

Status of Technology of MRPC time of flight system

Wang Yi Department of Engineering Physics, Tsinghua University yiwang@mail.tsinghua.edu.cn

Abstract:

- Introduction of MRPC
- Introduction of three generation MRPC TOF
- Status of TOF of STAR, CBM and SoLID
- Conclusion

MRPC introduction

The voltage drop in the gas gap:

$$\overline{V}_{drop} = V_{ap} - \overline{V}_{gap} = \overline{IR} = \overline{q}\phi\rho d$$

The smaller the voltage drop, the higher efficiency and higher rate capability!

Two main ways to improve rate capability:

- Reducing bulky resistivity of electrode glass (CBM)
- Reducing the avalanche charge (ATLAS)

Other methods:

- Reducing the thickness of glass
- Warming the detector

Typical MRPC TOF

FAIR-CBM TOF High rate- low resistive glass

Key technology

1st generation TOF (from 2000): Requirement: Time resolution: <80ps Rate : <1kHz/cm² Technology: common glass MRPC+NINOs +HPTDC Analysis method: TOT slewing correction

2st generation TOF (from 2008): Requirement: Time resolution: <80ps Rate : 30kHz/cm² Technology: low resistive glass MRPC+PADI +GET4 Analysis method: TOT slewing correction

3st generation TOF (from 2012): Requirement: Time resolution: <20ps Rate : 20kHz/cm² Technology: low resistive glass MRPC+SCA +ADC Analysis method: TOT slewing correction Deep learning+ Neural network

Differential FEE

START

MRPC

TDC

Abstract:

- Introduction of MRPC
- Introduction of three generation MRPC TOF
- Status of TOF of STAR, CBM and SoLID
- Conclusion

RHIC-STAR

Collision species	C.M. Energy per nucleon pair (GeV)	Physics
Polarized p+p	510, 200, 150	Spin physics
Au+Au	200, 130, 62.4, 39, 27, 19.6, 14.5, 11, 7.7	Quark Gluon Plasma properties, QCD Critical point search
Cu+Cu, Cu+Au	200, 62.4, 19.6, 22.4	Study initial conditions
d+Au	200	Cold nuclear matter
U+U	193	Study initial conditions

Particle identification

STAR-TOF MRPC

Long side view

TO ANE

STAR MRPC performance

MRPC mass production

PID of STAR-TOF

Facility for Antiproton and Ion Research

Layout of CBM detector

Engineering design of the CBM experiment

Nominal ToF position is between 6 m and 10 m from the target

Movable design allows for optimization of the detection efficiency of weakly decaying particles (Kaons)

Interaction rate 10 MHz

The structure of CBM-TOF wall

Technical Design Report for the CBM Time – of – Flight System (TOF) The CBM Collaboration March 2013

<u>CBM-ToF Requirements</u>

- > Full system time resolution $\sigma_T \sim 80$ ps
- Efficiency > 95 %
- ➢ Rate capability ≤ 30 kHz/cm²
- Polar angular range 2.5° 25°
- > Occupancy < 5 %</p>
- Low power electronics
 - (~100.000 channels)
- Free streaming data acquisition

Development of low resistive glass

Performance of the glass

Maximal dimension	$32 \mathrm{cm} \times 30 \mathrm{cm}$
Bulk resistivity	$10^{10} \ \Omega \mathrm{cm}$
Standard thickness	$0.7, 1.1 \mathrm{mm}$
Thickness uniformity	$20~\mu{ m m}$
Surface roughness	$< 10 \mathrm{nm}$
Dielectric constant	7.5 - 9.5
DC measurement	Ohmic bebavior
	stable up to 1 C/cm^2

Glass mass production Yield >100m²/month

> **Online test system. The** efficiency time and resolution be can obtained by cosmic ray while irradiated by Xrays. 0.1C/cm² charge is accumulated in 35 days.

Design of strip-MRPC for high rate region

Glass: low resistive glass 0.7mm thick, 33cm x 27.6cm Strip: 27cm x 0.7cm, 0.3cm interval, 32 strips Gas gap: 8 x 0.25mm, two stacks

Beam test @ SPS Feb 2015

Mass production of high rate MRPC

Two-dimensional code of $\ensuremath{\mathsf{MRPC}}$

CBM ToF

Development of MRPC for CBM-TOF

Introduction	÷	List of	Tsinghua	MRPC	modules	#001 - #040
Material	•	#001	#002	#003	#004	#005
Module Test		#006	#007	#008	#009	#010
		#011	#012	#013	<u>#014</u>	<u>#015</u>
Other Stuff		#016	#017	#018	#019	<u>#020</u>
		#021	#022	#023	#024	#025
		<u>#026</u>	<u>#027</u>	<u>#028</u>	<u>#029</u>	<u>#030</u>
Proc http	lu ://	cttion v hepd.ep	vebsite: o.tsinghu	ıa.edu.	cn/CBN	A_TOF/

