Data Acquisition for the PANDA Experiment at FAIR

- What is FAIR ?
- What is PANDA ?
- What are the challenges for DAQ / Trigger ?
- Concept
- Conclusion

FAIR: Facility for Antiproton and Ion Research Darmstadt / Germany

FAIR is the largest research infrastructure on the 2008 <u>ESFRI</u> Road Map (European Strategy Forum for Research Infrastructures)

The PANDA detector

Ρ

pp: Pellet or Cluster target pA: wire target

> Forward Spectrometer Dipole magnet for forward tracks (2T.m)

. 12m

Target Spectrometer Solenoid magnet for high pt tracks: Superconducting coil & iron return yoke (B=2T)

ď.

PANDA tracking systems

PANDA Particle Identification Detectors

PANDA Electromagnetic Calorimeters

Physics, Data Acquisition and Event Filtering

- Problem: finding the needle in the haystack
- total inelastic cross section
 - 50 mb
- Interesting physics
 - most channels < 100 nb
- 2x10⁷ interactions /s
- Data rate after FEE reduction: 200 GBytes/s
 - 17 PBytes/day
- Goal for online event filtering:
 - reduce "background" by factor of 1000

PANDA DAQ Approach

- Freely streaming data :"Trigger less"
 - No hardware triggers
 - However, there will be event filtering, we cannot record everything !!
- Autonomous FEE, sampling ADCs with local feature extraction
- Time-stamping (SODAnet)
 - Data fragments can be correlated for event building
- Caveat: the high-rate capability implies overlapping events !!!
 - average time between two events can be smaller than typical detector time scales
 - This "pile-up" has to be treated and disentangled
 - Real-time event selection in this environment is very challenging and requires a lot of studies

Readout Approach for PANDA

The PANDA readout consist of:

- Intelligent self-triggered front-end: autonomous hit detection and data preprocessing (e.g. based on Sampling Analogue to Digital Converter)
- a very precise time distribution system (SODANET): single clock-source for PANDA (event correlation)
- time-sorting and processing data in real-time: processing in FPGA (Field-Programmable Gate Array)

100101101

DAQ Architecture

- Assumptions for Phase I
 - up to 10⁶ events/s 20 GB/s
 - separate runs for physics with "large" vs. "small" cross sections
 - negligible overlap between events (needs to be checked by simulations)
 - Final reduction factor for small cross section physics: 100
 - Reduction by FPGA layer: 10
 - Based on available resources at FAIR computing center
 - Large cross section physics requires reduced luminosity due to storage limitations

Conclusion: Key elements of PANDA DAQ&Event Filter

• Flexibility:

- No hardware trigger
 - Advantage for CEPC: Be ready for the unknown
- Event filtering (rejection of "background" events) based on physics content of fully reconstructed events
 - much more sophisticated than "simple" hardware trigger

Cost-saving layered approach

- FEE/Data concentrators
- FPGA based intermediate layer with large local buffer space (16 GB/FPGA)
 - Hardware: see talk by Jingzhou Zhao
 - can afford very large latency for decisions based on complex algorithms
 - Examples: FPGA based tracking algorithm for STT, cluster analysis for EMC
- Final reconstruction and filtering on CPU/GPU farm
 - only 0.1 % of events need to be stored