Flavour opportunities of a Z factory in CEPC

Emmanuel Stamou

estamou@uchicago.edu

CEPC workshop

IHEP, Beijing November 12, 2018

For CEPC's CDR with Wolfgang Altmannshofer

Flavour in the LHC era

- Flavour observables are sensitive probes to physics beyond the SM
 → often probing energy scales Λ ≫ TeV
- Part of the high-intensity frontier of indirect probes of NP
 new particles need not be produced resonantly
- An active flavour program complements direct searches for NP
 if NP inaccessible at present/next-generation colliders, indirect probes of NP our best way to discover NP

Multiple ongoing/future experiments, here focus: present LHCb

close future Belle-2

more distant future a Z factory at the CECP?

LHCb and Belle 2

LHCb

- *pp* collisions, hadronic environment
- forward detector, small acceptance
- at high-luminosity stage: $\mathcal{L} = 50 \text{ab}^{-1}$.

Belle-2

- the B-factory legacy continues, first physics run in 2019
- threshold production of $b\bar{b}$ resonances from e^+e^-
- "cleaner environment", less hadronic activity
- phase-space limitations due to threshold production
- target goals L = 50ab⁻¹ on Υ(4S) producing B⁰'s
 (L = 5ab⁻¹ on Υ(4S) producing B_s's? Not clear at this stage.)

Qualitative differences to the *Z* factory at CEPC

Tera-Z at CEPC

- production of 10¹² Z's
- ✓ no phase-space limitations like at Belle-2
- ✓ 4π coverage
- ✓ LEP environment, less hadronic activity than at LHCb
- **X** larger \sqrt{s} than at Belle-2, more hadronic activity
- ✓ decay products of Z more boosted than at Belle 2 more separation in lab-frame, better experimental resolution?

It is **not clear (and process specific)** whether the combination of higher **hadronic activity** but larger **boost** is **beneficial** for CEPC. Input and dedicated studies needed.

E. Stamou (U Chicago)

Flavour @ CEPC

Particle production

Particle	@ Tera- Z	[®] Belle II		@ LHCb
b hadrons				
B^+	6×10^{10}	3×10^{10}	$(50 \operatorname{ab}^{-1} \operatorname{on} \Upsilon(4S))$	$3 imes 10^{13}$
B^0	6×10^{10}	3×10^{10}	$(50 \mathrm{ab^{-1}} \text{ on } \Upsilon(4S))$	$3 imes 10^{13}$
B_s	2×10^{10}	3×10^8	$(5 \operatorname{ab}^{-1} \operatorname{on} \Upsilon(5S))$	8×10^{12}
b baryons	1×10^{10}			1×10^{13}
Λ_b	1×10^{10}			1×10^{13}
c hadrons		•		
D^0	2×10^{11}			
D^+	6×10^{10}			
D_s^+	$3 imes 10^{10}$			
Λ_c^{+}	$2 imes 10^{10}$			
τ^+	$3 imes 10^{10}$	$5 imes 10^{10}$	$(50 \operatorname{ab}^{-1} \operatorname{on} \Upsilon(4S))$	

From CEPC's CDR using fragmentation ratios from Amhis et al, 17

- Similar statistical sample of $B^{0,\pm}$, τ 's at Belle 2 and CEPC
- Two order of magnitude more B_s at CEPC wrt to Belle 2
- b-baryon physics possible at the CEPC
- Limited possibilities for charm physics at Belle 2 Flavour @ CEPC

E. Stamou (U Chicago)

First/rough estimation of CEPC's sensitivity to flavour observables

Aim:

- Focus on observables sensitive to NP (here mainly B/τ physics)
- Compare to LHCb's and Belle 2's sensitivity
- Identify channels for which CEPC outperforms LHCb and Belle 2
- "Method":
 - LEP similar environment to the tera-Z at CEPC
 Whenever possible rescale LEP bounds with statistics
 - Otherwise naive rescaling of Belle 2 projections
 ✗ Caveat: Z and Υ-pole physics not identical

(very rough first estimates, should be followed by dedicated studies)

