

Presented by ¹Pei-Zhu Lai (賴培築)

Supervisor: ²Man-Qi Ruan, ²Gang Li, ¹Chia-Ming Kuo ¹National Central University, Taiwan ²Institute of High Energy Physics, China CEPC Workshop, Beijing, China Nov 12-14, 2018

Introduction

- Strategy
- Event selections
- Results
 - The total jet energy resolution and scale (Reco-Gen, Gen-MCP, Reco-MCP)
 - JER/JES depend on angel and energy (Reco-Gen, Gen-MCP, Reco-MCP)
 - Compare the results with CMS at LHC
- Jet energy calibration
- Summary

Jet reconstruction plays an important role in particle physics. To study the performance of the jet reconstruction in CEPC, we look at the simulation which contains MC particle(MCP), particle jet(Gen jet), and PFOs(Particle Flow Objects) jet(Reco jet).

Introduction

Difficulties in jet reconstruction

- Poor clustering
- Neutrinos cannot be detected
- The detector responses (i.e. energy threshold)

Wrong measurement leads to wrong physical results.

Quantify the Performance

- **Double-sided crystal ball(DBCB) function are used to extract energy resolution.**
- The bin size of histogram is 0.5%.

- The jet energy resolution and scale(JER/JES) in $e^+e^- \rightarrow ZZ \rightarrow v\overline{v}q\overline{q}$ process have been studied.
- The JER/JES relation between each simulation stage(Gen-MCP, Reco-Gen, and Reco-MCP).
- Angular, energy, and flavor dependence of JER/JES.
- To exclude the influence of jet clustering algorithm, matching reco jet and MC particle by $\Delta R < 0.1$.

Pei-Zhu Lai (NCU, Taiwan)

The Reason for ΔR Cut

Pei-Zhu Lai (NCU, Taiwan)

CEP

Entries / 0.005

Leading JER & JES

Reco-Gen

Reco-MCP

■ JER/JES between Reco jet and MCP would combine the effects of two previous stages.

Pei-Zhu Lai (NCU, Taiwan)

CEPC

Sub-leading JER & JES

Gen-MCP

Reco-Gen

Reco-MCP

JER/JES between Reco jet and MCP would combine the effects of two previous stages.

MCP Gen jet Reco jet Parton level T, K, ... e⁺ ee_kt Particle Jet Reconstructed particles

Pei-Zhu Lai (NCU, Taiwan)

JER & JES(Gen-MCP)

Pei-Zhu Lai (NCU, Taiwan)

JER & JES(Reco-Gen)

Pei-Zhu Lai (NCU, Taiwan)

JER & JES(Reco-MCP)

Pei-Zhu Lai (NCU, Taiwan)

• Our JER is better than CMS as it should be.

Heavy flavors have a little poor JER.

CFI

0.3

Dependence

- JER also depends on the jet flavor.
- Higher jet energy and within central region of barrel, JER has impressive performance.

JES in Phase Space

Light flavor jet has higher energy deviation.

Pei-Zhu Lai (NCU, Taiwan)

Jet Energy Calibration

According to MC true energy and cosθ distribution, JES can calibrate the dijet invariant mass back to the value we put into simulation.

■ After calibration, boson mass resolution is improved about 1%.

Boson Mass Resolution

Z, W, and Higgs boson masses in dijet final state can be well separated in CEPC.

CEŦ

Boson Mass Resolution

The separation of Z and W at CEPC is much better than ATLAS as it should be, because we have better jet energy resolution.

CEF

Reco-Gen Gen-MCP JER JES JER JES Туре Sub-Lead Sub-Lead Туре Sub-Lead Sub-Lead Lead Lead Lead Lead Barrel Barrel 1% 2% 0 0 4% 5% 2% 1.5% 0 0 Endcaps 1% 2% Endcaps 5.5% 3% 2.5% 5% En > 60 GeV1% 0 En > 60 GeV4% 2.5%

Reco-MCP

	JER		JES	
Туре	Lead	Sub-Lead	Lead	Sub-Lead
Barrel	4%	5.5%	2.5%	1.5%
Endcaps	5%	6.5%	3%	2.5%
En > 60 GeV	4.5%		2.5%	

Pei-Zhu Lai (NCU, Taiwan)

- After comparison, the CEPC detector has excellent jet energy resolution.
- Z, W, and Higgs boson mass in dijet final state can be well separated in CEPC.
- The jet clustering brings a significant or even leading uncertainty.
- Jet energy calibration can be used to improve the precision of boson mass measurement.
- **Base on reconstruction level and** $Z\gamma$ **process to do calibration.**
- Study the performance of different jet clustering algorithms to promote precision in multi-jet processes measurements. (e.g., e⁺e⁻→ZH→4b)

Thank for your attention

[1] CMS-Physics-Technical-Design-Report-2006-001

- [2] http://cms.web.cern.ch/tags/particle-jet
- [3] CMS-JME-13-004, CERN-PH-EP "Jet energy scale and resolution in the CMS experiment in pp collisions at 8 TeV"
- [4] A new method to distinguish hadronically decaying boosted Z bosons from W bosons using the ATLAS detector, CERN-PH-EP-2015-194

Back up

JER & JES

CEP

JES

JER

C75

JER in Phase Space

■ JER also depends on the jet flavor.

Higher jet energy and within central region of barrel, JER has impressive performance.

Summary

m _w (GeV)	m _z (GeV)	m _н (GeV)	Jets / PFOs	wi/wo Clean	wi/wo Cali
82.66 ± 3.54	93.69 ± 3.89	127.48 ± 4.93	Jets	0	0
82.79 ± 3.34	93.95 ± 3.48	127.31 ± 4.54	Jets	1	0
80.72 ± 3.46	91.67 ± 3.77	125.02 ± 5.11	Jets	0	1
80.82 ± 3.23	91.76 ± 3.39	124.39 ± 4.39	Jets	1	1
82.63 ± 3.53	93.69 ± 3.89	127.57 ± 4.80	PFOs	0	0
82.77 ± 3.32	93.90 ± 3.54	127.83 ± 4.50	PFOs	1	0

Leading JER & JES V1

JER/JES between reco jet and MCP would combine the effects of two previous stages.

CEPC Workshop, Nov 12~14, 2018

Pei-Zhu Lai (NCU, Taiwan)

CFP

31

JER/JES between reco jet and MCP would combine the effects of two previous stages.

Compare with ALEPH at LEP

• Our JER is better than ALEPH.

Ref. [4] CEPC Workshop, Nov 12~14, 2018

CEP

$ZZ \rightarrow \nu \nu q \overline{q}$

WW $\rightarrow \mu \nu q \overline{q}$

ZH→vvqq

