 The Science in the CDR	1	5.3	powering, cooling and mechanics	20
	1.4 The Accelerator and the Experiment	1	5.4	tracking performance	20
			5.5	critial R&D	20
2	Overview of the Physics Case for CEPC-SppC	3	Track	ing system	21
	2.1 New Colliders for a New Frontier	4	index		21
			6.1	TPC tracker detector	21
3	Experimental conditions and detector requirements	5		6.1.1 Baseline design and mechanics	22
		(6.1.2 Simulation and estimation for the key issues	22
	3.1 New Colliders for a New Frontier	6		6.1.3 feasibility study of the TPC detector module and calibration system	22
		-	6.2	Full-silicon tracker detector	23
4	vertex	1		6.2.1 Full silicon tracker layout	23
	4.1 Performance Requirements and Detector Challenges	7		6.2.2 Toy simulation	26
	4.2 Baseline design	8		6.2.3 Detector simulation and reconstruction	26
	4.3 Detector performance studies	8		6.2.4 Tracking performance	28
	4.3.1 Performance of the Baseline Configurations	9		6.2.5 Conclusion	32
	4.3.2 Material Budget	9	6.3	Drift chamber tracker detector	34
	4.3.3 Dependence on Single-Point Resolution	9 -	Color	imatur	27
	4.3.4 Distance to IP	11	Calor	metry	37
	4.4 Beam-induced Background in the Vertex Detector	11	7.1	Introduction to calorimeters	37
	4.5 Sensor Technology Options	11	7.2	Electromagnetic Calorimeter for Particle Flow Approach	39
	4.6 Mechanics and Integration	13		7.2.1 Silicon-Tungsten Sandwich Electromagnetic Calorimeter	40
	4.7 Critical R&D	15		7.2.2 Scintillator-Tungsten Sandwich Electromagnetic Calorimeter	40
	4.7.1 Current R&D activities	15	7.3	Hadronic Calorimeter for Particle Flow Approach	40
	4.7.2 Euture P & D	15		7.3.1 Introduction	40
	4.7.2 Future R&D	15		7.3.2 Semi-Digital Hadronic Calorimeter (SDHCAL)	41
	4.8 Summary	10		7.3.3 Analog Hadronic Calorimeter based on Scintillator and SiPM	49
			7.4	Dual-readout Calorimetry	60
				7.4.1 Introduction	60
				7.4.2 Dual-Readout Calorimetry	61
				7.4.3 Layout and Mechanics	63
				7.4.4 DREAM/RD52 Prototype Studies	64
				7.4.5 Sensors and Readout Electronics	73
				7.4.6 Monte Carlo Simulations	75
Joa	o Guimaraes da Costa			7.4.7 Final Remarks	3

Outline (last week)

Detector magnet system

中国科学院高能物理研究所

8.1	Genera	al Design Considerations	79
8.2	The M	agnetic Field Requirements and Design	80
	8.2.1	Main parameters	80
	8.2.2	Magnetic field design	80
	8.2.3	Coil mechanical analysis	81
	8.2.4	Preliminary quench analysis	86
8.3	HTS/L	TS Superconductor Options	90
	8.3.1	HTS plan background	90
	8.3.2	The latest development of high temperature superconducting cable	93
	8.3.3	HTS magnetic design	95
	8.3.4	Future work of HTS plan	97
8.4	Soleno	id Coil Design	98
	8.4.1	Solenoid Coil Structure	98
	8.4.2	R&D of Superconducting Conductor	99
	8.4.3	Coil fabrication and assembly	100
8.5	Magne	t Cryogenics Design	100
	8.5.1	Preliminary Simulation of the Thermosyphon Circuit	100
	8.5.2	Preliminary results for 10:1 scale model	102
	8.5.3	Experiment of a small-sized He thermosiphon	103
	8.5.4	Cryogenic Plant Design	105
8.6	Quencl	h Protection and Power supply	107
	8.6.1	power supply	107
	8.6.2	control and safety systems	107
8.7	Iron Yo	oke Design	108
	8.7.1	The Barrel Yoke	108
	8.7.2	The Endcap Yoke	108
	8.7.3	Yoke assembly	109
8.8	Dual S	olenoid Scenario	109
Muo	n syster	n	119
9.1	The μ I	RWell technology	119
	, 9.1.1	Prototypes performance	121
	9.1.2	Large size μ RWell detectors	122
	9.1.3	μ RWell performances in test beams	122
	9.1.4	The double-resistive layer detector	127
	9.1.5	Applications for a Muon detection system for a CepC experiment	127
9.2	New C	olliders for a New Frontier	128

10	Readout electronics and data acquisition		131
	10.1	New Colliders for a New Frontier	132
11	CEPC interaction region and detector integration		133
	11.1	New Colliders for a New Frontier	134
12	Physics performance		135
	12.1	Introduction	135
		12.1.1 Higgs discovery and Physics at Post-Higgs era	135
		12.1.2 The physics requirement and detector design at the CEPC	137
	12.2	Simulation Geometry & Samples	138
	12.3	Arbor Algorithm & Strategy to the object reconstruction	139
	12.4	Leptons	142
	12.5	Kaon Identification	143
	12.6	Photons	144
	12.7	Taus	145
	12.8	Jet-clustering	148
	12.9	Jet flavor tagging	152
		12.9.1 Base line	152
		12.9.2 Deep learning	152
		12.9.3 Gluon identification	152
		12.9.4 Geometry scan & recommendations	152
13	Futrue plans and R&D prospects		155
	13.1	New Colliders for a New Frontier	156

Minireview of CDR

- Following November workshop
 - Friday- Sunday, Nov. 10-12
 - Most likely, Friday 10 and Saturday 11
 - Informal review!

中国科学院高能物理研究所

- A few international attendees have volunteer to stay to review draft
- Need the presence of at least one convener per group
- Agenda:
 - http://indico.ihep.ac.cn/event/7384/