- Rare leptonic B decays, $B_{s,d} \rightarrow \ell \ell$
- Rare semileptonic B decays, $b \rightarrow s\ell\ell$
- Rare B decays with missing energy, $b \rightarrow s(d) \nu \nu$
- Lepton universality in $au o \ell \nu \nu$
- Flavour violating Z decays
- Summary and outlook

$$B_{s,d} o \ell^+ \ell^-$$

- highly suppressed in the SM (helicity/Cabibbo suppressed)
- $\begin{array}{ll} & \mbox{accurate SM predictions}\simeq 10\% \mbox{ dominated by parametric uncertainties} \\ & \mbox{BR}_{\rm SM}(B_s\rightarrow ee)\sim 10^{-14}, & \mbox{BR}_{\rm SM}(B_d\rightarrow ee)\sim 10^{-15}, \\ & \mbox{BR}_{\rm SM}(B_s\rightarrow \mu\mu)\sim 10^{-9}, & \mbox{BR}_{\rm SM}(B_d\rightarrow \mu\mu)\sim 10^{-10}, \\ & \mbox{BR}_{\rm SM}(B_s\rightarrow \tau\tau)\sim 10^{-7}, & \mbox{BR}_{\rm SM}(B_d\rightarrow \tau\tau)\sim 10^{-8} \end{array}$

[Bobeth et al, 14]

- sensitive probes of NP ($\tan \beta$ enhancement in SUSY/2HDM scenarios)
- muonic mode $B_s
 ightarrow \mu^+ \mu^-$ first observed at LHCb

The rare decays $B_{s(d)} \rightarrow \ell^+ \ell^- \Pi$

Muonic/Electronic modes

• LHCb expected sensitivity 10^{-10} (muonic) few $\times 10^{-10}$ (electronic)

[Albrecht et al, 17]

• Linear rescaling of L3 collaboration bound from full LEP-I data sample $(3 \times 10^5 B_d \text{ and } 9 \times 10^4 B_s, \text{mostly background-free measurement})$

[Acciarri et al, 97]

$$\begin{aligned} &\mathsf{BR}(B_s \to e^+ e^-)_{\mathsf{tera} - Z} \sim 4 \times 10^{-10} \\ &\mathsf{BR}(B_d \to e^+ e^-)_{\mathsf{tera} - Z} \sim 8 \times 10^{-11} \\ &\mathsf{BR}(B_s \to \mu^+ \mu^-)_{\mathsf{tera} - Z} \sim 3 \times 10^{-10} \\ &\mathsf{BR}(B_d \to \mu^+ \mu^-)_{\mathsf{tera} - Z} \sim 7 \times 10^{-11} \end{aligned}$$

- muonic mode: LHCb will likely outperform CEPC by a factor of few
- electronic mode: CEPC's sensitivity competes with LHCb's

The rare decays $B_{s(d)} \rightarrow \ell^+ \ell^- \blacksquare$

Tauonic mode

- uncharted territory
- existing bound from BaBar orders of magnitude away from SM
- very challenging at LHCb and no LEP result
- Belle 2 sensitivity to $B_d o au au$ approximately 10^{-4} [Belle II Physics Book, 18]
- Similar sensitivity at CEPC if boost does not help
- Rescale LEP muonic bound assuming ratio as in Belle 2

$$\begin{split} & \mathsf{BR}(B_d \to \tau^+ \tau^-)_{\mathsf{tera-}Z} < 4 \times 10^{-6} \\ & \mathsf{BR}(B_s \to \tau^+ \tau^-)_{\mathsf{tera-}Z} < 2 \times 10^{-5} \end{split}$$

potentially more than an order-of-magnitude improvement

Exclusive decays: $B ightarrow K^{(*)} \ell \ell$

Muonic/Electronic modes

- $\pmb{\mathsf{X}}$ not as rare and clean
- ✓ 3-body decays, more observables (angular distributions, CP asymmetries, etc)
- 2-3 σ tensions in current LHCb data (lepton-flavour universality violation, P'_5)
- LHCb will outperform Belle 2 (CEPC's sensitivity similar to Belle 2)
- if tensions persist, CEPC's independent data sample will be invaluable
- ✓ inclusive measurements also possible at CEPC (as in Belle 2), $B \rightarrow X_s \mu \mu$ (inaccesible at LHCb)

Semileptonic $b \to s(d)\ell\ell$ decays II

Exclusive decays: $B o K^{(st)} au au$

Tauonic modes

- uncharted territory (BaBar bound, 10⁻³, orders of magnitude away from SM)
- expect improvements at Belle 2, ${\rm BR}(B^+ \to K^+ \tau \tau) < 2 \times 10^{-5}$

[Belle 2 Physics Book]

- FCC-ee study: 1000 reconstructed events from $B_d \to K^* \tau \tau$, probe BR $\sim 10^{-8}$ at CEPC [Kamenik et al, 17]
- See talk by Simon Wehle on Tuesday
- additional channels available at CEPC, e.g., $B_s \rightarrow \phi \tau \tau$, $\Lambda_b \rightarrow \Lambda \tau \tau$
- tera-Z at CEPC can provide the best (and only) measurements

