CEPC LumiCal design and R&D progress

Suen Hou Academia Sinica

2018.11.14

- LumiCal Geant simulation
- Detector segmentation and prototyping

LumiCal simulation

Liu YANG Kai ZHU

Si-W of total 30 planes, $1X_0 + 320 \mu m$ Si wafer coverage 30 - 70 mRad at z = $\pm 970 mm$

	Element	Value	Units
<image/>	planes/module	30	-
	tiles/plane	12	-
	sectors/tile	4	-
	cells/sector	64	-
	Length	130.0	mm
	$\operatorname{Position}(\mathbf{z})$	± 970	mm
	inner radius	30	$\mathbf{m}\mathbf{m}$
	outer radius	70	mm
	layer gap	0.25	mm
	sensor phi rotate	3.75	degree
	silicon thickness	0.32	$\mathbf{m}\mathbf{m}$
	support thickness	0.2	mm
	tile gap	1.2	$\mathbf{m}\mathbf{m}$
	tungsten thickness	3.5	mm

arXiv:1010.5992 Electron shower Clustering

- Select shower-peak layers, 2-D clustering
- global cluster in 3-D \rightarrow direction of electron track
 - Cluster center C is determined by logarithm weight average method

$$C = \frac{\Sigma_i C_i W_i}{\Sigma_i W_i}$$

 C_i : individual cell center W_i : weight, $W_i = \max(0, 5.5 + \ln \frac{E_i}{E_{au}})$

 E_i : individual cell energy E_{all} : total energy in one global cluster.

Shower containment in GEANT

Si samplers are in tiles with gaps

Cluster energy sum of energy deposits

→ Shall make GEANT more realistic

DNN to Partially contained shower

Deep Neutral Network 6 hidden layers

Training with 3x10⁵ events Random incident direction

DNN works well in tile gap region improved energy resolution

Luminosity measurement

- Z lineshape, $e^+e^- \rightarrow Z \rightarrow q\bar{q}$ is dominant, $\sigma = 41 \ nb$
- Luminosity is by counting
 Bhabha, e⁺e⁻ → e⁺e⁻ elastics scattering

Counting Bhabha in a fiducial $\boldsymbol{\theta}$ region

 \rightarrow 1 mm on z or $dr = \delta z x \vartheta = 20 \ \mu m$

LumiCal precision with Si strips

Precision is dominated by at the fiducial θ_{min} \rightarrow offset on the mean of θ at edge

 $\rightarrow \delta$ N in event counting

 $\eta = \frac{Q_r}{Q_r + Q_l},$

Fine pitch strips (50 um pitch) $\sigma \sim 5\mu m$ calibrate the σ shape

→ Error on mean can reach zero

detector spatial

Events 0000

50000

Problem with a wide Si strip

- wide strip pitch e.g. 2 mm
 gap may be 100 μm
- Event counting at edge is difficult calibration of charge sharing can hardly reaching 10 μm

Survey of Lumical positon 3–points tracking

- IP + Diamond → calibrate Lumi strip position
- Diamond + LumiCal → measure IP size

Calibrate offset of the mean of error at inner radius Silicon strip resolution ~ 5 um, error on mean CAN reach 1 μm, → δL/L ~ 0.01 %

Segmentation of LumiCal

Scattered Bhabha electrons are Centered to outgoing beam center

Same θ_{\min} , CM frame to 33 mRad crossing \rightarrow Bhabha back-back both e⁺, e⁻ detected \rightarrow acceptance loss 50%

RING CENTER

Weight of a SiW Lumical

- Tungsten density 19.3 g/cm³
- Radiation length 3.5 mm

SiW at CEPC at $z = \pm 1m$

- a circular W layer of radius=100 mm
 3.14x10cm²x.35cm x 19.3 = 2000 g
- a rectangular 10cm x3.3cm x.35cm x19.3 = 220 g
- a W layer = 2.5 kg
- a 25 layer detector = 62 kg

Prototyping a SiW detector

Use CMS preshower wafer

- wedge bonding , Ag wire,
- Minimum bonding height
- \rightarrow 80 μ m is possible minimizing stacking height

IHEP readout chip, VA type Prototype in Spring 2019

此次打線實驗是以固定直線距離2000um 做弧高控制, 弧高可以做到 80um, 考慮生產良率會控制在150um內。

Prototyping a SiW detector

Assembly to $1 \ \mu m$ precision

Keyence Laser Displacement Sensor

Summary

- GEANT simulation needs update of geometry
- Prototyping of Si detector with wide strip detector and IHEP chip
- Dummy assembly testing 1 µm precision