

Combined test beam with IDEA

R. Santoro* On behalf of a group of enthusiastic people (half of them PhD and post-doc)

* Università degli Studi dell'Insubria (COMO) and INFN (Milano)

IDEA - Layout

- Beam Pipe (≈1.5 cm radius)
- Vertex Detector ($R \in [1.7; 34]$ cm)
- Drift Chamber (L = 400 cm, R ∈ [35; 200] cm)
- Outer Silicon Layer (strips)
- SC Coil (2T, ≈2.1m); 30 cm THIN! (0.74X_o; 0.16 λ @90°)
- Pre-shower (1-2 X_o)
- Dual Readout Calorimeter (2m, 7 λ)
- Yoke & Muon Chambers

IDEA - Layout

- Beam Pipe (≈1.5 cm radius)
- Vertex Detector ($R \in [1.7; 34]$ cm)
- Drift Chamber (L = 400 cm, $R \in [35; 200]$ cm)
- Outer Silicon Layer (strips)
- SC Coil (2T, ≈2.1m); 30 cm THIN! (0.74X_o; 0.16 λ @90°)
- Pre-shower (1-2 X_o)
- Dual Readout Calorimeter (2m, 7 λ)
- Yoke & Muon Chambers

The test beam layout

- Trigger with 2 scintillators in coincidence + 1 veto
- 2 DWC (Delayed Wire Chamber)
- 2 CEDAR (Differential Cherenkov detector)
- Drift Chamber Prototype
- Preshower:
 - 2 layers of GEM + the converter
- Different Dual Readout prototypes
 - RD52 calorimeter with PMT readout
 - RD52 calorimeter with staggered fibers
 - Small calorimeter module with SiPM readout
- Muon chamber: 1 layer GEM + 2 layers µRWell

Beam instrumentation

The test beam goal

Combined measurements: data taking with all detectors

- Particle Identification with:
 - Drift Chamber Prototype (p, π, k) using dE/dx VS cluster counting
 - Preshower + Dual Readout Calorimeters (e, π, μ)
 - μRWell (e, μ)
- Preshower optimization studies
- Tracking qualification

Calorimeter R&D: standalone program

- Qualification of a RD52 calorimeter with staggered fibers
- Qualification of a small calorimeter module readout with SiPM

See Grancagnolo's Talk Parallel session: Gas Detector

- 144 channels: 12 layers X 12 cells, 1X1 cm² drift cells
- 5 field sense instrumented with MEG2 front-end
- readout with
 - DRS4 (32 channels)
 - Discriminator + TDC 96 channels

drift tube wrote wrot

Measured resolution for the MEGII prototype:

 $\sigma_{xy} \approx 100 \ \mu m$ $\sigma_{z} \approx 1000 \ \mu m$

See Grancagnolo's Talk Parallel session: Gas Detector

Drift Chamber prototype

Particle Identification

Cluster counting for improved particle identification:

based on the truncated mean method dE/dX replacing the ANALOG information with a DIGITAL one: namely the number of ionisation clusters per unit length

$$\frac{\sigma_{dE/dx}}{(dE/dx)} = 0.41 \cdot n^{-0.43} \cdot \left(L_{track} [m] \cdot P[atm]\right)^{-0.32}$$

Walenta parameterization (1980)

dE/dx

 dN_{cl}/dx

8

The 2018 international workshop on the high energy CEPC, 12-14 Nov, 2018, Beijing

Planar prototypes of triple GEM have already been tested on a muon/pion beam @ H4CERN.

- The plateau efficiency has been measured to be $\sim 97\%$ at a gain of ~ 6000
- resolution better than 100 μm with average cluster size larger than 2
- Performances have been measured with different geometries, gas mixtures and electric fields.

