Electroweak Symmetry Breaking & CEPC

Andrew J. Long University of Michigan – LCTP @ IHEP – CEPC Workshop November 14, 2018

What we know and what we don't know about the Higgs

Large Hadron Collider experiment

$\mid m_{h} \simeq 125.09 \pm 0.24\, GeV/c^{2}$

$\mathbf{m_h} \simeq \mathbf{125.09} \pm \mathbf{0.24\,GeV/c^2}$

${ m m_h} \simeq 125.09 \pm 0.24\,{ m GeV/c^2}$

Electroweak Phase Transition. How does the background Higgs field move from zero in the early universe to its nonzero value today? (T ~ 100 GeV, t ~ 10 ps)

Studying the Higgs @ CEPC

How can we learn about the electroweak phase transition?

Effect on Higgs couplings

$$\lambda_3 = \sum_{h \to \dots \to h}^{h}$$

PRO: Directly related to the shape of themeasure. Target ofHiggs potential (V''').FCC-hh & SppC.

CON: Very challenging to

<u>Higgs Factories – precision Higgs measurements</u>

Lepton colliders provide "clean" environment to study Higgs physics.

At E = 250 GeV, the production of Higgs + Z-boson is optimized.

Precision measurements of Higgs-Z-Z coupling at the sub-percent level!

Proposed Higgs factories:

- → FCC-ee (Europe / CERN)
- → CEPC (China)
- → ILC (Japan)

figure: ILCTDR, 1306.6352

Precision Higgs measurements

Projected sensitivities to various Higgs couplings at current & future colliders:

	current	HL-LHC	CEPC	ILC	FCC-ee	FCC-hh
hZZ	27%	7%	0.25%	0.25%	0.15%	> -
Γ(h → γγ)	20%	8%	4%	-	1.5%	-
hhh	-	[-0.8 <i>,</i> 7.7] 95% Cl	43%	27%	43%	10%

Assumptions & references:

hZZ current = 5 fb⁻¹ at \sqrt{s} = 7 TeV & 20 fb⁻¹ at 8 TeV (1606.02266) hZZ @ HL-LHC = 3000 fb⁻¹ at \sqrt{s} = 14 TeV (1307.7135, CMS) hZZ @ CEPC = 5000 fb⁻¹ at \sqrt{s} = 250 GeV (pre-CDR) hZZ @ ILC = 2000 fb⁻¹ at \sqrt{s} = 250 GeV (1506.05992) hZZ @ FCC-ee = 2600 fb⁻¹ at \sqrt{s} = 250 GeV (1601.0640) hhh @ HL-LHC = 3000 fb⁻¹ at \sqrt{s} = 14 TeV (ATL-PHYS-PUB-2017-001, hh->bbγγ) hhh @ ILC = 4000 fb⁻¹ at \sqrt{s} = 500 GeV (1506.05992, e⁺e⁻>Zhh, hh->bbbb & bbWW) hhh @ FCC-hh = 30000 fb⁻¹ at \sqrt{s} = 100 TeV (1606.09408) hhh @ CEPC/FCC-ee = 5000 fb⁻¹ at \sqrt{s} = 240 GeV + 1700 fb⁻¹ at \sqrt{s} = 350 GeV (1711.03978)

13 Time to reach design sensitivity depends on run plan (not yet determined).

New physics coupled to the Higgs

Higgs potential with a low cutoff

Effective field theory description

A low cutoff can be probed at CEPC though its effect on the hZZ coupling.

Simplified models (with a new scalar)

Let the SM be extended by a new scalar field

Model	$(SU(3), SU(2))_{U(1)}$	g_{Φ}	C_3	C_2	$\frac{\Pi_W}{g^2 T^2}$	$\frac{\Pi_B}{g'^2 T^2}$	$\frac{\Delta \Pi_h}{\kappa T^2}$
"RH stop"	$(\bar{3},1)_{-2/3}$	6	4/3	0	11/6	107/54	1/4
Exotic triplet	$(3,1)_{-4/3}$	6	4/3	0	11/6	131/54	1/4
Exotic sextet	$(\bar{6},1)_{8/3}$	12	10/3	0	11/6	227/54	1/2
"LH stau"	$(1,2)_{-1/2}$	4	0	3/4	2	23/12	1/6
"RH stau"	$(1,1)_1$	2	0	0	11/6	13/6	1/12
Singlet	$(1,1)_{0}$	2	0	0	11/6	11/6	1/12

 $V_{\Phi} = m_0^2 |\Phi|^2 + \kappa |\Phi|^2 |H|^2 + \eta |H|^4$

The phase transition doesn't "care about" quantum numbers.

