# The Performance and the software of the CEPC detector

Manqi Ruan

### Performance

- Determined by
  - Detector design
  - Reconstruction algorithm
- Characterized at
  - Physics Objects
  - Higgs Signal
  - Benchmark Physics Analyses



### Two classes of Concepts

- PFA Oriented concept using High Granularity Calorimeter
  - + TPC (ILD-like, Baseline)
  - + Silicon tracking (SiD-like)



- Wire Chamber + Dual Readout Calorimeter





https://indico.ihep.ac.cn/event/6618/

https://agenda.infn.it/conferenceOtherViews.py?view=standard&confld=14816

11/11/18

2018 International CEPC Workshop





### **CEPC** Baseline Software



### Status of simulation-performance study



|              | Geant4-<br>Simulation | Digitization | Reconstructi<br>on | Performance<br>-Object | Performance<br>-Benchmark |
|--------------|-----------------------|--------------|--------------------|------------------------|---------------------------|
| IDEA         |                       |              |                    |                        |                           |
| Full-Silicon |                       |              |                    |                        |                           |
| APODIS       |                       |              |                    |                        |                           |

See Chengdong Fu's talk

2018 International CEPC Workshop

# Arbor & Objects



Eur. Phys. J. C78 (2018) no.5, 426

Performance at
Lepton
Kaon
Photon
Tau
JET

### **Physics Objects**



2018 International CEPC Workshop

## Applied on Higgs physics, et.al



11/11/18

2018 International CEPC Workshop

K<sub>V</sub>

## Tracking



### Clustering



See Hang Zhao's talk

11/11/18

2018 International CEPC Workshop

### Photon: resolution



11/11/18

## Tau finding at hadronic events



an overall efficiency\*purity higher than 70% is achieved for qqTT, and qqTV events

See Zhigang Wu's talk

### Jets

- Boson Mass Resolution: Total reconstructed mass of hadronic events
  - 3.8% at baseline (benchmarked with vvH,  $H \rightarrow$  gluons process)
  - Be applied directly to event with one color singlet
    - W, Z, H signal separation at lvqq, II(vv)+qq events (Appreciated in Triplet Gauge Boson Coupling measurements)
    - Analysis of qqH, Higgs decays into non-jet final states, for example, qqH, H→taus, inv, photons, muons...
    - ...
- Jet Clustering: Single jet response (Jet energy scale/resolution)
  - Differential measurements with jet directions
  - Events with more than one color singlet:
    - WW/ZZ/ZH event separation in 4-jet final state
    - ...

### **Massive Boson Separation**



11/11/18

2018 International CEPC Workshop

14

Eur. Phys. J. C78 (2018) no.5, 426

### An Analysis Example: g(HTT) at qqH

- TAURUS: di-tau system
- The rest particles are identified as the di-jet: to distinguish the ZZ/ZH background & Improves the accuracy by more than a factor of 2
- Isolated tracks are intensionally defined as tau candidate: be distinguished by the VTX



**Table 6** Cut Flow of MC sample for  $qqH \rightarrow \tau\tau$  selection on signal and inclusive SM backgrounds,  $E_{Le}/E_{L\mu}$  represents the energy of the leading election or muon,  $M_{\tau\tau}^{col}$  is the  $\tau\tau$  mass calculated with collinear approximation, Pull1 and Pull2 are the pulls of the leading  $\tau$  pairs.

|                                         | 2f        | SW       | SZ      | WW       | ZZ      | $qqH\tau\tau$ | total Bkg | $\sqrt{S+B}/S$ (%) |
|-----------------------------------------|-----------|----------|---------|----------|---------|---------------|-----------|--------------------|
| Total Statistic                         | 722467499 | 17600512 | 8181853 | 45834351 | 5552013 | 43526         | 799636228 | 64.96              |
| NCh>10                                  | 246181175 | 12413358 | 1776493 | 42431059 | 4996124 | 42697         | 307798209 | 41.09              |
| $110 GeV < E_{tot} < 235 GeV$           | 156540856 | 11866685 | 850064  | 28223344 | 2736725 | 41647         | 200217674 | 33.97              |
| $E_{Le} < 45 GeV, E_{L\mu} < 65 GeV$    | 152933720 | 3078507  | 637585  | 20225454 | 2464417 | 39762         | 179339683 | 33.68              |
| $N_{	au^+}>0, N_{	au^-}>0$              | 361749    | 191343   | 12624   | 1018569  | 105854  | 20212         | 1690139   | 6.47               |
| $90 GeV < M_{\tau\tau}^{col} < 160 GeV$ | 8762      | 19373    | 1521    | 122226   | 36453   | 15489         | 188335    | 2.91               |
| $70GeV < M_{aq} < 110GeV$               | 1439      | 3715     | 912     | 24188    | 31244   | 14660         | 61498     | 1.88               |
| $M_{qq}^{rec}(GeV) > 100GeV$            | 0         | 1319     | 573     | 9983     | 8424    | 14619         | 20299     | 1.27               |
| Pull 1 > 0, Pull 2 > 0                  | 0         | 590      | 238     | 3426     | 6266    | 12402         | 10520     | 1.22               |

See Dan Yu's Poster

#### BMR < 4% (baseline of 3.8%) is crucial

### Jet Energy Scale & Resolution



- JER ~ 3.5% 5.5% for E ~ 20 100 GeV Jets
- Both Superior to LHC experiments by 3-4 times
  2018 International CEPC Workshop
  16

