

中國科學院為能物現為第 Institute of High Energy Physics Chinese Academy of Sciences

Readout of JadePix-1, A Prototype CMOS Pixel Sensor for CEPC Vertex Detector

Jia Tao^{1,2}(*reporter*), Na Wang^{1,2}, Ke Wang^{1,2}, Liejian Chen^{1,2}, Ryuta Kiuchi^{1,2}, Hongbo Zhu^{1,2}, Ying Zhang^{1,2}, Xiaocong Ai^{1,3}, Yi Liu³, Chenfei Yang⁴, Xin Shi^{1,2}, Zhenan Liu^{1,2}, Qun Ouyang^{1,2},

Xinchou Lou^{1,2}

¹Institute of High Energy Physics, CAS ²State Key Laboratory of Particle Detection and Electronics ³Deutsches Elektronen-Synchrotron DESY ⁴University of Science and Technology of China

CEPCWS2018 Nov 13,2018 Beijing

Outline

- Background and requirements
- Readout system
- Some test results of JadePix-1
- Conclusion

Background

JadePix-1

SR96_Top

Bot

SR96

88

G

All channel analog output

Requirements and plan

.....

- Small analog signal output — Amplification + analog to digital conversion
- 16×48/96 pixels/sector
 16 channels + readout rolling shutter signals and package into frame
- High spatial resolution —— Low noise design, noise < 5e⁻ + correlated double sampling
- Transmission rate requires 160MB/s —— High speed transmission to host PC
- Applied to different structure sector —— Integrate all control functions + bonding board

"Three-Part" structure hardware design

inspired by the Mimosa sensor readout system developed by IPHC

CEPCWS2018, J. Tao

Design of Daughter Board

Daughter Board

	10MHz	100MHz	
ADA4807	0.59 <i>ENC</i>	1.025 ENC	
AD8065	0.82 ENC	1.164 ENC	

Noise simulation result for op amp(using Pspice model) (horizontal: device, Vertical: filter frequency)

The filtering frequency is about 10MHz Low noise, no significant impact on signal

Architecture diagram of DB

- Daughter Board and Bonding Board are divided
- 16 channels analog signal readout
- 8 times amplification, single signal converted to differential signals
- Enhanced digital signal drive capability by buffer
- Devices are not sensitive to radiation, have long transmission line drive capability and are independent

Drive capability

• Stable signal when sampling: requires rise time of signal within one-tenth cycle

Slew	rate:
------	-------

$$SR = 2\pi f V_p$$
$$V_p = 500 mV$$
$$SR = 6.28 V/\mu s$$

Analog Bandwidth:

$$Tr < 50ns$$
$$Bw = 0.35 / Tr$$
$$Bw \ge 7MHz$$

Current:

In terms of lumped parameter method

$$SR = I/C_{total}$$

$$C_{total} = C_{wire} + C_{cap} = 130 \ pF + 470 \ pF = 600 \ pF \quad regardless \ of \ resistance$$

$$I = 6mA$$

<500mV in fact

f=2 MHz, *T=500 ns*

Design of Mother Board

Architecture diagram of MB

٠

•

16 channels ADC:

16 bit ADC

.

.

۲

• Adjustable reference voltage and digital level

1.25-5V adjustable dynamic range

The reference voltage of ADC Vref = 4.096V, 1 LSB = Vref/2^{N-1}

N=16,

ADC 1LSB~0.125 mV

So, output signal of detector which 1 LSB responds to is 0.125 mV/8=15.6 uV,

Estimated detector capacitance C=5 fF, in terms of Q=CU We can get the CVF(Charge convert to voltage factor) is about 31 uV/e and 1LSB ~ 0.5 e⁻ ADC ENOB is 13bit , we can give a rough estimate: The noise is

 $0.5 \times 2^3 = 4 e^{-}$

Xilinx KC705 evaluation board

- Commercial Xilinx KC705 evaluation board with good performance and mature technology meets the requirements and shorten design cycle.
- Data transmission rate through PCIe reaches nearly 6Gbps

Firmware and software design

Test results

$k_{\alpha}k_{\beta}$ peaks are clear, we can calibrate the pixel gain and calculate the noise based on this

Sector	Collection peak [ADC]	$k_{lpha} \ [ext{ADC}]$	$k_eta \ [ext{ADC}]$	Conversion gain [ADC/e]	${ m CVF} [{ m \mu V/e}]$	CCE
A1	1131	3429 ± 54	3764 ± 50	2.091	31.9	32.97%
A2	1035	$3038{\pm}39$	$3330{\pm}46$	1.852	28.3	34.06%
A3	796	$2198{\pm}32$	2412 ± 36	1.340	20.5	36.19%
A4	1054	3514 ± 51	$3864{\pm}52$	2.143	32.7	30.01 %
A5	883	2760 ± 40	3039 ± 37	1.683	25.7	32.00%
A6	584	1689 ± 27	$1853{\pm}30$	1.030	15.7	34.59%
A7	970	3397 ± 55	3734 ± 54	2.071	31.6	28.57%
A8	754	$2458{\pm}37$	$2705{\pm}48$	1.499	22.9	30.67 %
A9	553	1687 ± 28	1851 ± 32	1.029	15.7	32.81%

Beam tests

- To measure spatial resolution etc.
- 4.4GeV electron test beams @DESY
- EUDET telescope
 - reference plane (Mimosa26) with 2-
 - 3µm resolution

Beam tests

Preliminary results show that spatial resolutions better than 5 μ m and 3.5 μ m can be achieved for pixel sizes of 33 \times 33 μ m² and 16 \times 16 μ m², respectively.

- Have developed a readout system for CMOS pixel sensor prototype characterization
- Continue to evaluate JadePix-1 performance, e.g. radiation hardness
- System to be extended to support other sensors

Thank you for your attention!