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Sampling ECAL calorimeter projects based on silicon diodes ..

ILC - (ILD or SID)
= a duty cycle of about 1% on electronics ... no need for active cooling

= areadout every 500 ns
= 26 layers for 24X0, cost estimation made by experts : cheaper than CMS ECAL

CMS HGCAL
= Readout every 25 ns, active cooling, large number of layers
= High level of radiation ( 10%® n/cm?/year) ... variation of the gain of the diodes
= pile-up mitigate the power of PFA

CEPC
= Readout every 25 ns (hypothesis)
= No problem of radiation
= Need active cooling (It allows pixels size of 6x6 mm — see my presentation at CEPC
workshop 2017)
= Small pixel allows time measurement /particle (like in ATLAS or CMS)
= Small pixel allows to run at Z Pole (occupancy)
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Geometry could be the one of ILD

20 to 30 readout layers and
20-24 Rad. Length within thickness<20 cm
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Assembly procedure

S s
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= Wafers glued on one side of PCB

= VFE asics on the other side

Mount sensor+PCB - 1 day cure
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Detector test
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Detector test
'—

Layer=3, ASIC=0, channel=3
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Detector test ™

350, Layer=3, ASIC=0, channel=3
Frr1rrrrprrrrrrjrrrrrrr 1111 p

When compare to scintillators based ECAL....
It explains partially our choice

Yes, scintillators ECAL is possible,
but it seems more difficult to tune
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Detector test , long slab

Test Beam DESY July 2018

1.6m long, almost the full scale for the final detector

Analysis on going
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About Cooling (not in ILC, but for CEPC, FCCee or CLIC)
R&D using CMS studies (Thanks to Th. Pierre-Emile from CMS-LLR group)

Passive cooling Active cooling
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Passive cooling ramp example

Active cooling test layout (400mm x 300mm x
3mm thick copper plate with 1,80D pipes
embedded)

Passive cooling ramp set up test Active cooling set up test with water at room temperature
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Cooling test

Passive cooling Active cooling .

Copper plate prototype dimensions information

»

I N
-

- Pipe insertion on a cooling prototype for FE correlation
Passive cooling ramp set up test on a 3 layers prototype

*  Active cooling improves thermal field

° Passjve COO]I.I]g can ]ead to more distribution and can extract much

com;)act solutions depending on the 1 more heat
tOta po wer to eXtraCt and the Pipeinsertion on a cooling prototype * Itrequires a quaﬁﬁedp]pe insertion
acceptable temperature gradient process
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Cooling test

Passive cooling Active cooling
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Thermal static FEA analysis thermal field example using ANSYS with 1W extracted
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Thermal static CFD analysis thermal field example using Fluent with 100W extracted and
water mass flow rate of 7g/s through 1,5mm ID pipe
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Comparison between thermal static analysis and theoretical approach
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Cooling test

Active cooling pipe insertion test with cold water

Corrélation mesure caméra thermique simulation
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* Pipe insertion process introduces some efficiency loss due to the thermal contact
resistance.

* The benefit remains significant with regard to a passive cooling
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REALISTIC (from CMS studies) cross section of the ECAL with active cooling

2 mm

LSSy Copper cooling layer 3.5 mm

All thicknesses are
based on prototypes...
(from ILD or from CMS)

ASIC BGA .
No extrapolation

PCB 1.6 mm

Silicon wafers 0.75 mm + glue 0.05 mm

Kapton HV 0.5 mm + glue 0.05 mm

Tunsgsten 3 mm

On average 9 mm/layer
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Happy with all the progresses, BUT

Standing problems

Hardware

Readout VFE

Readout at 1.7 m

Clock distribution

Signal at long distance

Aging of the gluing (10 years checked)
PCB production

DIF card small size (4x3 cm)

Power distribution, cooling distribution
Definition of quality control and test...

VVVYVVVYVVYY

Standing problems

Software

more than 1 PFA reconstruction software
Automatic calibration

HL- Zero suppress

Test beam data analysis

etc...