Decays with missing energy $b \rightarrow s(d)\nu\nu$ I

Exclusive decays:
$$B
ightarrow K^{(*)}/
ho/\pi
u
u$$

- rare (BR_{SM} $\sim 10^{-6}$) and theoretically "clean" decays ($\sim 10\%$ th. uncertainties, parametric and form factors)
- interplay with $K \rightarrow \pi \nu \nu$ decays searched for at NA62 and KOTO
- neutrinos not tagged
 → bounds on decays to light "invisible" NP particles, e.g., axiflavon
 [Calibbi et al. 17]
- not yet observed, target measurements at Belle 2, goal BR $\sim 10^{-6}$
- expect similar sensitivity of CEPC to $B \to K^{(*)}\nu\nu$, $B \to \pi\nu\nu$, $B \to \rho\nu\nu$ (same results from rescaling LEP bounds)

Caveat: as long as calorimetric isolation not an issue

Decays with missing energy $b \rightarrow s(d) \nu \nu$ II

- with respect to Belle 2, factor 100 more B_s produced plus 10¹⁰
 b-baryons
- new channels become available at CEPC:

$$B_s \to \phi \nu \nu \quad \Lambda_b \to \Lambda \nu \nu$$

- CECP's sensitivity similar to $B \to K\nu\nu$: **BR** ~ 10⁻⁶
- multiple probes of members of the same family of decays: pseudoscalar-pseudoscalar pseudoscalar-vector fermion-fermion transitions
- probe multiple dimesions-six operators, disentangle NP contributions from right-handed currents
- a unique opportunity for the CEPC

au decays: lepton universality I

• current best measurements of $\tau \rightarrow \ell \nu \nu$ from LEP

$$BR(\tau \to e\nu_{\tau}\bar{\nu}_{e}) = (17.319 \pm 0.070 \pm 0.032)\%$$
$$BR(\tau \to \mu\nu_{\tau}\bar{\nu}_{\mu}) = (17.837 \pm 0.072 \pm 0.036)\%$$

[ALEPH, Schael et al, 05]

- LEP measurement are statistics limited
- number of au au pairs at CEPC and Belle 2: $pprox 10^{10}$
- assuming systematic uncertainties reduced by factor of 10
 CEPC/Belle2 measurement with relative a 0.01% uncertainty!
- Similarly, expect order of magnitude improvement in measurement of
 τ lifetime (current uncertainty from Belle 0.2%)

$$R_ au = rac{{
m BR}(au o \mu ar
u_\mu
u_ au)}{{
m BR}(au o e ar
u_e
u_ au)}$$

- highly accurate SM prediction $R_{ au}^{ extsf{SM}}=0.972559\pm0.000005$ [Pich, 14]
- independent of τ lifetime
- current measurement $R_{ au}^{ t BaBar}=0.9796\pm0.0016\pm0.0036$ [Aubert et al, 10]
- based on statistics and reduced systematics
 → 0.1% precision feasible at the CEPC
- important if current tensions R_{K^(*)}, R_{D^(*)} persist
 → typical NP effects in R_τ at the few permille level

Flavour violating Z decays

Quark sector: $Z \rightarrow qq'$

- suppressed in SM: $BR(Z \to bs) \sim \left| \frac{g^2}{16\pi^2} V_{tb} V_{ts}^* \right|^2 \times BR(Z \to bb) \sim 10^{-9}$
- NP enhancement possible but constrained by rare decays / mixing
- too challenging measurement due to large dijet background

Lepton sector: $Z \rightarrow \ell \ell'$

- tiny in SM BR $10^{-50} 10^{-60}$
- tightest current bounds from LEP (mostly background free)
- rescaling with statistics

$$\begin{split} &\mathsf{BR}(Z\to\mu e)_{\mathsf{CEPC}}\lesssim 3\times 10^{-9} \;\; [1/\sqrt{N}\;\mathrm{scaling}]\,,\; 7\times 10^{-12} \;\; [1/N\;\mathrm{scaling}]\\ &\mathsf{BR}(Z\to\tau e)_{\mathsf{CEPC}}\lesssim 2\times 10^{-8} \;\; [1/\sqrt{N}\;\mathrm{scaling}]\,,\; 4\times 10^{-11} \;\; [1/N\;\mathrm{scaling}]\\ &\mathsf{BR}(Z\to\tau \mu)_{\mathsf{CEPC}}\lesssim 2\times 10^{-8} \;\; [1/\sqrt{N}\;\mathrm{scaling}]\,,\; 5\times 10^{-11} \;\; [1/N\;\mathrm{scaling}] \end{split}$$

 more than an order of magnitude improvement feasible at the CEPC (unique sensitivity to NP models with lepton-flavour violation in Z decays, heavy sterile ν's)

