# Integral luminosity measurement at CEPC

- update on physics background -



I. Bozovic Jelisavcic

G. Kacarevic, N. Vukasinovic

VINCA Institute of Nuclear Sciences, University of Belgrade, Serbia



The 2018 International Workshop on the High Energy Circular Electron Positron Collider, Beijing

- Reminder on  $\mathcal{L}$  measurement as a counting experiment
- What do we know so far on systematics in  $\mathcal{L}$  measurement at CEPC
  - Effects from mechanical uncertainties and MDI
- Physics processes as background to the Bhabha count
  - t-channel 2-photon exchange
  - First estimates at 240 GeV
- Conclusion

- Integral luminosity measurement based on Bhabha scattering is a counting experiment

 $\mathcal{L} = N_{Bh} / \sigma$ 

- N<sub>Bh</sub> is Bhabha count in the certain phase space and within the detector acceptance (fiducial) region
- $\sigma$  is the theoretical cross-section in the same geometrical and phase space
- Both N<sub>Bh</sub> and  $\sigma$  have to be known at the 10<sup>-3(or -4)</sup> level

### But, $N_{Bh} \rightarrow N_X$

- In N<sub>Bh</sub>, miscounts due to various effects are contained:
  - detector resolution
  - mechanics (positioning and alignment)  $\checkmark$
  - center-of-mass energy, beam synchronization, IP displacements  $\checkmark$
  - physics background  $\checkmark$
  - beam-induced processes (off-momentum electrons)

To correct for it (recover  $N_{Bh}$ ) implies that effects have to be known at  $10^{-3(or - 4)}$  level

Addressed in CDR

12-14 November 2018 CEPC WS Beijing

#### What do we know so far on systematics in $\mathcal{L}$ measurement at CEPC

| Parameter                                            | unit |                                              | limit (LEP style) |
|------------------------------------------------------|------|----------------------------------------------|-------------------|
| $\Delta E_{\rm CM}$                                  | MeV  |                                              | 120               |
| $E_{ m e^+}-E_{ m e^-}$                              | MeV  |                                              | 240               |
| $\frac{\delta \sigma_{E_{beam}}}{\sigma_{E_{beam}}}$ |      |                                              | Effect cancelled  |
| $\Delta x_{\rm IP}$                                  | mm   |                                              | 1                 |
| $\Delta z_{IP}$                                      | mm   | Higgs treshold                               | 10                |
| Beam synchronisation                                 | ps   |                                              | 15                |
| $\sigma_{X \mathbf{P}}$                              | mm   | $\Delta \mathcal{L} / \mathcal{L} = 10^{-3}$ | 1                 |
| $\sigma_{z   \mathbf{P}}$                            | mm   |                                              | 10                |
| r <sub>in</sub>                                      | μm   |                                              | 10                |
| $\sigma_{r_{\sf shower}}$                            | mm   |                                              | 1                 |
| $\Delta d_{\rm IP}$                                  | mm   |                                              | 0.5               |
| $\Delta \phi_{tilt}$                                 | mrad |                                              | 6                 |

Dominant effects from mechanics and MDI comes from the uncertainty of the available center of mass energy and the inner radius of the luminometer

12-14 November 2018 CEPC WS Beijing



In principal, uncertainty of the theoretical x-section for  $ee \rightarrow eeff$  has to be known at CEPC energies in order to correct for the miscount

- Multiperipheral process dominats the x-section
- Cross-sections are large (~nb) saturating at higher energies
- High energy e<sup>±</sup> spectators can fake the signal
  - ... although most of spectators go below luminometer acceptance





#### Simulation:

## Particle tracks are projected to the front LumiCal plane

- ee→eeµµ WHIZARD V2.6 10<sup>5</sup> events,  $|\cos(\theta)| < 0.999$   $\sigma_{eff} \sim 0.3$  pb (in the LumiCal fiducial volume)  $\delta(\sigma) \sim 1\%$
- Normalization: 5.6 ab<sup>-1</sup>/7y. Bhabha BHLUMI V4.04

- 10<sup>7</sup> events,  $\theta$ >3 mrad  $\sigma_{eff} \sim 3.3$  nb (in the LumiCal fiducial volume)  $\delta(\sigma) \sim 1.7 \cdot 10^{-4}$

