Progress of Semi-Digital HCAL

Bo Li (IPNL) On behalf of the CALICE SDHCAL group

CEPC Workshop 2018 Nov 13, IHEP

Outline

- SDHCAL prototype
- New developments
- Summary

SDHCAL prototype

Particle flow calorimetry

• Particle flow calorimetry: attempt to reconstruct visible final state particles from the information recorded by detector

- Two high granularity HCAL options at ILD
 - Analog HCAL
 - Semi-Digital HCAL

• Jet energy resolution at ILC: $\sigma_E/E \approx 3 - 4\%$ in the range of 50 to 500 GeV

Semi-Digital HCAL

Prototype

ASIC DIF(detector Interface)

Beam test@CERN, 2017

 Siwecal

Combined beam test@CERN, 2018

The SDHCAL prototype was exposed to hadron, muon and electron beams in beam test since 2012

JINST 10 (2015) P10039

Shower in SDHCAL

Energy estimation

Jet energy resolution

Comparison of data and simulation

Hadronic shower is more compact in simulation than in data

Cluster separation

Hough transform

- Good tool to discriminate electron and hadron

- It also can improve he energy reconstruction by dealing with track segment energy

JINST 12 (2017) P05009

Particle identification by BDT

New developments

To the new prototype

- Next goal: to build a new prototype with a mechanical structure of 4 plates of ~ 1 x 3 m²
- Large RPCs equipped with improved electronics

Challenges

- -Homogeneity for large surfaces
- -Thickness of only few mms
- -Lateral segmentation of 1 cm X 1 cm
- -Services from one side
- -Self-supporting mechanical structure

Electronics

DIF(Detetor interface)

- Only one DIF per plane (instead of three)
- DIF handle up to 432 HR3 chips (48 HR2 in previous DIF)
- HR3 slow control through I2C bus
- Data transmission to/from DAQ by Ethernet
- Clock and synchronization by TTC (already used in LHC)
- 93W Peak power supply with super-capacitors (8.6 W in previous DIF)
- Spare I/O connectors to the FPGA (i.e. for GBT links)
- Upgrade USB 1.1 to USB 2.0

- Building a PCB up to 1m length with good planarity to have a homogeneous contact of pads with RPCs
- 1 x 0.33 m² with 12 layer ASUs have been built

ASIC - HARDROC3

HARDROC3 features:

- Independent channels
- Zero suppress

100

- Extended dynamic range (up to 50 pC)
- I2C link with triple voting for slow control parameters
- packaging in QFP208
- Consumption increase (internal PLL, I2C)

5

Injected Charge (pC)

3

6

Tested : 786, Yield : 83.3 %

10

9

8

Gas distribution

- A proper homogeneity of the gas circulation inside the GRPC volume is an important factor to ensure high efficiency of detection and low noise
- Construction and operation of large GRPC necessitate some improvements with respect to the present scenario
- New scheme of gas distribution is proposed
- Construction of a few large RPC has started

Old scheme

New scheme

Mechanical structure

- Use Electron Beam Welding to reduce the dead spaces (and deformation if using standard welding)

- Plate need to be very flat for reducing the extra tolerance space for the GRPC insertion
- Industrial production of flat large absorber plates (1 x 3 m²) by roller levelling process

Measurement of flatness using laser interferometer

Mechanical structure (cont.)

An empty cassette (small, length: 1m) was inserted into the mechanical structure check the future insertion of the new larger GRPC.

Cooling

- Cooling becomes necessary if the power pulsing scheme is not possible at CEPC project: an estimation of power consumption of SDHCAL is **110 kW**

- Collaboration with SJTU; Optimisation is ongoing

Summary

- SDHCAL prototype
 - It has been validated that SDHCAL can fulfil the requirements at ILD
 - Benefits coming from high granularity add many functionalities for SDHCAL
- New development
 - Toward to the new prototype, we need more efforts to overcome the all challenges.
 - Novel technologies were proposed and implemented in the development of electronics and mechanical structure, and cooling for the new prototype