

SOIPIX: Status & Perspectives ~ ILC vertex detector & 3D Integration ~

Nov. 13, 2018 @ international workshop on the high energy Circular Electron-Positron Collider (CEPC), IHEP, Beijing

Yasuo Arai

High Energy Accelerator Research Organization (KEK) <u>yasuo.arai@kek.jp</u>, http://rd.kek.jp/project/soi/

<u>Outline</u>

- I. Introduction
- II. SOI Pixel Detector
- III. R&D for ILC Vertex Detector & 3D Integration
- IV. Summary

(SOI: Silicon-On-Insulator)

ILC Vertex detector

Requirements:

- 1) Single point resolution: better than 3 μ m
 - -> Pixel size: ~20 × 20 µm²
- 2) Time resolution: single-crossing (554 ns interval) time resolution
- 3) Detector occupancy: < 2 %
- 4) Low material budget: $X \le 0.1 0.2 \% X_0$ / Layer
 - \rightarrow ~50 μ m thick Si
 - → low-power ASICs (~ 50 mW/cm²) + gas-flow cooling
- 5) Radiation hardness:
 - TID : < 1 kGy / year
 - NIEL: < 10^{11} 1MeV n_{eq} / cm² / year

II. SOI Pixel Detector

Silicon-On-Insulator Pixel Detector (SOIPIX)

Monolithic Detector having fine resolution of silicon process and high functionality of CMOS LSI by using a SOI Pixel Technology.

Features of SOI Pixel Detector

- Monolithic device. No mechanical bonding.
- Fabricated with semiconductor process only.
 → High reliability and Low Cost.
- High Resistive fully depleted sensor (50um~700um thick) with Low sense node capacitance. → Large S/N.
- On Pixel processing with CMOS circuits.
- No Latch up and very low Single Event cross section.
- Can be operated in wide temperature (1K-570K) range.
- Based on Industry Standard Technology.

Lapis Semi. Co., Ltd 0.2 µm FD-SOI Pixel Process

Process	0.2µm Low-Leakage Fully-Depleted SOI CMOS 1 Poly, 5 Metal layers. MIM Capacitor (1.5 fF/um ²), DMOS Core (I/O) Voltage = 1.8 (3.3) V
SOI wafer (single)	Diameter: 200 mm ϕ , 720 μ m thick Top Si : Cz, ~18 Ω -cm, p-type, ~40 nm thick Buried Oxide: 200 nm thick Handle wafer: Cz (n) ~700 Ω -cm, FZ(n) > 2k Ω -cm, FZ(p) ~25 k Ω -cm etc.
Backside process	Mechanical Grind, Chemical Etching, Back side Implant, Laser Annealing and Al plating

Wafer Thinning TAIKO Process by DISCO Co.

With outer support ring

- Lower wafer warpage
- Improve wafer strength
- Easy wafer handling
- Easy backside processing (ion implantation, annealing, Metalizing etc) after thinning

We have successfully thinned several SOI wafers to \sim 75 μ m thick.

Issues in SOI Pixel

- Transistors does not work with high Detector Voltage. (Back-Gate Effect)
- Coupling between Circuit signal and sense node. (Signal Cross Talk)
- Oxide trapped hole induced by radiation will shift transistor threshold voltage.

(Radiation Tolerance)

The use SOI technology for pixel detector is already discussed in 1990^(*). Unfortunately, in 1990s, due to immature process technology, no good high-resistivity SOI wafer etc. , many SOI sensor R&D projects were stopped.

(*) Jean-Pierre Colinge, 'An overview of CMOS-SOI technology and its potential use in particle detection systems', NIM A305 (1991) 615-619.

Double SOI Detector

- Middle Si layer shields coupling between sensor and circuit.
- It also compensate E-field generated by radiation trapped hole.
- Good for Complex function and Counting-type sensor.
- Can be used in High radiation environment.