S. Marcello et al., Int.J.Mod.Phys.Conf.Ser. 48 (2018) 1860119

Preshower: 2 triple GEM chambers 10 x 10 cm² with different material (1-2.5 X₀) in front

128 strips, 800 μm pitch GAS mixture: Ar/CO₂/CF₄ (45/15/40)

See Pezzotti's Talk Parallel Session: Calorimetry – 2

Dual Readout Calorimeter RD52 Module

9 lead modules 9.3 x 9.3 x 250 cm3 Sampling fraction 5.0 %

Particle Identification:

N. Akchurin, et al., NIMA 735 (2014) 120 N. Akchurin, et al., NIM A735, (2014) 130 S. Lee, et al. NIM 866, (2017) 76

Energy Resolution

R. Santoro

The 2018 international workshop on the high energy CEPC, 12-14 Nov, 2018, Beijing

Beam line

See Pezzotti's Talk Parallel Session: Calorimetry – 2

Dual Readout Calorimeter Module with staggered fibres: longitudinal segmentation

1 lead modules 9.3 x 9.3 x 250 cm3 Sampling fraction 5.0 % All fibres (long a short) are readout with PMTs

The 1st time on beam

See Pezzotti's Talk Parallel Session: Calorimetry – 2

12

Calorimeter R&D program Standalone runs

Dual Readout Calorimeter Module readout with SiPM

1 brass module 1.2 x 1.2 x 112 cm3

Event Display

R. Santoro

The 2018 international workshop on the high energy

See G Mezzadri's talk and Giacomelli and Borgonovi contribution to the Pelnary Poster Session

Muon detector with μR-Well chambers 10x10 cm² 256 strips, 400 μm pitch GAS mixture: Ar/CO₂/CF₄ (45/15/40)

Tracking efficiency Time Resolution above 97% at gain of about 3000 5.7 ns at the optimal gain - G. Bencivenni et al., JINST 12 (2017) no.06, C06027 ⊛ ¹⁰⁰⊧ - G. Morello et al., PoS BORMIO 2017 (2017) (ns) п - G. Bencivenni et al., NIM A 886 (2018) 36 90 u-RWELL B1 16 µ-RWELL B1 ъ 80E □µ-RWELL B2 µ-RWELL B2 70 Ç. 12 60 10 Ф 50E 40 ф 30E 20 10 ٥E 5000 10000 15000 20000 25000 . 10² 10³ 10⁴ gain Gain (a.u.)

The 2018 international workshop on the high energy CEPC, 12-14 Nov, 2018, Beijing

Test beam condition

I week beam time at SPS CERN (H8-line)

Different beam condition

- Muon beams
- Electrons at different energies (10 60 GeV)
- Hadrons at different energies (50 60 GeV)

Trigger based on the coincidence from scintillators

 Particle identification can be also performed with external detectors (preshower and muon counter) for cross reference

3 different DaQ systems and Qas running in parallel

- Central (trigger, calorimeters, CEDAR and leakage detectors, installed around the calorimeter to measure the energy leakage)
- Preshower and muon chamber
- Drift chamber

Phase I: Calibration and commissioning (\approx 2 days)

• 80 GeV Secondary beam (pions + $\approx 5\%$ electrons)

- RD52 calorimeter: equalization runs
 - Beam centered in each Tower (36 runs)
- Muon chamber and Preshower
 - Integration test and commissioning
- Drift Chamber calibration runs:
 - Integration test and HV scan

Phase II: combined program (≈ 2.5 days)

• μ beam

Alignments for all detectors

Electron Beam (20 GeV)

- Rd-52 calorimeter
 - Performance study with different converter thickness (1 2.5 X₀)
- Drift Chamber
 - Tracking performances at different HV
- Hadron beam at two energies (50, 60 GeV)
 - Drift Chamber
 - Tracking performance
 - PID: even if this energy is not optimal, we guess it may be useful for:
 - Algorithm comparison
 - Comparison with simulation and parametrization
 - RD52 Calorimeter
 - Performance study with hadrons

Phase III: standalone program (≈ 2 days)

