

Di-photon Separation Study and the Higgs Signals at CEPC

Hang Zhao

Institute of High Energy Physics, CAS State Key Laboratory of Particle Detection and Electronics, China

Workshop on the CEPC, Beijing, November 12, 2018

Outline

• Di-photon Separation Study

 Higgs Signals at CEPCv4 Geometry (APODIS, Baseline Geometry at CDR)

Jet Energy Resolution

Separation of W/Z bosons in their hadronic decays translates into a jet energy resolution requirement of $\sim 30\%$ /VE (E<100GeV).

WW \rightarrow 4j and ZZ \rightarrow 4j

Jet Energy Resolution

a BMR of ~4% or better will be needed.

Particle Flow Algorithm

Particle Flow Calorimetry paradigm:

- Charged particle momentum measured in tracker (essentially perfectly)
- Photon energies measured in ECAL:
- Only neutral hadron energies (10% of jet energy) measured in HCAL: much improved resolution

5

π₀ -> γγ

Critical energy to separate an evenly decay π_0 : 30 GeV

Z->tau tau (at Zpole Energy)

Nearby EM-Shower Separation

Lots of nearby EM-showers exist in jets, the separation and reconstruction of them are important for some physics objects.

The reconstruction efficiency of two parallel 5 GeV photons was studied. The distance between these two photons ranges from 1mm to 80mm.

failed

 $(E_{blue cluster} \approx 1/6E_{orange cluster})$

failed

succeeded

Nearby EM-Shower Separation

Efficiency with different cell size was checked At large distance, the reconstruction efficiency converges to 100% At very closed by distance, the reconstruction efficiency drops significantly

The critical separation distance is defined as the distance with which the successful reconstruction efficiency is 50%.

Nearby Photon Showers in Physics Objects

 Table 2.
 Percentages of photons that would be polluted by neighbor particles

Cell Size	Critical Separation Distance with Arbor	Percentage of $Z \rightarrow \tau^+ \tau^-$
1 mm	4 mm	0.07%
5 mm	8 mm	0.30%
10 mm	16 mm	1.70%
20 mm	38 mm	19.6%

At least ~10mm × 10mm effective cell size

Separation Eff VS. ECAL Layer Number

Separation at Strip Readout

Summary for Di-photon Separation

- ~10mm*10mm or smaller cell size is needed for EM shower separation in tau jets.
- Less readout layer or Strip readout method will slightly decrease the separation performance

Outline

• Di-photon Separation Study

 Higgs Signals at CEPCv4 Geometry (APODIS, Baseline Geometry at CDR)

CEPC Full Simulation Software

APODIS Geometry

CEPC CDR-baseline detector

Higgs Signals at APODIS

CEPC-RECO-2018-002 CEPC-Doc id 174, 175

Lepton tracks & Photon Clusters

Event Selection for jet final states

- The ISR (initial state radiation) photons.
- The neutrinos generated by the Higgs boson decay products.
- The direction of the jets, for Higgs->di-jets events.

Higgs -> gg events

Higgs decaying to two jets


```
Higgs -> WW*
```


Higgs -> ZZ*

Higgs Signals at APODIS

Higgs boson mass resolution (sigma/Mean) at different decay modes with jets as final state particles, after event cleaning.

H->bb	H->cc	H->gg	H->WW*	H->ZZ*
3.63%	3.82%	3.75%	3.81%	3.74%

Benchmark resolutions (sigma/Mean) of reconstructed Higgs boson mass, comparing to LHC results.

	Η->μμ	Н->үү	H->bb
CECP (APODIS)	0.20%	2.59%	3.63%
LHC (CMS, ATLAS)	~2%	~1.5%	~10%

CEPC has much better resolution for charged particles and jets.

Geometry based corrections and fine-tuned calibrations are needed for photons, see Yuqiao's talk

Thanks!

Back up

APODIS Geometry

Physics	Measurands	Detector	Performance
process	Weasurands	subsystem	requirement
$ZH, Z \rightarrow e^+e^-, \mu^+\mu^-$	$m_H, \sigma(ZH)$	Tracker	$\Delta(1/p_T) =$
$H \to \mu^+ \mu^-$	${\rm BR}(H\to \mu^+\mu^-)$	Паске	$2 \times 10^{-5} \oplus \frac{0.001}{p(\text{GeV}) \sin^{3/2} \theta}$
$H \to b\bar{b}/c\bar{c}/gg$	${\rm BR}(H\to b\bar{b}/c\bar{c}/gg)$	Vertex	$\sigma_{r\phi} = 5 \oplus \frac{10}{p(\text{GeV}) \times \sin^{3/2} \theta} (\mu\text{m})$
$H \rightarrow a\bar{a} WW^* ZZ^*$	$BR(H \to a\bar{a} \ WW^* \ ZZ^*)$	ECAL	$\sigma_E^{\text{jet}}/E =$
11 7 qq, w w , ZZ	$\mathbf{DR}(\Pi \to qq, www, ZZ)$	HCAL	$3\sim 4\%$ at 100 GeV
$H \rightarrow \gamma \gamma$	$BR(H \rightarrow \gamma \gamma)$	ECAL	$\Delta E/E =$
Π - γγ	$DIX(II \rightarrow \gamma\gamma)$		$\frac{0.20}{\sqrt{E(\text{GeV})}} \oplus 0.01$

CEPC Detector Model Results vvHiggs->gluon gluon

Cell Size (mm ²)	5 x 5	10 x 10	20 x 20
Boson Mass Resolution (sigma/mean)	3.74%	3.75%	3.93%