The ALICE ITS Upgrade: System Aspects & State-of-the-art in the Construction

Yaping Wang for the ALICE Collaboration Central China Normal University

Pixel Laboratory at CCNU

ΔΙ

ALICE in Run 1 and Run 2

ALICE Detector:

- ✓ Central Barrel: $|\eta| < 0.9$
- ✓ Muon spectrometer: $-4.0 < \eta < -2.5$
- ✓ Forward detectors: trigger, centrality

Operation in Run 1 and Run 2:

- ✓ Tracking and PID in large kinematic range
- ✓ High resolution vertex reconstruction

ALICE Upgrade Motivations

ALICE strategy for Run 3 + Run 4

- ✓ 50 kHz Pb-Pb interaction rate (current < 10 kHz)</p>
- ✓ Collect $L_{Pb_Pb} \ge 13.0 \text{ nb}^{-1}$
- ✓ Experiment upgrades during LS2

ALICE physics goal \rightarrow High-precision measurements of QGP properties

- \circ Heavy-flavour and Quarkonia at very low p_{T}
 - Mechanism of quark-medium interactions
 - Dissociation/regeneration as tool to study de-confinement and medium temperature
- Low-mass vector mesons and low-mass di-leptons
 - Chiral symmetry restoration, initial temperature and EOS
- High-precision measurement of light nuclei and hyper-nuclei
 - QGP nucleosynthesis, exotics

The ALICE ITS Upgrade (CEPC2018) – Y. Wang

Commissioning

Ions

ALICE Upgrade Motivations

Main detector requirements

- High tracking efficiency and resolution at low p_T
 Increase granularity, reduce material thickness
- High-statistics, un-triggered data sample
 Increase readout rate, reduce data size (online data reduction)
- Preserve excellent particle id capabilities
 Consolidate and "speed-up" PID detectors
- ALICE ALICE ۲ Present ITS: 6 layers of silicon detectors (hybrid pixel, drift, strips) TPC: readout with GEM's Upgrade of the Upgrade of the Readout & Trigger System Readout & Trigger System 20152013 Online and offline ALICE ALICE ALICE New ITS: installation systems (O²) during LS2 Readout electronics: TOF.TRD. MUON ZDC, EMCal, PHOS Upgrade of the Upgrade of the Muon Forward Tracker Inner Tracking System Time Projection Chamber MET

The ALICE ITS Upgrade (CEPC2018) - Y. Wang

ALICE

Upgrade of the

ALICE Experiment

2012

ALICE ITS Upgrade

1. Improve impact parameter resolution by a factor of 3 (5) in $r\varphi$ (z)

- Reduce beam pipe radius: 29mm ⇒18.2 mm
- Get closer to IP (position of first layer): 39 mm \Rightarrow 23 mm (layer 0)
- Reduce material budget: $\sim 1.14\% \Rightarrow \sim 0.3\%$ (for inner layers)
- Reduce pixel size: 50mm x 425mm 🏓 29 mm x 27 mm

2. Improve tracking efficiency and p_{T} resolution at low p_{T}

- Improved integration time: < 10 μs
- Increase granularity and radial extension: 6 layers **>** 7 MAPS layers

Current ITS

3. Fast readout: 50 kHz @ Pb-Pb

New ITS Layout

CMOS MAPS – ALICE PIxel Detector (ALPIDE)

Key Features:

- Dimensions: 30mm x 15mm x 50 (100) μm
- Pixel pitch: $29\mu m \times 27\mu m$
- Spatial resolution: ~ 5 μ m (3-D)
- Fake-hit rate: ~10⁻¹⁰ pixel/event
- ⊙ Ultra-low power (entire chip): < 40mW/cm²
- ◎ Global shutter: triggered acquisition (200 kHz) or

continuous (integration time <10µs)

ALPIDE radiation tolerance:

- Radiation requirements:
 - 270 krad
 - 1.7×10^{12} 1 MeV n_{eq} / cm²
- After 10x lifetime NIEL irradiation

Fake hit rate: 10⁻¹⁰ hit/event with 0.002% masked pixels

- Spatial resolution: 5 μm
- Negligible chip to chip variations
- Excellent detector performance before/after irradiation over a wide range of operational setting

CMOS MAPS – ALICE PIxel Detector (ALPIDE)

Nov. 13, 2018

Construction – Inner Barrel HIC Modules and Staves

Construction – Inner Barrel Production and Commissioning

Construction – Outer Barrel HIC Modules

<u>.</u>

Nov. 13, 2018

The ALICE ITS Upgrade (CEPC2018) – Y. Wang

CHIP 8

CHIP 9

Construction – Outer Barrel HIC Modules

OB HIC Production

- 1692 HIC modules required
- 5 HIC production sites: Bari, Liverpool, Strasbourg, Wuhan, Pusan
- Target rate: 2 HICs per day per site
- So far, about 1300 HICs produced with a yield about 85% (Target 2580 HICs)
- Production end Feb Mar 2019

Nov. 13, 2018

Construction – Outer Barrel Staves

Required amount of staves:

- 54 Middle Layer (ML) staves, 112 chips in 2x4 modules, 59M pixel, 84cm long
- 90 Outer Layer (OL) staves, 196 chips in 2x7 modules, 103M pixel, 147 cm long
- ~ 10% spares, production end in August 2019
- 5 stave production sites: Berkeley, Daresbury, Frascati, Nikhef, Torino

Construction – Mechanical Support Structures

- Mechanical support structure completed
- Infrastructure for stave reception and assembly ready
- Stave reception tests at CERN started
- Installation in the cavern at May 2020

Nov. 13, 2018

Construction – Readout Electronics

- ITS Frontend Electronics is subdivided into 192 Readout Unit (RU) modules, each connected to and control a stave and optically interfaced to the Common Readout Unit (CRU) and to the Central Trigger Processor (CTP)
- RU distributes trigger and control signals, interface data links to ALICE DAQ, control power supply of chips
- Expected radiation levels at RU position: 10 krad TID, 1.7x10¹¹ NIEL, 1 kHz/cm² high energy hadron (HEH) flux (>20MeV)
- Mass production and testing ongoing (started in Sept 2018, will complete in April 2019)

Nov. 13, 2018

Construction – Schedule

- A new faster, less material budget, better spatial resolution and radiation hard Inner Tracking System (ITS) has been constructing for the ALICE upgrade in Run 3 and Run 4.
- The ALPIDE MAPS sensor produced at TowerJazz using 180nm CIS technology have been selected for the ALICE ITS upgrade.
 - Excellent performance in terms of detection efficiency, fake-hit rate and spatial resolution before/after irradiation over a wide range of operational setting
 - ✓ Mass production and testing are close to be completed
- Mass production of HIC modules and staves have been started in full swing, and will be completed in March 2019
- Readout Unit production started recently and complete in April 2019
- Infrastructure for layer assembly, testing and commissioning under preparation

Thanks for your attention!

Spare Slides

New ITS Readout Chain