Present issue in the Double SOI Wafer

- Double SOI technology showed very good performance and solved major issues in the SOI Detector.
- Unfortunately, quality of the DSOI wafer is not so good at present stage since it is not commercial wafer and number of produced wafer is still very small.
- This causes process troubles (void, bending,,,) sometime. Furthermore, delivery time is very long especially when the wafer maker is very busy (now).
- Then, we also developed another sensor structure by introducing many buried well, called Pinned Depleted Diode (PDD) in parallel.

<u>New Sensor Structure:</u> <u>Pinned Depleted Diode</u> (SOIPIX-PDD)

Si-SiO₂ interface is pinned. Charge is collected in very small node.

Pinned Depleted Diode (SOIPIX-PDD)

- High Gain (70 μ V/e-)
- Good Energy Resolution (Noise = 11.0 e-)
- High Charge Collection Efficiency (No X-ray tail)

⁽Shizuoka U., Prof. Kawahito)

III. R&D for ILC Vertex Detector & 3D Integration

Tracking Resolution: High-Energy Beam test @Fermi National Accelerator Lab.

Two kinds of SOIPIX-DSOI detectors are used:

- FPIX2 x 4: 8 µm square pixel detector
- SOFIST(v.1 & 2) x 2: 20 μm square pixel detector

(K. Hara et al., Development of Silicon-on-Insulator Pixel Detectors, Proceedings of Science, to be published)

ILC Vertex Detector R&D : SOFIST

(SOI sensor for Fine measurement of Space & Time)

- Gain: 32 mV/ke- (@Cf=5fF)
- Analog signal memories: 3 for signal or 3 for time
- Column-ADC: 8 bit
- Zero Suppression Logic

Position Resolution

SOFIST Ver. 1

Readout and Sensor depletion layer 12-bit external ADC, 500 μm (Full depletion) 8-bit on-chip ADC, 500 μm (Full depletion) 12-bit external ADC, 200 μm (Partial depletion)

Time Resolution

SOFIST Ver.2

Timestamp correlation between SOFIST ver.2 #1 and #2

Timestamp residual between SOFIST ver.2 #1 and #2

Bench test resolution is about 1 μ sec.

New SOFIST Chips (Ver. 3 & 4)

Designed at the same time. Same circuits.

	Ver. 3 (2D)	Ver. 4 (3D)
Chip Size	6mm x 6mm	4.45mm x 4.45mm
Pixel Size	30µm x 30µm	20µm x 20µm
Pixel Array	128 x 128	104 x 104
Circuits	CSA + Comp.+ 3 Analog Mem + 3 Time Stamp Mem	
Wafer	FZ p-type (3~10 kΩ∙cm) Double SOI	

Position and Time Measurement SOFIST Ver. 3

 β –ray track from ⁹⁰Sr

Threshold: V_{th} = 950 mV, V_{RST} = 900 mV HV = -100 V

Successfully measured Charge and Time simultaneously!

3D Vertical Integration (SOFIST Ver. 4)

SOFIST Ver. 4

3D Integration

Upper Tier

Lower Tier

Upper and Lower Tier chips are produced in a same wafer and bonded chip to chip.

Bump Shape

Shape	Cone	Cylinder
Min. Size/Pitch	2.5μm φ / 5μm φ	3.5µmφ / 7µmφ
Bump Resistance	~0.3 Ω /bump	~0.3 Ω/bump
Yield	Good	Very Good
Reliability	Good	Very Good
Gap	$1.5\pm0.2~\mu m$	$1.0\pm0.2~\mu m$
Processing Time	Very Long	Short

3D SOFIST will be tested soon.

IV. Summary

- SOI pixel technology has been developed for fineresolution vertex detectors. In addition, it is widely used in many X-ray experiments.
- Back-gate, sensor-circuit coupling, and radiation hardness issues are solved by introducing Buried well, Double SOI, and PDD technique.
- SOFIST detector is under development for the ILC experiments. It almost fulfills position and timing resolution required in the ILC.
- We are also developing 3D vertical integration technology by using cylinder bump for small size high functionality pixel.

Thank You!

