CEPC ECAL R&D Status

Yunlong Zhang

State Key Laboratory of Particle Detection and Electronics, China

University of Science and Technology of China

On behalf of CEPC calorimeter working group

Outline

Motivation

➤ CEPC ECAL

- Sensitive Detector
- Readout Electronics

Test Results

- Single layer prototype assembling
- Cosmic rays test

Summary

Motivation

Circular Electron Positron Collider (CEPC)

 $E_{cm} \approx 240 GeV$, luminosity $\sim 2 \times 10^{34} \text{ cm}^{-2} \text{s}^{-1}$ can also rum at the Z-pole Precision measurement of the Higgs boson (and the Z boson)

 $e^+e^- \rightarrow ZH$

Requirements of CEPC EMCal

ILD-like detector with additional considerations.

Challenges:

- $\sigma_{1/p} < 5 \times 10^{-5} \text{ GeV}^{-1}$
- > Impact parameter: $\sigma_{r\phi} = 5 \oplus 10 / (p \cdot \sin^{\frac{3}{2}}\theta) \mu m$

> Jet energy:

> Momentum:

$$\frac{\sigma_E}{E} \approx 3 - 4\%$$

- The Particle Flow Algorithm (PFA) calorimeter concept was proposed
 - High granularity
 - Good track finding
 - Good energy resolution

Outline

Motivation

➤ CEPC ECAL

- Sensitive Detector
- Electronics

Test Results

- Single layer prototype assembling
- Beam test

> Summary

CEPC ECAL

Sampling Calorimeter

- Sandwich structure
- Absorber+SD+Electronics
- Absorber
 - Tungsten
- Sensitive Detector
 - Scintillator+SiPM
- Electronics
 - SPIROC Chip

2018/11/12

ECAL Optimization I

- Total thickness: 24 X₀
- Sampling number: 30 layers
- Granularity: <10mm*10mm

 $\underline{\underline{14.3\%}} \oplus 0.87\%$

30Layers

ECAL Optimization II

- Dynamic range of ECAL SD
 1MIP 800 MIPs
- ~10 pe @ 1 MIP
 SiPM ~10k pixels
- Gain of SiPM:~10⁵
 - SPIROC:160fC 100 pC

Shower profile in ECAL

Max edep in SD

2018/11/12

Elements of ECAL

Scintillator (5 mm*45 mm*2 mm)

SiPM (1mm * 1mm, 10k pixels)

- Dynamic range: ~100fC~200pC
- channels: 36
- Dead time: 2ms
- Polar: positive
- power: 8mW/channel

SiPM Test

LED test system was built to test the SiPM dynamic range

2018/11/12

The width of LED light are:5 ns, 10 ns, 20 ns and 40 ns

- As the photon width increases, SiPM effective pixels also increase
- SiPM response can be described well with the theoretic formula
- Through correction 10K pixels SiPM dynamic range can up to 16,000 photons with less than 1% error

Scintillator Test

- Size: 2mm*5mm*45mm
- "high energy" β -rays as MIPs to test SD

International Workshop on the CEPC 2018

Scintillator coupling mode

- Three classes coupling mode i.e. side-end, bottom-end and bottom-center
- Light outputs along the length of the scintillator strip is non-uniformity, degrades the energy resolution
- Bottom-center coupling have the minimum non-uniformity
 - Avoiding the dead area between scintillators
 - Simplifying scintillators assembling process
 - Enabling to extend the SiPM area with more pixels

Readout Electronics

- SiPM front-end with ASIC

SPIROC2b/SPIROC2e of 36 channels

- Switched capacitor array store charge measurement
- 12 bits ADC conversion
- Variable Gain due to:
 - adjustable C_f of pre-amplifer
 - R_{load} on the board
 - Shaping time and delay

SPIROC2E

SPIROC2B

International Workshop on the CEPC 2018

2018/11/12

Pedestal of SPIROC2b/2e

SPIROC2b

SPIROC2e

International Workshop on the CEPC 2018

Dynamic range of SPIROC2b/2e

SPIROC2b

SPIROC2e

Cosmic Ray Test

- Scintillator coupled with SiPM was tested by cosmic rays
 - Plastic scintillator
 - BC408
- SiPM
 - S12571-010P
 - 1mm*1mm
 - 10k pixels

Cosmic ray Results

	sigma/ Ch	MIP/Ch	s/N
50ohm	2.7	35.7	13.2
200ohm	6.0	147.2	24.5
1kohm	24.7	389	15.7

Outline

Motivation

CEPC ECAL

- Sensitive Detector
- Electronics

Test Results

- Single layer prototype assembling
- Beam test

➢ Summary

- Front End Board
 - 4 SPIROC2b chips
 - 144 channels
 - SD: BC408,
 - SiPM: S12571-010P
 - Bias HV: C11204-01
- Data Interface Board

International Workshop on the CEPC 2018

2018/11/12

International Workshop on the CEPC 2018

2018/11/12

Visual inspection

Size measurement

cleaning

assembling

The single layer prototype was assembled in Shanghai Institute of Ceramic (SIC)

23

International Workshop on the CEPC 2018

2018/11/12

- 144 modules of scintillator strip coupling with SiPM (S12571-010P)
- I and IV: bottom-center embedded coupling mode, wrapped with ESR
- II: Side-end coupling mode scintillators wrapped with ESR
- III: Side-end coupling mode scintillators wrapped with Teflon

International Workshop on the CEPC 2018

2018/11/12

- Cosmic Ray Test
 - The telescope was composed of two plastic scintillators which with size of 20 cm * 20 cm.
 - The FEB and DIF boards were put in the dark box
 - The noise of each channel could be tested and stability could be monitored
 - The response to cosmic ray of each channel could be tested and could be used to evaluate the different wrapped and coupled methods.

Electronics performance

high Mean

- Working in high gain mode
- SiPM with H.V.
- Long time work stability

20

10 15

25

high RMS

Outline

Motivation

> CEPC ECAL

- Sensitive Detector
- Electronics

Test Results

- Single layer prototype assembling
- Beam test

> Summary

Summary

- Optimized ECAL absorber thickness, active layers and cell size
- Improved uniformity of scintillator strip light output
- Achieved SiPM response function for nonlinearity correction
- The electronics boards were designed based-on SPIROC chip
- Assembled single layer prototype and obtained preliminary cosmic ray test results

Summary

- Optimized ECAL absorber thickness, active layers and cell size
- Improved uniformity of scintillator strip light output
- Achieved SiPM response function for nonlinearity correction
- The electronics boards were designed based-on SPIROC chip
- Assembled single layer prototype and obtained preliminary cosmic ray test results

ternational Workshop c

2018/11/12

Readout Electronics

- SiPM front-end with ASIC
 SPIROC2b/SPIROC2e of 36 channels
- **FPGA** (Artix-7 200T)
- DIF is compatible for further FEB
- USB for data upload & cmd sending
- USB for single DIF, and **serial port for DAQ** when using multiple DIF

- Switched capacitor array store charge measurement
- 12 bits ADC conversion
- Variable Gain due to:
 - adjustable C_f of pre-amplifer
 - R_{load} on the board
 - Shaping time and delay

System schematic

ASIC High level diagram

Test Results

Compared with CALICE-EBU ECAL

MIP peak identified

18 ch (12.5%)

Shoulder found

45 ch (31.25%)

Tale only

72 ch (50.00%)

Dead or noisy channel

9 ch (6.25%)

Peak identified channels are only 12.5%. MIP peak identification with 10k pixel MPPC is not easy.

