

中國科學院為能物現為完備 Institute of High Energy Physics Chinese Academy of Sciences

Vertex optimization and τfinding optimization at CEPC

Zhigang Wu 2018.11.13

Outline:part1

- Introduction
- Vertex baseline design
- Analytic method and simulation setup
- The flavor tagging performance and the measurement of Br (H -> bb) and Br (H -> cc)
- The τ finding performance and Br (H -> $\tau\tau$) measurement

Introduction

- H -> bb, cc and $\tau\tau$ is the core part of the CEPC Higgs program
- Vertex system with high impact parameter resolution is crucial

 Table 6.1
 Required performance of the CEPC sub-detectors for critical benchmark Higgs processes.

Physics Process	Measured Quantity	Critical Detector	Required Performance
$ZH \to \ell^+ \ell^- X$	Higgs mass, cross section	Tracker	$\Delta(1/p_{\rm T}) \sim 2 \times 10^{-5}$
$H \to \mu^+ \mu^-$	$\mathrm{BR}(H \to \mu^+ \mu^-)$		$\oplus 1 \times 10^{-3}/(p_{\rm T}\sin\theta)$
$H \rightarrow b \bar{b}, \ c \bar{c}, \ g g$	${ m BR}(H o b ar b, \ c ar c, \ gg)$	Vertex	$\sigma_{r\phi} \sim 5 \oplus 10/(p \sin^{3/2} \theta) \mu \mathrm{m}$
$H \to q \bar{q}, \ V V$	${\rm BR}(H\to q\bar{q},VV)$	ECAL, HCAL	$\sigma_E^{ m jet}/E\sim 3-4\%$
$H\to\gamma\gamma$	${\rm BR}(H\to\gamma\gamma)$	ECAL	$\sigma_E \sim 16\%/\sqrt{E} \oplus 1\%~({\rm GeV})$
95% C1 upper limit on selected Hings Evotic Decay BP			

2018/11/13

Vertex baseline design

- ILD-like silicon pixel detector system
- Baseline design requirement

$$\sigma_{r\phi} = 5 \oplus \frac{10}{p(GeV)sin^{3/2\theta}}$$

 Table 1. Design parameters of the CEPC vertex system.

	R(mm)	Z (mm)	$\sigma(\mu m)$	material budget
Layer 1	16	62.5	2.8	0.15%/X ₀
Layer 2	18	62.5	6	0.15%/X ₀
Layer 3	37	125.0	4	0.15%/X ₀
Layer 4	39	125.0	4	0.15%/X ₀
Layer 5	58	125.0	4	0.15%/X ₀
Layer 6	60	125.0	4	0.15%/X ₀

Key geometry parameters

- The influence of the geometry parameters on the impact parameter resolution 103
 - Material budget

full sim,CEPC baseline,1GeV

full sim,CEPC baseline, 10GeV

Analytic method and simulation setup

- Samples
 - Only the SM signal and the most relevant backgrounds are considered
- Full simulation tools
 - Whizard V1.9.5: MC events generator
 - Mokka-C: Geant4 based simulator
 - Arbor: CEPC reconstruction tool
 - LCFIPLUS: jet flavor identification
- Samples->Full simulation with different geometries->event selection ->signal efficiency and purity
 - $\epsilon \cdot p$ is a comparison benchmark

$$\frac{\delta_{\mu}}{\mu} \propto \frac{\sqrt{S+B}}{S} = \sqrt{\frac{1}{S}} \sqrt{\frac{S+B}{S}} \propto \frac{1}{\sqrt{\epsilon \cdot p}}$$

Geometry scan range

- Conservative case
 - The parameters at upgraded ALICE ITS are used
- Aggressive case
 - the parameters are half values of the baseline design

Table 2. Reference geometries

	Scenario A (Aggressive)	Scenario B (Baseline)	Scenario C (Conservative)
Material per layer/ X_0	0.075	0.15	0.3
Spatial resolution/µm	1.4 - 3	2.8 - 6	5 - 10.7
R _{in} /mm	8	16	23

Flavor tagging performance

- Only di-jet final modes (bb, cc, gg) are considered
- ROC curve at different scenarios
 - Scenario A will have better c-tagging performance

Br (H -> cc) measurement

- The purity and $\varepsilon \cdot p\;\; as\; a\; function\; of\; the\; signal\; efficiency$
 - relatively flat curve of the $\varepsilon \cdot p$
 - The maximum value of the ϵ ·p: 0.095 (ϵ :46%, p:21%)
- $\epsilon \cdot p$ at different scenarios
 - A significant improvement for scenario A
 - A->B: 41%, C->B:-22%