#### See Peizhu Lai's talk

11/11/18

# Can we separate the full hadronic WW/ZZ events: Yes!...



- Force all reconstructed particles into 4 jets, identify the event with minimal chi-2. Preliminary Jet clustering optimization is performed to minimize Overlap Area
- Separation power is mainly limited by the Jet-Clustering See YongFeng Zhu's talk

# Summary

- CEPC, a super Higgs/W/Z factory, requests high efficiency, purity, and precision reconstruction of all key physics objects
  - Tracker & Calorimeter intrinsic resolution: better is better!
  - BMR < 4% is crucial
- Performance at the baseline (APODIS + Arbor) fulfills the physics requirements
  - All key physics objects tamed
  - Clear Higgs signature in all SM Higgs decay modes
  - Clear distinguish between the Signal and SM backgrounds  $\rightarrow$  0.1% 1% relative error in Higgs coupling measurements
- To do
  - Reconstruction Optimization, iterate with detector design: to address the challenges at TDR
  - Identification of jet, jet flavor, gluon jet, and color singlet
  - Data preservation, deep learning, parallel computing
  - Lots of challenges & excitements

### Many Thanks to













Y. Wang, Calo optimization



Tau, PFA

P. Lai, Jet Calibration

Z. Wu, VTX Optimization

H. Liang, Generator













M. Ruan, PFA, Object,...

Y. Shen. Photon

M. Zhao, Tracking. TPC,

G. Li, Generator

H. Zhao, Calo Y. Zhu, Jet & Flavor tagging Optimization & PFA Clustering

T. Zhen, K short & Lambda

See also:

Xianghu Zhao & Mingrui Zhao's talks on Software/production Taifan Zhen's talk on Ks &  $\Lambda$  reconstruction Hao Liang & Fenfen An's talks on Higgs/Flavor benchmark analysis YueXin Wang's Poster on Alternative Calorimeter study

### backup





Highly appreciated in flavor physics @ CEPC Z pole TPC dEdx + ToF of 50 ps

At inclusive Z pole sample:

Eur. Phys. J. C (2018) 78:464

Conservative estimation gives efficiency/purity of 91%/94% (2-20 GeV, 50% degrading +50 ps ToF) Could be improved to 96%/96% by better detector/DAQ performance (20% degrading + 50 ps ToF) 11/11/18 2018 International CEPC Workshop 22

### Photons - conversion



In the barrel region: Roughly 6-10% of the photons converts before reaching the Calorimeter.

# Jet Energy Resolution



Amplitude ~ 3.5% - 5.5% for E ~ 20 – 100 GeV Jets Depends on the Flavor, direction and jet energy Superior to LHC experiments by 3-4 times 11/11/18 2018 International CEPC Workshop

# Flavor Tagging

- Using LCFIPlus
   Package from ilcsoft
- At Higgs->2 jet samples:
  - Clear separation between different decay modes
- Typical Performance at Z pole sample:
  - B-tagging: eff/purity = 80%/90%
  - C-tagging: eff/purity = 60%/60%



2018 International CEPC Workshop

### Tau



- Two catalogues:
  - Leptonic environments: i.e, IITT(ZZ/ZH), vvTT(ZZ/ZH/WW),  $Z \rightarrow TT$ ;
  - Jet environments: i.e,  $ZZ/ZH \rightarrow qq\tau\tau$ ,  $WW \rightarrow qq\tau\tau$ ; \_

Ph.D thesis: D. Yu, reconstruction of leptonic objects at e+e- Higgs factory 2018 International CEPC Workshop

### An ILD-like detector at the CEPC



- Different collision environments/rates :
  - MDI design & Implementation: CEPC-SIMU-2017-001
- The CEPC Event rate is significantly higher than linear colliders, charged kaon id can strongly enhance the CEPC flavor physics program
  - TPC Feasibility: JINST-12-P07005 (2017)
  - Pid using TPC dEdx and ToF: Eur. Phys. J. C (2018) 78:464
- No power pulsing at CEPC detector
  - A significant reduction of the readout channel, especially the Calorimeter Granularity: JINST-13-P03010 (2018)
  - HCAL Optimization
- 3 Tesla Solenoid: requested by the Accelerator/MDI

### **APODIS Geometry**



# Missing Energy & Momentum



Width of the Light jets: 6GeV/8GeV (Left/Right Plots)

### **Physics Objects: Tamed**



2018 International CEPC Workshop

# Higgs Signal at APODIS



### Higgs to bb, cc, gg (Jets)



# Higgs to WW, ZZ (Jets + leptons + neutrinos)



Table 2. Benchmark resolutions ( $\sigma/Mean$ ) of reconstructed Higgs boson mass, comparing to LHC results.

|                  | $\mathrm{Higgs}\!\!\rightarrow\!\mu\mu$ | $	ext{Higgs} \rightarrow \gamma \gamma.$ | $Higgs \rightarrow bb$ |
|------------------|-----------------------------------------|------------------------------------------|------------------------|
| CEPC (APODIS)    | 0.20%                                   | $2.59\%^{1}$                             | 3.63%                  |
| LHC (CMS, ATLAS) | ${\sim}2\%~[19,~20]$                    | ${\sim}1.5\%$ [21, 22]                   | ${\sim}10\%~~[23,24]$  |

<sup>1</sup> primary result without geometry based correction and fine-tuned calibration. https://arxiv.org/abs/1806.04992

11/11/18



#### Higgs benchmark analyses