Highlights

Observable	Current sensitivity	Future sensitivity	Tera- ${\cal Z}$ sensitivity
$BR(B_s \rightarrow ee)$	$2.8 \times 10^{-7} (\text{CDF}) [10]$	$\sim 7\times 10^{-10}~({\rm LHCb})~[18]$	$\sim {\rm few} \times 10^{-10}$
${\rm BR}(B_s\to \mu\mu)$	$0.7 \times 10^{-9} \text{ (LHCb) } [8]$	$\sim 1.6 \times 10^{-10} \ {\rm (LHCb)} \ [18]$	$\sim {\rm few} \times 10^{-10}$
${\rm BR}(B_s\to\tau\tau)$	$5.2 \times 10^{-3} (LHCb) [9]$	$\sim 5\times 10^{-4}~({\rm LHCb})~[18]$	$\sim 10^{-5}$
R_K, R_{K^*}	$\sim 10\%~({\rm LHCb})~[5,4]$	${\sim} {\rm few\%}$ (LHCb/Belle II) [18, 40]	${\sim}{\rm few}~\%$
${\rm BR}(B\to K^*\tau\tau)$	_	$\sim 10^{-5}$ (Belle II) [40]	$\sim 10^{-8}$
${\rm BR}(B\to K^*\nu\nu)$	4.0×10^{-5} (Belle) [44]	$\sim 10^{-6}~({\rm Belle~II})~[40]$	$\sim 10^{-6}$
$BR(B_s \to \phi \nu \bar{\nu})$	$1.0 \times 10^{-3} \; (\text{LEP}) \; [15]$	-	$\sim 10^{-6}$
${\rm BR}(\Lambda_b \to \Lambda \nu \bar{\nu})$	_	_	$\sim 10^{-6}$
$BR(\tau \rightarrow \mu \gamma)$	4.4×10^{-8} (BaBar) [24]	$\sim 10^{-9}$ (Belle II) [40]	$\sim 10^{-9}$
${\rm BR}(\tau\to 3\mu)$	2.1×10^{-8} (Belle) [37]	$\sim {\rm few} \times 10^{-10}~({\rm Belle~II})~[40]$	$\sim {\rm few} \times 10^{-10}$
$\frac{BR(\tau \rightarrow \mu \nu \bar{\nu})}{BR(\tau \rightarrow e \nu \bar{\nu})}$	3.9×10^{-3} (BaBar) [23]	$\sim 10^{-3}$ (Fylle II) [40]	$\sim 10^{-4}$
${\rm BR}(Z\to \mu e)$	$7.5 \times 10^{-7} (ATLAS) [3]$	$\sim 10^{-8} \; (\text{ATLAS/CMS})$	$\sim 10^{-9} - 10^{-11}$
${\rm BR}(Z\to\tau e)$	$9.8 \times 10^{-6} \; (\text{LEP}) \; [17]$	$\sim 10^{-6}~({\rm ATLAS/CMS})$	$\sim 10^{-8} - 10^{-11}$
${\rm BR}(Z\to\tau\mu)$	$1.2 \times 10^{-5} \; (\text{LEP}) \; [13]$	$\sim 10^{-6}~({\rm ATLAS/CMS})$	$\sim 10^{-8} - 10^{-10}$

E. Stamou (U Chicago)

Conclusions and Outlook

- $10^{12} Z$ bosons at the CEPC produce many b/c hadrons and τ 's (BR($Z \rightarrow b\bar{b}$) ~ 15% BR($Z \rightarrow c\bar{c}$) ~ 12% BR($Z \rightarrow \tau\bar{\tau}$) ~ 3%)
- It will be possible to build a competitive and, in specific channels, leading flavour program at the CEPC
- Demostrated that key measurements involve B_s , b-baryons, and τ 's
- Dedicated studies are absolutely necessary for more realistic assessment of CEPC's sensistivity

→hadronic activity and boost important to compare with Belle 2

- Flavour program much richer: B_c decays, charm-physics program, ...
- Results from LHCb and Belle 2 may guide and elevate CEPC's flavour efforts