Br (H -> cc) measurement

The ε·p as a function of the scanned geometry parameters

 – Inner radius is the most sensitive parameter

Br (H -> bb) measurement

- The purity and $\varepsilon \cdot p\;$ as a function of the signal efficiency
 - Decent result for b-tagging
 - The maximum value of the ϵ ·p: 0.914 (ϵ :97%, p:94%)
- $\epsilon \cdot p$ at different scenarios
 - not demanding in the vertex optimization
 - A->B: 1%, C->B:-1.5%

Br (H -> ττ) measurement

- Samples
 - Signal: Η -> ττ
 - Background: H -> WW -> IIvv, I = $e \mu \tau$
- Different impact parameter for sig and bkg

$$\Lambda = log_{10}[(\frac{D_0}{\sigma_{d_0}})^2 + (\frac{Z_0}{\sigma_{z_0}})^2].$$

Br (H -> ττ) measurement

- The purity and $\varepsilon \cdot p\;$ as a function of the signal efficiency
 - The maximum value of the ϵ ·p: 0.71 (ϵ :80%, p:88%)
- $\epsilon \cdot p$ at different scenarios
 - not crucial comparing to the Br (H -> cc) measurement.
 - A->B: 8%, C->B:-4%

Outline:part2

- Introduction: Taurus and motivation
- Optimization method
- Parameter optimization
 - qqH -> ττ
 - WW -> qqτν

Introduction: Taurus

- Motivation
 - A τ finding algorithm is necessary to separate the tau candidate from hadronic decay
- Taurus
 - Two cone based algorithm
 - The initial version from Dan Yu¹⁾

Optimization method

- Parameters
 - Leading Track Energy: algorithm starts with a seed track with its energy above the LTE
 - smallTrackCone: charged and neutral particles in the small cone form the tau candidate
 - Invariant mass: is required to be in the range of 0.01--2GeV
 - TrackCone: a large cone is defined to make sure the τ candidate is isolated
 - E_par: the total energy in smallTrackCone divided by the energy in TrackCone
 - Multiplicity: the number of charged particle and photon
- Invariant mass, Multiplicity are related to physics of τ itself
- smallTrackCone, TrackCone and E_par are related to the physics channel of τ production
 - Need to be optimized for different physics channels
- Parameter scan method is applied
 - $\varepsilon \cdot p$ is a optimization benchmark

Parameter optimization

- Efficiency of 83.2%, purity of 88.4% is achieved @Sample: qqH-> ττ
 - TrackCone 0.31
 - smallTrackCone 0.12
 - E_par 0.92

Parameter optimization

• Efficiency of 81.5%, purity of 89.2% is achieved @Sample: WW->qqτv

- TrackCone 0.46
- smallTrackCone 0.15
- E_par 0.95

International Workshop on High Energy Circular Electron Positron Collider@IHEP

Summary:part1

- Br (H -> bb) is not really sensitive to the vertex design
 A->B: 1%, C->B:-1.5%
- Br (H -> cc) is extremely sensitive to the vertex design
 - A->B: 41%, C->B:-22%
 - Inner radius is the most sensitive parameter
- Br (H -> ττ) measurement has a medial dependence on the vertex geometry
 - A->B: 8%, C->B:-4%

 Table 2.
 Reference geometries

	Scenario A (Aggressive)	Scenario B (Baseline)	Scenario C (Conservative)
Material per layer/ X_0	0.075	0.15	0.3
Spatial resolution/ μm	1.4 - 3	2.8 - 6	5 - 10.7
R _{in} /mm	8	16	23

Table 6. $\epsilon \cdot p$ comparison for all three benchmarks.

Benchmark	Scenario A	Scenario B	Scenario C
$Br(H \to c\bar{c})$	0.133 ± 0.002	0.095 ± 0.001	0.078 ± 0.001
$Br(H \to b\bar{b})$	International Workshop	o on High Energy Circular Electron	0.900 ± 0.001
$Br(H \to \tau^+ \tau^-)$	$0.77 \pm 0.01^{\text{Positro}}$	on Collid이역마표0.01	0.68 ± 0.01

Summary:part2

- A general τ finding algorithm Taurus is developed and the performance is evaluated and optimized
- Taurus are optimized for different physics channels
 - qqH-> ττ, WW->qqτν
 - An efficiency of about 80% and purity of about 90% are achieved for ZH and WW situation

Next step:

Tau decay branching ratio measurement at CEPC

Thanks for your attention!