	DDC/H 3	() また()	MDDC2-	Owelline Area		1.1.		
M	RPU主厂	- 吃水衣 /	MRPC3a	Quality Ass	surance 1a	ibie		
MRPCID	***		Death No.	MRPUS	1-005			
	米目編号与拡次/Glass Batch No.			NO.9 131223			6	
Gass	米目欄号与塩次/Glass Batch No.			NO.11 151225	用料索查/Amount			4
	米目相号与抵伏 / Glass Batch No.			Delet 1	用件家重/Amount Data 2 Data 2 Data 4			Balat
		Surface Resistan	ce (ML2/sq)	Point 1	Point 2	Point 3	Point 4	Point
and the second second second second	电极玻璃1 / Electrode 1		8	2	3	7	/	
电极波频 / Electrode	电数据编2 / Electrode 2		3	3	4	3	3	
	电极要调3/Electrode 3		5	8	5	8	5	
	电极玻璃4/Electro		ode 4	8	4	3	5	5
m 其我 / Honeycomb				1				
PCB上下数 / Top & Bottom PCB				1				
	外側64略信号 岸接保护电阻 / Resistance 1			・ 与地之间电阻差否均为 100kΩ / Measured on Outside Resistor		1	问题教量 / Unqualified	0
PCB 中間板 / Middle PCB	Protection Resistor		内侧64略信号与地之间电阻是否均为200kΩ/ Resistance Measured on Inside Resistor		1	何恩教量 / Unqualified	0	
	焊接双捧播	/ Connector	/ Connector 16个辅励与电路被的厚度是否均<6.7mm / J Thickness of the connectors				肖思教量 / Unqualified	0
Mylar / Mylar				1				
PCB上下板高压 / Top & Bottom HV				1				
PCB 中间板高压 / Middle HV				1				
鱼統 / Spacer				1				
厚度 / Thickness	Point 1	Point 2	Point 3	Point 4	Point 5	Point 6	Point 7	Point
LTPCB / Between Top & Bottom PCB	11.44	11.47	11.44	11.41	11.57	11.45	11.59	11.52
上中PCB / Between Top & Middle PCB	4.61	4.77	4.67	4.76	4.66	4.79	4.72	4.77
PCB // Between Bottom & Middle PCB	4.63	5.03	5.02	4.87	4.96	4.84	4.84	4.74
总厚度 / Total Thickness	25.98	25.92	26.11	26.12	26.03	26.13	26.15	26.03
銅藝人岳客字 / Signature	杨泽林							
	08/09/2017							

Wang Yi, THU The 2018 international workshop on the high energy Circular Electron conden (CEPC)

CBM Phase0: eTOF @STAR

shipping and installation of one sector

2nd system integration test with one sector by participating in the Run18 beam time in STAR

shipping all 33 modules including infrastructure (gas system, LV-, HV-power supply) to BNL

Installation and commissioning

Start of the BES II campaign

Decommissioning and shipping of all modules including infrastructure to FAIR

Time resolution

StETofAnalysisMaker – Time Resolution

The independent resolution of each counter is around 100 ps (after divided by $\sqrt{2}$). Should get improved with calibration.

PID of STAR-eTOF

StETofMatchMaker – PID Information 2018 Au Au 27GeV, 2M events

Overview of SoLID

Solenoidal Large Intensity Device

• Full exploitation of JLab 12 GeV Upgrade

→ A Large Acceptance Detector AND Can Handle High Luminosity (10³⁷-10³⁹) Take advantage of latest development in detectors , data acquisitions and simulations

Reach ultimate precision for SIDIS (TMDs), PVDIS in high-x region and threshold J/ ψ

•5 highly rated experiments approved (+3)

Three SIDIS experiments, one PVDIS, one J/ ψ production (+ three run group experiments)

•Strong collaboration (250+ collaborators from 70+ institutes, 13 countries) Significant international contributions (Chinese collaboration)

28cm

SoLID-TOF structure

- The MRPC is developed for the TOF of SoLID
- Main Requirements for TOF:
 - π/k separation up to 7GeV/c
 - Time resolution < 20ps</p>

MRPC3

Rate capability > 20kHz/cm²

MRPC2

100cm

SoLID-TOF super module

- Challenge for both MRPC and electronics.
- Electronics: Fast amplifier + pulse sampling
- New analysis method: take the advantage of the entire waveform

- The analysis method is based on the neural network.
- Artificial neural network(NN): powerful && widely used in high energy physics
- Introduce NN to obtain good time resolution:

—— Find out the patterns from the MRPC signal and estimate the particle 1st interaction time more precisely.

Simulation results

Define bias: $t_{estimate} - t_{truth}$

The best time resolution can reach around 20 ps.