- Dual readout calorimeter prototype module with staggered fibres readout by PMTs (1 day)
 - Response equalization and calibration
 - 20 GeV Electron beam for the long fibres (beam centered in each tower)
 - 60 GeV π beams for the short fibres (beam centered in each tower)
 - Long runs with the detector centered in the beam
 - 20 GeV electrons
 - 60 GeV π beams

Dual readout calorimeter prototype module readout by SiPM (1 day)

Energy Scan with electrons beams (10, 20, 30, 40 GeV): Ph-e / Gev measurement

Preliminary plots

Beam profile with muon Beam:

Trigger with 2 scintillators in coincidence and no veto

Delayed Wire Chamber

y correlation plot of 1st DREAM DWC and 1st GEM layer

Preshower: GEM

Correlation plots between the 1st DWC layer and the 1st GEM layer (2 different DaQ systems)

Preliminary plots

Beam profile with muon Beam:

Trigger with 2 scintillators in coincidence and no veto

Delayed Wire Chamber

y correlation plot of 1st DREAM DWC and 1st GEM layer

Preshower: GEM

The 2018 international workshop on the high energy CEPC, 12-14 Nov, 2018, Beijing

20 GeV Electron beam (with muon contamination)

The impact of the material (up to $2.5 X_0$) placed in front of the GEM

Preliminary plots: particle selection

Different beam compositions used for this test

Composition	Run No.	Energy
Electron	12709	20
Muon	12686	40
Hadron	12802	60

Signals measured in the preshower (scintillator + converter) and in the muon counter (large scintillator) used as cross reference detectors for particle identification

Different beam compositions used for this test

Composition	Run No.	Energy
Electron	12709	20
Muon	12686	40
Hadron	12802	60

response not yet equalized

Signals in the RD52 calorimeter:

$Ratio = Q_{max}/Q$

Q_{max}= adc count measured in the tower with the larger signal Q= sum of the 10 adc counts in the towers with larger signals

Preliminary plots: particle selection

Different beam compositions used for this test

Composition	Run No.	Energy
Electron	12709	20
Muon	12686	40
Hadron	12802	60

	preshower	muon ADC
electron	> 20	< 8
muon	< 20	> 10
pion	< 20	< 5

applying preshower cut

R. Santoro

Preliminary plots: particle selection

Different beam compositions used for this test

Composition	Run No.	Energy
Electron	12709	20
Muon	12686	40
Hadron	12802	60

	preshower	muon ADC
electron	> 20	< 8
muon	< 20	> 10
pion	< 20	< 5

	preshower	muon ADC
electron	> 20	< 8
muon	< 20	> 10
pion	< 20	< 5

applying preshower cut

Signals in the RD52 calorimeter: response not yet equalized

applying anti-preshower cut

R. Santoro

The 2018 international workshop on the high energy CEPC, 12-14 Nov, 2018, Beijing

Summary

R. Santoro

- Even if we defined a long program, we managed to collect a good set of data to study the combined detector performances
- The test beam data analysis is started and detailed studies will come soon providing updated input to the simulations
- We already achieved a good result: there is a growing interest around this test beam which started to enlarge and consolidate the "collaboration" (\approx 50% PhD and postdocs)

Standalone program (1 day)

- Dual readout calorimeter prototype module readout by SiPM (1 day)
 - Energy Scan with electrons beams (10, 20, 30, 40 GeV): Ph-e / Gev measurement

Preliminary plots: particle selection

Different beam compositions used for this test

Composition	Run No.	Energy
Electron	12709	20
Muon	12686	40
Hadron	12802	60

Tower numbering

1	2	3	4	5	6
7	8	9	10	11	12
13	14	15	16	17	18
19	20	21	22	23	24
25	26	27	28	29	30
31	32	33	34	35	36

Each Tower has 1 PMT for scintillating and 1 PMT for Cherenkov light detection

$$Ratio = Q_{max}/Q$$

Q_{max}= adc count measured in the tower with the larger signal

Q= sum of the 10 adc counts in the towers with larger signals