## $B/S \sim 10^{-4}$

Geometry:

- Geometrical coverage: r<sub>in</sub> = 25 mm; r<sub>out</sub>= 100 mm, (26 - 105) mrad
- Fiducial volume:  $r_{in,f}$  = 50 mm;  $r_{out,f}$ =75 mm, that translates into  $\theta_{FV}$ : (53-79) mrad
- $d_{IP} = 950 \text{ mm}$

#### 12-14 November 2018 CEPC WS Beijing



Main features:

- Most spectator electrons goes below the LumiCal
- Initial contamination (without any selection) of the detector volume is ~10<sup>-4</sup> w.r.t. the signal
- B/S ~ 10 times smaller than at 500 GeV ILC. This is mostly due to the Bhabha x-section dependence as 1/s, while 2-γ x-section is scaling like ln<sup>2</sup>(s)



| 5.6 ab <sup>-1</sup> /240 GeV | 4-f                   | Bhabha                 | B/S                   |
|-------------------------------|-----------------------|------------------------|-----------------------|
| LumiCal FV                    | 1.8 · 10 <sup>6</sup> | 1.8 · 10 <sup>10</sup> | 1 · 10 <sup>-4</sup>  |
| LumiCal + E <sub>rel</sub>    | 1.3 · 10 <sup>6</sup> | 1.7 · 10 <sup>10</sup> | 7.6· 10 <sup>-5</sup> |

- The total amount of background should be scaled by a factor  $\leq$  3 with flavor integration amounting to B/S  $\leq$  3.10<sup>-4</sup> without any selection
- Energy cut on relative energy E<sub>rel</sub>=(E<sub>1</sub> + E<sub>1</sub>) > 0.8·s rejects ~30% of background, but is also important in a treatment of radiative Bhabha events and off-momentum background
- Refinements are possible with the coplanarity request between left and rght detector arms ( $|\phi_+ \phi_-|$ ), also useful to suppress off-momentum particles
- Finally, physics background can be taken as a correction to the count (*L* systematics comes from the x-section uncertainty)

- First estimates of the contribution of physics background to the luminosity systematics has been done
- Physics background is estimated to be present w.r.t the signal at the level of  $\leq 3 \cdot 10^{-4}$  in the luminometer fiducial volume (what is more favorable than at higher cm energies and/or closer luminometer to the IP)
- Other refinements are possible in terms of:
  - Detector simulation,
  - Simulation of off-momentum background
  - Application of the asymmetric acceptance in  $\theta$  (needed to suppress other sources of L-R symmetric systematics),
  - Introduction of the coplanarity requirement it the selection, what should all improve B/S ratio further
- The ultimate uncertainty of  $\mathcal{L}$  from physics background will come from the uncertainty of the crosssection of 4-f processes. For that, some theoretical effort is needed.

Even taken as a full size effect, conclusion for CEPC is optimistic

12-14 November 2018 CEPC WS Beijing

## BACKUP

#### A long list of sources of integral luminosity systematic uncertainties:

- 1. Beam related:
- Uncertainty of the average net CM energy
- Uncertainty of the asymmetry in energy of the  $e^+$  and  $e^-$  beam
- Uncertainty of the beam energy spread
- IP position displacement and fluctuations w.r.t. the LumiCal, finite beam sizes at the IP
- Uncertainty of the (eventual) beam polarization
- 2. Detector related:
- Uncertainty of the LumiCal inner radius
- Positioning of the LumiCal (longitudinal L-R distance)
- Mechanical fluctuations of the LumiCal position w.r.t the IP (vibrations, thermal stress)
- Tilt and twist of the calorimeters
- Uncertainty of the sampling term
- Detector performance: energy and polar angle resolution
- 3. Physics interactions:
- Bhabha and physics background cross-section (uncertainty of the count)
- Bhabha acolinearity other sources of the acceptance losses (ISR and FSR, Beamstrahlung)
- Machine-related backgrounds (off-momentum electrons from the beam-gas scattering)

