LHCb Software and Computing

Stefan Roiser

CEPC Workshop, Beijing

14 November 2018

CERN and the LHC Accelerator Complex

The Large Hadron Collider:

- 27 km tunnel originally built and used for LEP experiments 1989 – 2000
- For LHC used for proton proton collisions
- 4 main experiments: CMS ALICE, ATLAS and LHCb

LHC Operation and Shutdown Years:

2009	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028	<u>2029</u>	 203x
	Ru	n 1		Shutd	own 1		Ru	n 2		Shutd	own 2		Run 3		Sh	utdowr	n 3		Run 4		
	14 N	ov '18							Stefar	Roiser	CEPO	C Works	hop						2	2	

The LHCb Experiment

Collaboration of 1250 members from 79 institutes

Run 1: ~ 3 fb⁻¹ of pp collisions Run 2: ~ 6 fb⁻¹ of pp collisions Run 3: plan for ~ 10 fb⁻¹ of pp collisions per year

Run 2 Data Processing Model

Real Time Calibration & Turbo Stream

- Introduced during Run 2
- Split HLT into two stages
 - HLT 1 runs synchronous to collisions
 - Data buffering for final detector calibration and alignment
 - No re-reconstruction of data offline needed
 - HLT 2 runs asynchronous with buffered data
- Part of data (Turbo) fully reconstructed in HLT
 - Export physics objects ready for analysis
 - RAW data is discarded after HLT processing

Upgrading the Data Processing for LHC Run 3

- Remove L0 hardware trigger → improved selection via software trigger
- LHC beam luminosity increases by factor 5 to 2*10³³ cm⁻²s⁻¹
- Full reconstruction of events during HLT processing
- HLT software needs to cope with 40 MHz event input rate
- Bandwidth out of pit and offline storage needs increase because of better signal selection and luminosity increase
- Offline CPU needs for monte carlo simulation increase
 - · Simulation scales with the recorded luminosity

Run 3 Data Processing Model

Software Development for the Run 3 Upgrade

- Gaudi framework software development started 17 years ago
 - Developed in C++ together with ATLAS collaboration
 - Now move to multi-threaded taskparallel execution
 - Invest into vectorization of algorithms
- Major improvements in memory consumption and throughput
 - More work needed towards Run 3

RICH ray tracing improvements via vectorization

		SS	SE4	AVX2			
		time (s)	Speedup	time (s)	Speedup		
ıble	scalar	233.462		228.752			
dou	vectorized	122.259	1.90	58.243	3.93		
at	scalar	214.451		209.756			
flc	vectorized	55.707	3.85	26.539	7.90		

Monte Carlo Simulation

- Simulation based on same software Gaudi core framework
 - Re-engineering for multi-threaded execution needed
 - Now split into experiment agnostic (Gaussino) and specific (Gauss) part
 - Development of experiment agnostic part is shared with FCC
- Investing into fast and parametric simulation techniques
 - Re-decay, inject signal multiple times
 - Possibility to switch off subdetectors
 - Calorimeter shower libraries
 - Full parametrization via Delphes

Gauss and Gaussino simulation framework for the upgrade

ReDecay, inject signal information multiple times

Testing, Performance Checking and Release Build

- Software compiled and tested in various configurations every 24 hours
 - Testing functionality of the software
 - Checking performance evolution
 - Build and deploy releases
- Helps to easily test new configurations, latest compiler versions, etc.
- Used for trigger, data processing and simulation software packages
- Infrastructure based on standard industry available packages

Distributed Computing – Interface

- DIRAC project provides an interface to grid resources
 - Governed by consortium of 7 partners CNRS (France), CERN (Switzerland), Barcelona (Spain), KEK (Japan), IHEP (China), PNNL (USA), Montpellier (France)
- LHCb uses DIRAC for all workload and data management operations
- Evolution of the framework needed in Run 3 to cope with increased load

Resources

Distributed Computing – Resources

- Offline computing work executed on O(100) compute sites
 - Used for data processing, simulation and user analysis
- Resources provided via
 - Worldwide LHC Computing Grid
 - Unpledged resources (e.g. HPCs)
 - Experiment HLT farm when otherwise idle
- Peak usage at ~120k parallel jobs

Work Spent on Distributed Computing Resources

- ~ 80 % of resources used for Monte Carlo simulation
- Data processing ~ 10 %
 - Expected to decrease during Run 3 b/c of reconstruction in the trigger
- User analysis ~ 10 %
 - Individual analysis jobs + centralized working group productions

Computing Project Person Power

- Computing project effort:
 - 31 FTEs from 35 institutes
 - ~ 1/3 of person power currently involved in upgrade work

HEP Software Foundation

- "Community White Paper" with focus on R&D in HEP during the coming years
 - Paper covers 14 areas of HEP software and computing
- Followup in HSF in 3 working groups
 - Groups are currently being setup on: Trigger & Reconstruction, Simulation, User Analysis
 - Aim to look for synergies and common R&D activities in the various areas
 - In addition to already existing working groups: PyHEP, Packaging, Training, Frameworks, ...

	HSF-CWP-2017-01 December 15, 2017
A Roadmap for HEP Software ar for the 2020s	nd Computing R&D
HEP Software Foundation ¹	
ABSTRACT: Particle physics h for the coming decades. This hardware, either to build new f Similarly, it requires commenses manage, process, and analyse t for the HL-HLC in particular, agree on the software goals and In this spirit, this white paper this software upgrade.	is an ambitious and broad experimental programme programme requires large investments in detector indities and experiments, or to upgrade existing ones. Trate investment in the R&D of software to acquire, he shear amounts of data to be recorded. In planning it is critical that all of the collaborating stakeholders priorities, and that the efforts complement each other. describes the R&D activities required to prepare for

Summary

- Major software engineering effort for the upgrade towards LHC Run 3
 - Modernizing software framework which started development 17 years ago
 - Investing into faster simulation techniques to cope with offline CPU needs
- Use of industry provided standard tools whenever possible
- Collaboration for the software development efforts shared in many areas with other experiments
 - Core framework, simulation, distributed computing