YV VVYY
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Lot of things to do
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Near and mid-term future

Full prototype with about 20 layers at the e 2018 .. mid/end 2019

* Test Beam (Data taking and analysis) 2019-2020
(No beam at CERN, remains DESY (low energy) or FERMILAB)

* Going from ILC type to CEPC type. Cooling, pixels size, total rad. Length, etc...
* Going from prototype to “full scalable” (we have already 1.6m long detector slab)

* Interact with industry for optimized production and cost (tungsten, silicon, etc...)
(amazing for me that HPK is the single producer in the world for high resistivity silicon
wafers)

Transfer knowledge to students about ultra-granular calorimeter
(there is specific problems to this type of device.... Ask for to CMS ©/® )
Important to learn about with real hardware device... HGCAL can tell you

All groups interested , do not hesitate ,
contact us, there are possibles contributions for all type of expertises
brient@llr.in2p3.fr 16




CONCLUSION

ECAL for e+e- circular collider at 250 GeV

» Ultra granular calorimeter , optimized for PFA, would do the job at CEPC
(including EW physics with tau , i.e. Higgs CP violation studies and at Z-pole)

> Active cooling : R&D demonstrate the feasibility

> Large luminosity and large number of pixels leads to a MANDATORY S/N>10 at MIP
This condition is fulfilled by ILD prototype, even at 1.6m from readout concentrator

Silicon -tungsten meet the requirements

Including the cost ... thanks to the upgrade of CMS,ATLAS.... We are talking of
about a cost significantly lower than the crystal ECAL of CMS-ECAL....

it is no longer a good reason to say no to silicon
17
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BACKUP




Detector SLAB (exploded view)

Shielding (copper)

Cooling plate Electronics VFE INSIDE

(copper)
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First Test Beam for scalable prototype at DESY - 2012

Gain : 1.2pF - SigmaDet = 4.90 - Signal over Noise ratio = 14
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With a large dynamic and a large number of channels, it is important to have a good S/N
(in order not to read noise at large, saturating the DAQ)

Test Beam in DESY -2017 Cut at 0.5 mip
s)
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3 remarks to conclude

High granularity ECAL (longitudinal segmentation and small lateral size) gives you for free
(almost free ... TOT in ASICS or LGAD diodes)

» BX-ID for neutral ( about few ps per shower... limitation from jitter on clock distr.)

» A particle ID for charged tracks (about 5-10 ps, with TOF)

~

/Efficient cost optimization is in progress

Optimisation with the number of Layers, the silicon thickness, a better use of the silicon
ingot, the internal radius of the ECAL, etc ... about 40% reduction is expected by cost
experts with modest impacts on performances (G4 full simulation.. Published in JINST)

\The preliminary cost estimate is NOW at the level of 90% of CMS-ECAL /

24



ECAL Thermal dissipation

level of granularity can be afforded without powerpulsing (like at ILC) ?
» For physics, the smaller is the best (it continue to improve largely even for Sp;, ,<<Rm)
BUT for the electronics cost and cooling, ... there is some limits

* Readout every 25 ns; no power pulsing
readout frequency versus ILC x 14 (350 ns to 25 ns)

conso/cell =28 mW ( Analogic part SKIROC2 without PP) +
2,1 mW (=0,15 x14 for digital part with readout every 25ns)

=5mW .... Propose to use 10 mW /channel (including a safety factor of 2)

*  From CMS upgrade project-HGCAL , active cooling system can be stabilized in temperature
for about 100W/layer, with fluid running in tube inside cooper plate (Rm not so good than ILC... but)

G

Taking into account the chosen layer size (= 150x20 cm?) and the 100W,
The cooling can afford pixel size of about 0.6x0.6 cm? !!! We have it
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Amount of material in ATLAS and CMS inner trackers

Weight: 4.5 tons Weight: 3.7 tons
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The tests of the camera
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Testing new slabs
in CERN SPS

Intensive study ongoing
mainly on electronics

of large scale

Sensor and readout
concept mature enough

Long-life needed: reliabllity is crucial




ULTRAGRANULAR CALORIMETER

Requirements

a) Calibration of O(100) millions channels and signal stability (small syst. uncert. needs same response for all collisions)

b)  Capability to make zero suppress “in-situ” (we don’t want to read empty pixel)

c) KeepS/N=8-10 at MIP level and coherent noise under control (limitation of the DAQ and it is not interesting to store noisy pixels )
d) Multiplexing for the quantity of signal line out (we don’t want to have 100M cables)

e) Power and thermal management due to large number of channels (we don’t want to burn our electronics readout)

f) KEEP the COST UNDER CONTROL (we want an affordable cost)

One set of answers

a)
b)
c)
d)
e)

f)

Choose stable device (silicon) or control & monitor the signal stability (Scint. or Micromegas)

ADC& digital memory in readout chip, close to active layer. Read memories continuously WITH S/N > 8
i.e. Silicon PIN diodes .... AC/DC coupling, ground loop ... (see later)

Large number of Channels/VFE ASIC... (KPIX, SKIROC), but only few readout line

reduced the number of channels — the power to dissipate (see later)

Reduce the overall surface or use lower cost active device (Micromegas, scintillator)

BUT warning versus point a) and c) . 10 years contacts with producers, defining wafers design which reduce the cost