#### Uncertainty of count is based on:

 Modification of the acceptance region

> (either directly or through the loss of colinearity of Bhabha events via longitudinal boost)

- Effect on the Bhabha crosssection calculation (modification of the phase space and E<sub>CM</sub>)
- Sensitivity of selection based
  observables
  (reconstructed energy, polar
  and azimuthal angles)

- Instrumentation of the very forward region is very important for the realization of the CepC physics program. Luminosity measurement uncertainty can affect:
  - Precision of the cross-section measurements
  - Anomalous TGCs measurement
  - Single-photon production with E<sub>mis</sub> (BSM, dark matter)
  - Di-photon production (various BSM models)
  - Extended theories (Z') at high energies
  - Precision EW observables at Z<sup>0</sup> pole
- In most cases 10<sup>-3</sup> precision of luminosity should be sufficient
- In particular, 10<sup>-4</sup> uncertainty of integral luminosity comes from:
  - Fermion-pair production cross-section access to the higher order corrections
  - W-pair production cross-section
  - Z<sup>0</sup> total hadronic cross-section at Z<sup>0</sup> pole
- This a 'common knowledge', 10<sup>-4</sup> sensitivity should be proven through the dedicated physics analyses

## **CEPC** Parameters

|                                                            | Higgs        | W            | Ζ            |  |
|------------------------------------------------------------|--------------|--------------|--------------|--|
| Number of IPs                                              | 2            |              |              |  |
| Energy (GeV)                                               | 120          | 80           | 45.5         |  |
| Circumference (km)                                         | 100          |              |              |  |
| SR loss/turn (GeV)                                         | 1.68         | 0.33         | 0.035        |  |
| Half crossing angle (mrad)                                 | 16.5         |              |              |  |
| Piwinski angle                                             | 2.96         | 4.74         | 11.7         |  |
| $N_{o}$ /bunch (10 <sup>10</sup> )                         | 12.9         | 3.6          | 1.6          |  |
| Bunch number                                               | 304          | 5230         | 11720        |  |
| Beam current (mA)                                          | 18.8         | 90.5         | 90.1         |  |
| SR power /beam (MW)                                        | 31.7         | 30           | 3.1          |  |
| Bending radius (km)                                        | 10.9         |              |              |  |
| Momentum compaction (10 <sup>-5</sup> )                    | 1.14         |              |              |  |
| $\beta_{IP} x/y (m)$                                       | 0.36/0.002   |              |              |  |
| Emittance x/y (nm)                                         | 1.21/0.0036  | 0.54/0.0018  | 0.17/0.0029  |  |
| Transverse $\sigma_{IP}$ (um)                              | 20.9/0.086   | 13.9/0.060   | 7.91/0.076   |  |
| $\xi_{\rm p}/\xi_{\rm p}/{\rm IP}$                         | 0.021/0.088  | 0.008/0.051  | 0.0034/0.023 |  |
| RF Phase (degree)                                          | 128          | 134.4        | 138.6        |  |
| $V_{RF}(\text{GV})$                                        | 2.14         | 0.465        | 0.053        |  |
| $f_{RF}$ (MHz) (harmonic)                                  | 650          |              |              |  |
| Nature bunch length $\sigma_{z}$ (mm)                      | 2.72         | 2.98         | 3.67         |  |
| Bunch length $\sigma_{z}$ (mm)                             | 3.75         | 4.0          | 5.6          |  |
| HOM power/cavity (kw)                                      | 0.47 (2cell) | 0.31 (2cell) | 0.08 (2cell) |  |
| Energy spread (%)                                          | 0.098        | 0.066        | 0.037        |  |
| Energy acceptance requirement (%)                          | 1.12         |              |              |  |
| Energy acceptance by RF (%)                                | 2.06         | 1.48         | 0.75         |  |
| Photon number due to beamstrahlung                         | 0.25         | 0.11         | 0.08         |  |
| Lifetime due to beamstrahlung (hour)                       | 1.0          |              |              |  |
| F (hour glass)                                             | 0.93         | 0.96         | 0.986        |  |
| $L_{max}/\text{IP} (10^{34} \text{cm}^{-2} \text{s}^{-1})$ | 2.0          | 3.9          | 1.0          |  |