 \rightarrow only depends on mass and couplings

(1) A colored scalar: strongly constrained

Let the SM be extended by a new scalar field

$$V_{\Phi} = m_0^2 |\Phi|^2 + \kappa |\Phi|^2 |H|^2 + \eta |H|^4 \qquad \text{with} \qquad \Phi \sim (\mathbf{3}, \, \mathbf{1}, \, 0)$$

(2) A charged scalar: tested at HL-LHC & CEPC

Let the SM be extended by a new scalar field

$$V_{\Phi} = m_0^2 |\Phi|^2 + \kappa |\Phi|^2 |H|^2 + \eta |H|^4 + \cdots$$
 with $\Phi \sim (\mathbf{1}, \mathbf{2}, q_Y)$

(3) A singlet scalar: requires CEPC to test

Consider the theory:

SM + spin-0, colorless, uncharged particle (aka., real scalar singlet)

The new particle does not interact via the SM forces (strong, weak, EM)

- → difficult to produce and detect at colliders
- → (dark matter candidate if stable)

The new particle interacts with the Higgs boson

- → induces 1st order phase transition
- → affects Higgs couplings

Higgs-singlet mixing:

 $\langle H \rangle = (0, v/\sqrt{2})$ and $\langle \phi_s \rangle = v_s$ $\sin 2\theta = \frac{4v(a_{hs} + \lambda_{hs}v_s)}{M_h^2 - M_s^2}$ hhh coupling (see e.g., Profumo, Ramsey-Musolf, Wainwright, & Winslow, 2014)

$$\lambda_3 \equiv g_{hhh} = (6\lambda_h v) \cos^3 \theta + (6a_{hs} + 6\lambda_{hs} v_s) \sin \theta \cos^2 \theta + (6\lambda_{hs} v) \sin^2 \theta \cos \theta + (2a_s + 6\lambda_s v_s) \sin^3 \theta$$

even hZZ measurements alone are a powerful test of PT!

Poking into the dusty corners (of parameter space)

- aka, Z2xSM (Gonderinger, Li, Patel, Ramsey-Musolf)
- dubbed, "nightmare scenario" (Curtin, Meade, Yu)
- No Higgs-singlet mixing \rightarrow hard to test.
- Singlet is stable. Dark matter candidate.

- A new "nightmare scenario" / "blind spot"
- Probed by non-resonant pair production $pp \rightarrow ss$ and $s \rightarrow visible$. (Chen, Kozaczuk, Lewis, 2017)

Conclusions

Cosmologists are asking: What are the implications of the electroweak phase transition?

Particle physicists are asking: Is there new physics coupled to the Higgs?

A Higgs factory like CEPC is ideally suited to probe the kind of new physics that leads to 1st order phase transition.

BACKUP SLIDES

(2) A charged scalar: tested at HL-LHC & CEPC

new particles: inert doublet + singlet

 $\tilde{Q} \sim (\mathbf{1}, \mathbf{2}, 1/3) \times 3$ flavor $\tilde{U} \sim (\mathbf{1}, \mathbf{1}, 4/3) \times 3$ flavor $\langle \tilde{Q} \rangle = (0, 0)$ and $\langle \tilde{U} \rangle = 0$

Interactions

$$\mathcal{L} = \mathcal{L}_{SM} + (D_{\mu}\tilde{Q})^{\dagger} (D^{\mu}\tilde{Q}) + (D_{\mu}\tilde{U})^{*} (D^{\mu}\tilde{U}) - [a_{hQU}\tilde{Q} \cdot H\tilde{U}^{*} + \text{h.c.}]$$

$$- m_{Q}^{2}\tilde{Q}^{\dagger}\tilde{Q} - m_{U}^{2}\tilde{U}^{*}\tilde{U} - \lambda_{Q}(\tilde{Q}^{\dagger}\tilde{Q})^{2} - \lambda_{U}(\tilde{U}^{*}\tilde{U})^{2}$$

$$- \lambda_{QU}(\tilde{Q}^{\dagger}\tilde{Q})(\tilde{U}^{*}\tilde{U}) - \lambda_{hU}(H^{\dagger}H)(\tilde{U}^{*}\tilde{U})$$

$$- \lambda_{hQ}(H^{\dagger}H)(\tilde{Q}^{\dagger}\tilde{Q}) - \lambda_{hQ}'(\tilde{Q} \cdot H)^{*}(\tilde{Q} \cdot H) - \lambda_{hQ}''(\tilde{Q}^{\dagger}H)^{*}(\tilde{Q}^{\dagger}H)$$

simplifying assumption

four model parameters

$$\lambda_Q = \lambda_U = \lambda_{QU} = \lambda_{hU} = \lambda_{hQ} = \lambda'_{hQ} = \lambda''_{hQ} \equiv \lambda \quad \checkmark$$

E.g., the "tuned zero mixing" limit

THE LAST SLIDE