Experimental setup

- Experiment of the cosmic ray
- 2 identical MRPC: 6-gap, 0.25mm gap, working at E=109 kV/cm

- Oscilloscope bandwidth: 1 GHz
- Sampling rate: 10 GS/s

Leading edge: 700~800 ps

7~8 points along the edge

Experimental results

- The 4 waveforms are estimated by the LSTM models separately
- Define: $\Delta t = t_{MRPC1} t_{MRPC2}$ for vertical particles

$$\Delta t_{true} = \frac{d_{MRPC} + d_{block}}{v} = \sim 130 \; ps$$

The time resolution of two MRPCs are independent:

$$\sigma_{MRPC} = \frac{\sigma(\Delta t)}{\sqrt{2}}$$

With LSTM model, for vertical particles, the time resolution is:

$$51.28/\sqrt{2} = 36.3 \ ps$$

For MRPC of 6-gap, 0.25mm gas gap

Design of 3^g MRPC for SoLID

- .	74 4 /	
Item	dimension/mm	+HV
Honeycomb	$90 \times 265 \times 7.5$	
Outer PCB	$120 \times 298 \times 0.6$	
Middle PCB1	$120 \times 298 \times 1.2$	ground
Middle PCB2	$120 \times 328 \times 1.2$	+HV
Strip length	268	-HV
Strip width	7	
Mylar	$90 \times 268 \times 0.25$	+HV
Glass	$80 \times 258 \times 0.5$	₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩
Carbon	72×250	comb plate
Gas gap width	0.104	
Number of gas gap	32	
		—
		≻ Carbon
		electrode
		→ Glass
Wang Yi, THU The 2018 interr	national workshop on the high	n energy Circular Electron-Positron Collider (CEPC) 31

Analysis with neural network

• Test system: 2 MRPC

$$\sigma(\Delta t) = \sigma(t_{res1} - t_{res2}) = \sqrt{\sigma^2(t_{res1}) + \sigma^2(t_{res12})} = \sqrt{2\sigma_{MRPC}^2}$$

$$= \sigma(t_{true2} - t_{est2} - t_{true1} + t_{est1}) = \sigma(t_{est1} - t_{est2})$$

$$= \sigma(\frac{t_{est1l} + t_{est1r}}{2} - \frac{t_{est2l} + t_{est2r}}{2})$$

$$\sigma_{MRPC} = \frac{\sigma(\Delta t)}{\sqrt{2}}$$
• SCA+ADC waveform sampling
• Train with simulation data, test with experiment data
• Plot

$$Time = \frac{t_{est1l} + t_{est1r}}{2} - \frac{t_{est2l} + t_{est2r}}{2}$$
• The time resolution can reach 20 ps

Conclusions

- MTRC-TOF played an important role in modern high energy nuclear physics experiments.
- > High rate and high resolution TOF is being developed.
- New technology should be studied:

New material (low resistive glass)

New electronics (switched capacitor array (SCA) and high precision TDC)

New analysis method (deep learning technology)

Thanks for your attention!

Rate capability of high rate MRPC

mCBM@SIS18

Schedule				
10/2017	HTD cave & beam line: preparation of construction, start of procurement			
11/2017	HTD cave & beam line: start of construction			
11/2017	mDAQ test stand @ Heidelberg operational			
11/2017	installation of detector subsystems: mechanical design freeze			
03/2018	HTD cave construction completed			
04/2018	mFLES cluster @ Green IT Cube installed			
05/2018	installation of detector stations			
06/2018	start commissioning w/o beam			
09/2018	start commissioning with beam			

Production of modules for eTOF and mCBM

Approximate formula for impedance estimation

Approximate formula for impedance estimation

Approximate formula for calculating the impedance of transmission lines in MRPC Detector:

$$Imp = \frac{a(1)}{\sqrt{\varepsilon + a(2)}} \times \log \frac{a(3) \times n \times w2 + a(4) \times (n+1) \times w1}{w - a(5)} + a(6) \times \sqrt{\frac{w}{n \times w2 + (n+1) \times w1}} + a(7) \times \log \frac{w1}{w2}$$

$$Imp = \frac{a(1)}{\sqrt{\varepsilon + a(2)}} \times \log \frac{a(3) \times n \times w2 + a(4) \times (n+1) \times w1}{w - a(5)} + a(7) \times \log \frac{w1}{w2}$$

$$ns + a(8)$$

$$Goefficients: a(1) - a(8)$$

$$406.3467 \pm 15.0495$$

$$8.6294 \pm 1.0010$$

$$6.1138 \pm 0.1998$$

$$0.6871 \pm 0.0606$$

$$0.5577 \pm 0.0289$$

$$59.0823 \pm 1.8964$$

$$37.5319 \pm 1.8673$$

$$0.895 \pm 0.0089$$

R-square= 0.9977

14 Strip width/mm

12

8

6

10

20

Waveform simulation

*F. Wang, et al., A standalone simulation framework of the mrpc detector read out in waveforms, arXiv:1805.02387.

Wang Yi, THU The 2018 international workshop on the high energy Circular Electron-Positron Collider (CEPC)

Simulation data

Simulation dataset :

- 1. t_0 : first interaction happens
- 2. t_{p} the signal reach the peak
- 3. 7 uniformly distributed points along the leading edge

Signal waveform

• Compare the waveform

Multilayer perceptron (MLP)

Another NN: LSTM

Recurrent neural networks(RNN): Long Short Term Memory network(LSTM)

- Train/validate/test set: 20/10/10 k
- Tensorflow & GPU: GTX 1080 Ti

- The length of the leading edge t_l Several uniformly distributed

points along the leading edge

- **f** : forget gate: Whether to erase
- I : Input gate, whether to write
- g: gate gate, How much to write
- o: output gate, How much to reveal

> 30 mins for training